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CONVERGENCE OF DISCONTINUOUS FINITE VOLUME
DISCRETIZATIONS FOR A SEMILINEAR HYPERBOLIC
OPTIMAL CONTROL PROBLEM

RUCHI SANDILYA AND SARVESH KUMAR

Abstract. In this paper, we discuss discontinuous finite volume approximations of the distributed
optimal control problems governed by a class of semilinear hyperbolic partial differential equations
with control constraints. The spatial discretization of the state and costate variables follows dis-
continuous finite volume schemes with piecewise linear elements, whereas three different strategies
are used for the control approximation: variational discretization, piecewise constant and piece-
wise linear discretization. As the resulting semi-discrete optimal system is non-symmetric, we
have employed optimize then discretize approach to approximate the control problem. A prior:
error estimates for control, state and costate variables are derived in suitable natural norms. The
present analysis is an extension of the analysis given in Kumar and Sandilya [Int. J. Numer. Anal.
Model. (2016), 13: 545-568]. Numerical experiments are presented to illustrate the performance
of the proposed scheme and to confirm the predicted accuracy of the theoretical convergence rates.
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1. Introduction

It is well known that optimization problems governed by partial differential
equations introduced in [Z5] have many applications in the field of science and
technology. In particular, the hyperbolic optimal control problems arise in med-
ical applications, acoustic problems as noise suppression and for optimal control
in linear elasticity (cf. [W, [@, 33]). Although abundant literature is available on
finite element analysis for elliptic and parabolic optimal control problems (see, e.g.,
[8, M, P9, B0, B7]), there is relatively less work on hyperbolic optimal control prob-
lems (see, e.g., [, 06, B1]). Most of these articles deal with conforming piecewise
linear finite element discretizations for state and costate variables and control is dis-
cretized using piecewise constant or linear polynomials, and the rate of convergence
for control is of O(h) and O(h3/?) when piecewise constant and linear polynomi-
als are used, respectively. In order to improve the order of convergence, Hinze
proposed a variational discretization approach for optimal control problems with
control constraints in which control set is not discretized explicitly but discretized
by a projection of the discrete costate variables, for details see [[4]. For this new
scheme, it has been shown that the rate of convergence for the control is of O(h?).

Due to local conservation properties and other attractive features, finite vol-
ume methods have been extensively used for the approximation of partial differ-
ential equations obeying some conservation laws. They can also be considered
as Petrov-Galerkin methods in which the finite dimensional trial and test spaces
consist piecewise linear polynomials and piecewise constant functions, respectively.
For more details on finite volume methods, kindly see [G, [, 3, 24] and references
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therein. Since the test space associated with the dual grid is piecewise constant,
finite volume methods have some computational advantages over continuous finite
element methods. Due to computational efficiency and simplicity, these methods
are widely used for the approximation of linear elliptic, parabolic and hyperbolic
optimal control problems (see e.g. [6, P27, PR]) and a priori error estimates have
also been established. In these articles, variational discretization approach is used
to approximate control variable and optimal order of convergence is obtained.

On the other hand, discontinuous Galerkin methods are very appealing to the
scientific community because of their desirable properties like: mesh adaptivity, lo-
cally conservative, suitability for parallel computing, use of high order polynomials
and no inter element continuity requirement (generally imposed on continuous and
non-conforming finite element spaces) etc. A few contributions are available (cf.
[T, 29, B0, 32]) which deal with discontinuous Galerkin methods for linear and semi-
linear parabolic optimal control problems. In order to utilize the desirable proper-
ties of both finite volume and discontinuous Galerkin methods, Ye in [85] proposed
a hybrid scheme called discontinuous finite volume (DFV) methods to approximate
linear elliptic problems. In DFV scheme, discontinuous piecewise linear functions
are used in trial space whereas test space consists of piecewise constant functions.
Later, with the appropriate modifications these methods have been applied to el-
liptic, parabolic and certain fluid flow problems (for details, see [B, B, IR, [, P0]).
Recently, DFV methods have been applied to solve optimal control problems gov-
erned by elliptic [Z1], semilinear parabolic [22] and Brinkman [23] equations and
here we extend these ideas to the case of semilinear hyperbolic optimal control
problem.

For the numerical solution of optimal control problems, there are two different
strategies- optimize-then-discretize and discretize-then-optimize. In optimize-then-
discretize approach, the optimality conditions at the continuous level are formulated
first and then one proceeds to the discretization step; whereas in discretize-then-
optimize approach one first discretizes the continuous problem and then derives the
optimality conditions accordingly. For non-symmetric discrete formulations, these
two approaches need not coincide as they may lead to different discrete adjoint
equations (see [2]). In general, finite volume element formulation is non-symmetric
and the authors in [26, 27, 28] have employed optimize-then-discretize technique to
discretize the optimal control problems. In the light of these articles and applica-
bility of optimize-then-discretize approach, in this article, we will also undertake
the same strategy (optimize-then-discretize) for the approximation of the concerned
control problem.

The rest of this article is organized in the following manner. The remaining
part of this section deals with some standard notations, statement of the governing
problem and the corresponding optimality conditions. In Section B, we apply DFV
scheme to the considered optimal control problem and obtain its discrete formu-
lation. Section B deals with a priori error estimates for different types of control
discretization. In Section B, we present numerical experiments to illustrate the the-
oretical results and performance of the method. Finally, based on theoretical and
computational observations, some conclusions are drawn in Section B.

Notations. Let Q C R? be a bounded convex polygonal domain with boundary
090 and T be a positive time that defines the time interval I := (0,T]. The standard
notations are used for the Lebesgue spaces L?(2) and the Sobolev Spaces H*(€2) and
their associated norms |- ||s,o and seminorms |-|5.o. Also, we write H(Q) := L?(Q)



