GLOBAL W^{2,p} SOLUTIONS OF GBBM EQUATIONS ON UNBOUNDED DOMAIN*

Mo Haiping

(Department of Mathematics, Suihua Teacher's College, Suihua 152061, China)

Liu Yacheng

(Department of Applied Mathematics, Harbin Engineerring University, Harbin 150001, China) (Received Nov.21, 2000; revised June 7, 2001)

Abstract In this paper we study the initial boundary value problem of GBBM equations on unbounded domain

$$u_t - \Delta u_t = \operatorname{div} f(u)$$

 $u(x, 0) = u_0(x)$
 $u|_{\partial\Omega} = 0$

and corresponding Cauchy problem. Under the conditions: $f(s) \in C^1$ and satisfies

(H)
$$|f'(s)| \le C|s|^{\gamma}$$
, $0 \le \gamma \le \frac{2}{n-2}$ if $n \ge 3$; $0 \le \gamma < \infty$ if $n = 2$

 $u_0(x) \in W^{2,p}(\Omega) \cap W^{2,2}(\Omega) \cap W_0^{1,p}(\Omega)(W^{2,p}(\mathbb{R}^n) \cap W^{2,2}(\mathbb{R}^n)$ for Cauchy problem), $2 \leq p < \infty$, we obtain the existence and uniqueness of global solution $u(x,t) \in W^{1,\infty}(0,T;W^{2,p}(\Omega)\cap W^{2,2}(\Omega)\cap W_0^{1,p}(\Omega))(W^{1,\infty}(0,T;W^{2,p}(\mathbb{R}^n)\cap W^{2,2}(\mathbb{R}^n))$ for Cauchy problem), so the results of [1] and [2] are generalized and improved in essential.

Key Words GBBM equation; unbounded domain; global $W^{2,p}$ solutions; existence.

1991 MR Subject Classification 35Q. Chinese Library Classification 0175.26.

1. Introduction

In [1] Goldstein et al studied the initial boundary value problem of GBBM equations on unbounded domain

$$u_t - \Delta u_t = \operatorname{div} f(u) \tag{1.1}$$

$$u(x,0) = u_0(x)$$
 (1.2)

$$u|_{\partial\Omega} = 0 \tag{1.3}$$

This work supposed by NSF of Heilongjiang Province and SSF of Harbin Engineerring University.

and corresponding Cauchy problem. Under the conditions: $f(s) \in C^2$, f'(0) = 0 and satisfies

$$(\mathrm{H}') \qquad |f'(s)| \leq C(1+|s|^{\gamma}), \quad 0 < \gamma \leq \frac{2}{n-2} \text{ if } n \geq 3; \quad 0 < \gamma < \infty \text{ if } n = 2,$$

 $u_0(x) \in W^{2,p}(\Omega) \cap W^{2,2}(\Omega) \cap W_0^{1,p}(\Omega)$, where

$$\max\left\{\frac{n}{2},1\right\}$$

they proved the existence of global $W^{2,p}$ solution.

In [2] Guo Boling and Miao Changxing again studied the above problem, under the same conditions on f(s) and $u_0(x)$, but the condition (1.4) was replaced by

$$\max\left\{\frac{n}{2},1\right\}$$

they obtained the same conclusion as [1].

In [3] Liu Yacheng and Wan Weiming studied the problem (1.1)–(1.3) on bounded domain, under the conditions: $f(s) \in C^1$ and satisfies (H'), $u_0(x) \in W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$, $2 \leq p < \infty$, but without assumption n < 2p, obtained the existence and uniqueness of global solution $u(x,t) \in W^{1,\infty}(0,T;W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega))$, $\forall T > 0$, so the results of [1],[2] and [4] on bounded domain was improved and generalized.

As indicated in [3], the condition n < 2p is very harsh, for example, for the most important case p = 2, the space dimensions n must satisfy $n \le 3$.

In this paper we still study the problem (1.1)–(1.3) on unbounded domain and corresponding Cauchy problem based on [3], under the conditions: $f(s) \in C^1$ and satisfies

(H)
$$|f'(s)| \le C|s|^{\gamma}$$
, $0 < \gamma \le \frac{2}{n-2}$ if $n \ge 3; 0 < \gamma < \infty$ if $n = 2$

 $u_0(x) \in W^{2,p}(\Omega) \cap W^{2,2}(\Omega) \cap W_0^{1,p}(\Omega)(W^{2,p}(\mathbb{R}^n) \cap W^{2,2}(\mathbb{R}^n))$ for Cauchy problem), $2 \leq p < \infty$ but without assumption n < 2p, we obtain the existence and uniqueness of global solution $u(x,t) \in W^{1,\infty}(0,T;W^{2,p}(\Omega) \cap W^{2,2}(\Omega) \cap W_0^{1,p}(\Omega))(W^{1,\infty}(0,T;W^{2,p}(\mathbb{R}^n) \cap W^{2,2}(\mathbb{R}^n)))$ for Cauchy problem), $\forall T > 0$, so the results of [1] and [2] on unbounded domain are generalized and improved.

Lemma 1.1^[3] Suppose that Ω is a sufficiently smooth bounded domain, $f(s) \in C^1$ and satisfies (H'), $u_0(x) \in W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$, $2 \le p < \infty$. Then the problem (1.1)–(1.3) has a unique global solution $u(x,t) \in W^{1,\infty}(0,T;W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega))$, $\forall T > 0$.

2. Global $W^{2,2}$ Solutions

First, we consider the Cauchy problem

$$u_t - \Delta u_t = \operatorname{div} f(u), \quad x \in \mathbb{R}^n, t > 0$$
 (2.1)

$$u(x,0) = u_0(x), \quad x \in \mathbb{R}^n$$
 (2.2)