
INTERNATIONAL JOURNAL OF c© 2013 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 10, Number 3, Pages 571–587

THE ARAKAWA JACOBIAN METHOD AND A

FOURTH-ORDER ESSENTIALLY NONOSCILLATORY SCHEME

FOR THE BETA-PLANE BAROTROPIC EQUATIONS

ABDERRAHIM KACIMI, TARIK ALIZIANE, AND BOUALEM KHOUIDER

Abstract. In this paper we use the Arakawa Jacobian method [1] and the fourth-order essentially
non-oscillatory (ENO-4) scheme of Osher and Shu [15] to solve the equatorial beta-plane barotropic
equations. The Arakawa Jacobian scheme is a second order centred finite differences scheme that
conserves energy and enstrophy. The fourth-order essentially non-oscillatory scheme is designed
for Hamilton-Jacobi equations and traditionally used to track sharp fronts. We are interested in
the performance of these two methods on the baratropic equations and determine whether they
are adequate for studying the barotropic instability. The two methods are tested and compared
on two typical exact solutions, a smooth Rossby wave-packet and a discontinuous shear, on the
long-climate scale of 100 days. The numerical results indicate that the Arakawa Jacobian method
conserves energy and enstrophy nearly exactly, as expected, captures the phase speed the Rossby
wave, and achieves an overall second order accuracy, in both cases. The same properties are
preserved by the ENO-4 scheme but the fourth order accuracy is observed only for the smooth
Rossby wave solution while in the case of the discontinuous shear, it yields an overall third order
accuracy, even in the smooth regions, away from the discontinuity.
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1. INTRODUCTION

One of the important strategies for understanding atmospheric general circula-
tion is to study the numerical solutions of its governing equations. The equatorial
beta-plane barotropic equations, a simple atmospheric model, have been studied
for more than half a century and are at the heart of a hierarchy of more complex
models. The first successful numerical weather prediction model, used by Charny
et al in 1950 [3], was based on the barotropic vorticity equation (BVE). A barotrop-
ic atmosphere is a single-layered fluid; under this assumption there is no vertical
component, and hence the equation to be solved is two dimensional (2D). For the-
oretical investigation of the evolution of vortices, atmospheric researchers are still
using the barotropic assumption. For example, the BVE is useful for modelling the
movement of tropical cyclones [2]. The barotropic assumption is also used to model
global wave patterns in the middle troposphere [19]. To model tropical cyclones,
the computational domain is a midlatitude β-plane. The β-plane approximation is
a linear approximation to the Coriolis parameter found by Taylor expansion [10]
for small displacement in latitude. Scale analysis show that the nonlinear term is
negligible.

Most numerical models of the BVE use finite differences or spectral methods. A
recent state of the art method from the applied mathematics [13] to the problem of
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tropical climate modelling [12] showed that a non-oscillatory central scheme can
accurately model equatorial waves without undue dissipation of energy but seems
to suffer some serious shortcoming [12, 4] (see conclusion section). However, the
Arakawa Jacobian scheme [1], which is specifically designed for the incompressible
BVE, is widely used in the atmosphere-ocean community. The Arakawa Jacobian
has the useful feature that both domain integrated enstrophy and domain integrat-
ed kinetic energy are conserved. It also conserves mean wavenumber; this prevents
nonlinear instabilities from occurring. The third method which we can adapt to
solve the incompressible BVE is the high-order essentially non-oscillatory scheme
(ENO) of Osher and Shu [15]. The ENO scheme is a high order accurate finite
difference scheme designed for problems with piecewise smooth solutions contain-
ing discontinuities. ENO schemes are traditionally used for hyperbolic conservation
laws and Hamilton-Jacobi equations [15]. The key idea lies at the approximation
level, where a nonlinear adaptive procedure is used to automatically choose the lo-
cally smoothest stencil, hence avoiding crossing discontinuities in the interpolation
procedure as much as possible. ENO schemes have been quite successful in appli-
cations, especially for problems containing both shocks and complicated smooth
solution structures, such as compressible turbulence simulations and aeroacoustic.
The paper is organized as follows. In section 2, we present the barotropic equations
on the equatorial β-plane. In Sections 3 and 4, we study the numerical methods
needed for solving the equatorial beta-plane barotropic equations. The Arakawa
Jacobian is used together with the second-order numerical solution of the Poisson
equation, used to enforce the incompressibility constraint. The fourth-order essen-
tially non-oscillatory (ENO-4) scheme is coupled with a fourth-order Poisson solver.
We validate the numerical methods in Section 5, and a summary with conclusion
is presented in Section 6.

2. The Barotropic Equations on an Equatorial β-plane

In standard nondimensional units, that are defined below, the barotropic equa-
torial β-plane equations, for the horizontal velocity, v, and pressure, p, are given
by

(1)

{

∂v

∂t
+ v·∇v + yv⊥ +▽p = 0,

div v = 0.

In (1) , v = (u, v) with u, v are respectively the zonal (east-west) and meridional

(north-south) velocity components. The operator ∇ =

(

∂

∂x
,
∂

∂y

)

is the horizontal

gradient vector and div v =
∂u

∂x
+
∂v

∂y
is the horizontal divergence while the term

yv⊥ = y (−v, u) represents the horizontal components of the Coriolis force due to
the vertical component of Earth’s rotation (beta effect). The nonlinear equations
for the barotropic mode in (1) is derived from the full 3d geophysical flow equations
by assuming a rigid lid and flat bottom, constant density and hydrostatic balance.
These assumptions are sufficient to neglect the vertical velocity and viscosity in the
rotating Boussinesq equations [5, 14].

The equations in (1) were nondimensionalized by using the characteristic units
of equatorial synoptic scale dynamics [5, 14], so that the Coriolis gradient at the
equator is normalized to β = 1: the velocity scale is the gravity wave speed c =


