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Abstract. Using variational methods, we prove the existence of a nontrivial weak so-
lution for the problem

N
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u=0, in 0Q),

where QO C RN (N > 3) is a bounded domain with smooth boundary 0}, 2<p; <N,

i=1,N,q:Q— (1,p*) is a continuous function, p* = ﬁ is the critical exponent for
=17

this class of problem, and A is a parameter.
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1 Introduction and preliminaries

In this paper, we are interested in the existence of a nontrivial weak solution for the
problem

N
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u=0, in 0Q),
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wh_ere QCRN (N>3)is a bounded domain with smooth boundary 00}, 2<p; <N, i =1,N,
q:Q— (1,p*) is a continuous function,

. N
g AR
is the critical exponent for this class of problem, and A is a parameter.

In the case when p;(x) = p(x) for any i =1,2,---,N, the operator involved in (1.1)
has similar properties to the p(x)-Laplace operator, i.e., A, u = div(|Vu|P¥)=2Vy).
This differential operator is a natural generalization of the isotropic p-Laplace operator
Apu:=div(|Vu|P~2Vu), where p > 1 is a real constant. However, the p(x)-Laplace op-
erator possesses more complicated nonlinearities than the p-Laplace operator, due to the
fact that A, is not homogeneous. The study of nonlinear elliptic problems (equations
and systems) involving quasilinear homogeneous type operators like the p-Laplace op-
erator is based on the theory of standard Sobolev spaces W7 (Q) in order to find weak
solutions. These spaces consist of functions that have weak derivatives and satisfy cer-
tain integrability conditions. In the case of nonhomogeneous p(x)-Laplace operators the
natural setting for this approach is the use of the variable exponent Sobolev spaces. Dif-
ferential and partial differential equations with non-standard growth conditions have
received specific attention in recent decades. The interest played by such growth condi-
tions in elastic mechanics and electrorheological fluid dynamics has been highlighted in
many physical and mathematical works.

In a recent paper [1], . Fragala et al. have studied the following anisotropic quasilin-
ear elliptic problem
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u>0, in Q), (12)
u=0, on d(),

where QO ¢ RN (N > 3) is a bounded domain with smooth boundary 0Q), p; > 1 for
all i=1,2,---,N and p > 1. Note that if p;=2 for all i=1,2,---,N then problem (1.2)
reduces to the well-known semilinear equation —Au = AuP~!. By proving an embed-
ding theorem involving the critical exponent of anisotropic type, the authors obtained
some existence and nonexistence results in the case when p > p =max{pi,p2,---,pnN} Or
p<p-=min{py,p2,---,pn}. The results in [1] were extended by A.D. Castro et al. [2], in
which the authors studied problem (1.2) in the case when p_ < p < p.. In order to study
the existence of solutions for (1.2) the above authors found the solutions in the space

Wg 7 (Q)) which is defined as the closure of C§°(Q)) with respect to the norm
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