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THE FINITE ELEMENT METHOD OF A EULER SCHEME FOR

STOCHASTIC NAVIER-STOKES EQUATIONS INVOLVING THE

TURBULENT COMPONENT

YUANYUAN DUAN AND XIAOYUAN YANG

Abstract. In this paper we study the finite element approximation for stochastic Navier-Stokes
equations including a turbulent part. The discretization for space is derived by finite element
method, and we use the backward Euler scheme in time discretization. We apply the general-
ized L2-projection operator to approximate the noise term. Under suitable assumptions, strong
convergence error estimations with respect to the fully discrete scheme are well proved.
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1. Introduction

Let Ω ∈ R2 be a bounded convex polygonal domain with boundary ∂Ω. In
this paper, we consider finite element approximation of stochastic Navier-Stokes
equations with the turbulent term

∂tu = △u− (u · ∇)u −∇p+ f(u) + [(σ · ∇)u −∇p̃+ g(u)]Ẇ ,(1)

u(0) = u0, ∇ · u = 0,(2)

on Ω in a finite time interval [0, T ]. The turbulent term is driven by the white noise

Ẇ . In this article, Ẇ denotes a time derivative of a Hilbert space valued Wiener
process. Assumptions on other functions will be specified later.

The stochastic Navier-Stokes equation, which displays the behavior of a viscous
velocity field of an incompressible liquid, is widely regarded as one of the most
fascinating problems of fluid mechanics, see [1]. A. Bensoussan and R. Temam
generally analyze Navier-Stokes equations driven by white noise type random force
in [2]. Later, the existence, the uniqueness and other properties of the generalized
solutions with respect to stochastic equations have been extensively researched by
many authors; see [4], [9], [15], [18], etc. An overview of some developments in the
ergodic theory of the stochastically forced Navier-Stokes equations are presented
by Jonathan C. Mattingly in [6].

The effective researches about unsteady incompressible stochastic Navier-Stokes
equations driven by white noise are considered by R. Mikulevicius and B. L. Ro-
zovskii; see [13] and [14] with a review of relevant recent work. Under some basic
assumptions, the existence of a global weak (martingale) solution of the unsteady
incompressible stochastic Navier-Stokes equation (1.1) with Cauchy problem is well
proved in [17]. Furthermore, R. Mikulevicius and B. L. Rozovskii consider the cor-
responding fluid dynamics modeled by a stochastic flow in [16].
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The finite element method, which is a common technique for partial differential
equations, is widely used to obtain finite dimensional approximations. The ideas
based on finite element approximation to investigate stochastic differential equa-
tions are well studied in many literatures; see, [3], [10], [12], [19], [21], [22], [23]
for some previous work. Yubin Yan consider the semidiscrete Galerkin approxi-
mation of a stochastic parabolic partial differential equation in [25]. Later, the
fully finite element method for stochastic parabolic partial differential equations
driven by white noise is proved and optimal strong convergence error estimates are
given in [24]. Semidiscrete finite element approximation of the linear stochastic
wave equation with additive noise is well studies in [11]. However, numerical anal-
ysis of unsteady incompressible stochastic Navier-Stokes equations has not been
thoroughly considered. The major purpose of our paper is to study finite element
approximation for unsteady incompressible stochastic Navier-Stokes equations in-
volving the complex turbulent component. In our paper, stochastic Navier-Stokes
equations are taken in the generalized sense.

The plan of this paper is as follows. In section 2 useful notations and related
properties are introduced. Some important preliminaries are given. The regularity
in time of the solution is deduced. In section 3 we consider finite element approxi-
mation of stochastic Navier-Stokes equations with turbulent term. The semidiscrete
form and the fully discretization are obtained. In section 4 we deduce the main
error estimations with respect to the fully discretization of the stochastic equa-
tions. Using above-mentioned techniques, we finally complete the proofs of strong
convergence error estimates. Section 5 are our conclusions of this paper.

2. Notations and preliminaries

In this section we will introduce some useful notations and some important pre-
liminaries.

Let H be the Hilbert space of real vector functions in L2(Ω) with the inner
product (·, ·). Given integer m ≥ 0 and 1 ≤ p <∞, define

Wm,p(Ω) = {u ∈ Lp(Ω) : D
αu ∈ Lp(Ω), ∀α, 0 ≤ |α| ≤ m} ,

equipped with the norm

||u||Wm,p(Ω) = ||u||m,p =





∑

0≤|α|≤m

‖Dαu‖pp





1/p

, 1 ≤ p <∞.

Set

W
m,p
0 (Ω) = {u ∈Wm,p(Ω) : u|∂Ω = 0} .

Obviously Wm,p(Ω) and Wm,p
0 (Ω) stand for Sobolev spaces on Ω. More explicitly

we can write Wm,2(Ω) by Hm(Ω) and denote Wm,2
0 (Ω) as Hm

0 (Ω). It is easy to
verify that W 0,p(Ω) = Lp(Ω).

Moreover we can come to the conclusion thatWm,p(Ω) andWm,p
0 (Ω) are Banach

spaces, and Hm(Ω) and Hm
0 (Ω) are Hilbert spaces. The relevant inner conduct is

(u, v)m =
∑

0≤|α|≤m

(Dαu,Dαv)L2(Ω), u, v ∈ Hm(Ω).

Obviously, the above-mentioned spaces can be extended to vector functions.
As usual, (Ω,F ,P) denotes a normal filtered probability space with a normal

right continuous filtration (Ft). In our paper, W is a cylindrical Wiener process


