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ON THE COMPARISON OF PROPERTIES OF RAYLEIGH

WAVES IN ELASTIC AND VISCOELASTIC MEDIA

YANGYANG HE, JINGHUAI GAO, AND ZHANGXIN CHEN

Abstract. Dispersion properties of Rayleigh-type surface waves are widely used in environmen-

tal and engineering geophysics to image and characterize a shallow subsurface. In this paper, we

numerically study the Rayleigh-type surface waves and their properties in 2D viscoelastic media.
A finite difference method in a time-space domain is proposed, with an unsplit convolutional

perfectly matched layer (C-PML) absorbing boundary condition. For two models that have ana-
lytical expressions of wave fields/dispersion curves, we calculate their wave fields and compare the

analytical and numerical solutions to demonstrate the validity of this method. For the case where

a medium has a high Poisson’s ratio, say 0.49, traditional finite difference methods with a PML
boundary condition are not stable when modeling Rayleigh waves but the proposed method is sta-

ble. For a laterally heterogeneous viscoelastic media model (Model 1) and a two-layer viscoelastic

media model (Model 2) with a cavity, we use this method to obtain their corresponding Rayleigh
waves. For several quality factors, the dispersion properties of these Rayleigh waves are analyzed.

The results of Model 1 show that in a shallow subsurface, the phase velocity of a fundamental

mode of the Rayleigh waves increases considerably with a quality factor Q decreasing; the phase
velocity increases with Poisson’s ratio increasing. The results of Model 2 indicate that the energy

of higher modes of the Rayleigh waves become strong when Q decreases.
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1. Introduction

In most surface seismic surveys, a different frequency component of a surface
wave has a different phase velocity. This dispersion property is of fundamental
interest in oil exploration, engineering and environmental studies. Rayleigh waves
were used to construct S-wave velocity profiles [20, 24, 25, 27, 28], study attenuation
[6, 26] and investigate cavities in a shallow subsurface [11].

The Rayleigh waves can be simulated by solving wave equations through numer-
ical methods. One of the most popular numerical methods is the finite difference
method (FDM). Several approaches were applied at a free surface to model these
Rayleigh waves in elastic media using the FDM [12, 16, 19, 30, 29]. In particu-
lar, the accuracy of heterogeneous staggered-grid finite difference modeling of the
Rayleigh waves has been studied by [4].

In reality, inelasticity of earth materials has an important influence on wave prop-
agation, particularly on surface waves. It is necessary to simulate Rayleigh waves
and analyze their dispersion properties in viscoelastic media, for example. Several
works [5, 10, 9] have studied the Rayleigh waves in a viscoelastic half-space. An-
dersion et al. [1] gave a relationship between Rayleigh wave attenuation coefficients
and the quality factors QP and QS for P- and S-waves. Xia [26] inverted a quality
factor Q from Rayleigh waves using this relationship. However, this relationship
is based on a layered earth model, and it is difficult to deal with complex media
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such as laterally heterogeneous media. The finite difference method may be used in
the study of such cases. The approaches applied to handle a free surface boundary
condition in viscoelastic media are similar to those in elastic media. Carcione [6]
presented Rayleigh waves forward modeling in linear viscoelastic media. Hestholm
[14] studied finite difference modeling of seismic scattering from free-surface topog-
raphy in 3D viscoelastic media. Saenger and Bohlen [23] described the application
of a rotated staggered grid (RSG) to viscoelastic wave equations. However, these
works did not study the effect of a quality factor Q on the dispersion properties of
Rayleigh waves.

Absorbing boundary conditions are used to suppress reflections from the trun-
cated edges of a model in the FDM. Bérenger [2] developed an absorbing bound-
ary condition called the perfectly matched layer (PML) to attenuate electromag-
netic waves. This PML has been extended to absorbing acoustic and elastic waves
[8, 13, 17]. Komatitsch and Martin [15] introduced an unsplit convolutional PML
(C-PML) to improve the behavior of the classical PML at grazing incidence. How-
ever, the classical FDM with PML and C-PML is not stable in Rayleigh waves
modeling with a high Poisson’s ratio of media [31].

In this paper, we study the effect of a quality factor Q on the Rayleigh waves
in order to better understand their dispersion properties. We propose a finite dif-
ference method to simulate the Rayleigh waves in viscoelastic media. This method
uses the RSG proposed by [22], which has less numerical dispersion. The validity of
the method is demonstrated using two models that have an analytic solution. The
C-PML absorbing boundary condition is used in this method. It is stable to absorb
the Rayleigh waves with a high Poisson’s ratio of media. With our accurate model-
ing method, we study the dispersion properties of the Rayleigh waves with different
values of the quality factor Q in a shallow subsurface. These Rayleigh waves are
calculated in two models, a laterally heterogeneous model and a two-layer model
with a cavity. The results show that the Q in the near-surface has a strong effect
on the dispersion properties of the Rayleigh waves, and it needs to be considered
in the analysis of the Rayleigh waves in the real world. Our method is based on
a 2D finite difference method in a time-space domain, which can be extended in a
straightforward way to the 3D case.

2. The Method

In this section we introduce the wave equations in viscoelastic media, a free
boundary treatment, and an absorbing boundary condition. A finite difference
method is then developed, and its validity and stability are tested.

2.1. Wave equations. We use a second-order displacement-stress form of the
viscoelastic wave equations in 2D. In a time-space domain, the equations are given
by [7]:

(1) ρüx =
∂σxx
∂x

+
∂σxz
∂z

+ ρfx,

(2) ρüz =
∂σxz
∂x

+
∂σzz
∂z

+ ρfz,

(3) σxx = (λu + 2µu)
∂ux
∂x

+ λu
∂uz
∂z
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