
INTERNATIONAL JOURNAL OF c© 2014 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 11, Number 2, Pages 400–411

GEOMETRIC MULTIGRID METHODS ON STRUCTURED

TRIANGULAR GRIDS FOR INCOMPRESSIBLE

NAVIER-STOKES EQUATIONS AT LOW REYNOLDS NUMBERS

F.J. GASPAR, C. RODRIGO, AND E. HEIDENREICH

(Communicated by J.L. Gracia)

This paper is dedicated to Francisco Lisbona on occasion of his 65th birthday

Abstract. The main purpose of this work is the efficient implementation of a multigrid algorithm
for solving Navier-Stokes problems at low Reynolds numbers in different triangular geometries.
In particular, a finite element formulation of the Navier-Stokes equations, using quadratic finite

elements for the velocities and linear finite elements to approximate the pressure, is used to solve
the problem of flow in a triangular cavity, driven by the uniform motion of one of its side walls. An
appropriate multigrid method for this discretization of Navier-Stokes equations is designed, based
on a Vanka type smoother. Moreover, the data structure used allows an efficient stencil-based
implementation of the method, which permits us to perform simulations with a large number of
unknowns with low memory consumption and a relatively low computational cost.
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1. Introduction

One of the most important aspects in the numerical simulation of the Navier-
Stokes equations is the efficient solution of the large sparse systems of equations
arising from their discretization. This work is focused on an efficient implementation
and the solution by geometric multigrid methods of the incompressible Navier-
Stokes equations on structured triangular grids.

It is well-known that multigrid methods [2, 4, 8, 17] are among the fastest al-
gorithms to solve large systems of equations, with small convergence factors which
are independent of the space discretization parameter, and achieve optimal compu-
tational complexity of O(N), where N is the number of unknowns of the system.
Geometric multigrid methods were initially developed for structured grids. How-
ever, in order to deal with relatively complex domains, an efficient implementation
of this type of multigrid methods can be done on semi-structured triangular grids,
see [6]. As a preliminary step towards this generalization, here we develop a geomet-
ric multigrid code suitable for efficiently solving this problem on a structured grid
arising in a single triangular domain, which later will be part of the semi-structured
grid.

An important step in the analysis of partial differential equations (PDE) prob-
lems using finite element methods is the construction of the large sparse matrix
A corresponding to the system of discrete equations. The standard algorithm for
computing matrix A is known as assembly, and consists of computing this matrix
by iterating over the elements of the mesh and adding from each element of the tri-
angulation the local contribution to the global matrix A. Because of the size of this
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matrix, it is important to store it in an efficient way. However, the data structures
needed to represent this type of sparse matrices can cause slowness in the code due
to the use of indirect indexing to access the non-zero entries of the matrix. By
working on structured grids, the necessary data structures are much more efficient
and lead to better performance, due to the fact that explicit assembly of the global
matrix is not necessary and that the matrix can be stored using stencils.

In this work, a stencil-based implementation of the Taylor-Hood element for
the Navier-Stokes equations is presented, together with the design of an efficient
geometric multigrid algorithm, based on a box-type smoother, to solve the large
system of equations arising from this type of finite element discretization. More
concretely, the outline of this work is as follows. In Section 2, the considered
problem is presented, together with the linearization and the proposed finite element
discretization. Section 2.1 is devoted to describe the stencil-based implementation
of the Taylor-Hood element discretization of Navier-Stokes equations. Section 3 is
focused on the design of a suitable geometric multigrid method, based on Vanka-
type smoothers. Finally, in Section 4, the lid-driven recirculating flow in a triangular
cavity is simulated, using the proposed multigrid solution procedure.

2. Finite element discretization of the Navier-Stokes equations

In this work we consider the Navier-Stokes equations governing a two-dimensional,
steady, incompressible flow of constant fluid properties. These equations are written
in primitive variables as

−ν∆u+ (u · ∇)u+∇p = 0, in Ω,

divu = 0, in Ω,(1)

u = g, on Γ = ∂Ω,

where u = (u, v)t denotes the velocity vector, p is the pressure, and ν is the kine-
matic viscosity of the fluid. The Dirichlet boundary condition for the velocity is
given by g, which satisfies the following compatibility condition

(2)

∫

∂Ω

g · n dΓ = 0,

where n is the outward direction normal to the boundary.
Nonlinear problem (1) is linearized using a fixed point iteration, that is, given a

current iterate (un, pn), in each nonlinear iteration step a problem of the following
form has to be solved

−ν∆un+1 + (un · ∇)un+1 +∇pn+1 = 0, in Ω,

divun+1 = 0, in Ω,(3)

un+1 = g, on Γ = ∂Ω.

Problem (3) is known in the literature as the Oseen problem. We are going to
consider its discretization by finite element methods. For this purpose, let Th be
an admissible triangulation of the domain Ω, that is, Ω is decomposed into a set of
triangles {Ki}

N
i=1 in the way that

Ω =

N⋃

i=1

Ki,

and satisfying that the intersection Ki ∩Kj, for i 6= j, is either empty, a common
vertex, or a common edge. Problem (3) is discretized using P2−P1 finite elements,
where Pk is the space of piecewise polynomial continuous functions of degree k.


