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AN ALGORITHM FOR FINDING NONNEGATIVE MINIMAL

NORM SOLUTIONS OF LINEAR SYSTEMS
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(Communicated by Edward Allen)

Abstract. A system of linear equations Ax = b, in n unknowns and m equations which has a
nonnegative solution is considered. Among all its solutions, the one which has the least norm

is sought when R
n is equipped with a strictly convex norm. We present a globally convergent,

iterative algorithm for computing this solution. This algorithm takes into account the special
structure of the problem. Each iteration cycle of the algorithm involves the solution of a similar
quadratic problem with a modified objective function. Duality conditions for optimality are
studied. Feasibility and global convergence of the algorithm are proved. As a special case we
implemented and tested the algorithm for the ℓp-norm, where 1 < p < ∞. Numerical results are
included.
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1. Introduction

We will be considering a system of real linear equations

(1.1) Ax = b,

where A is an m× n-real matrix, b in m-real vector and x an n-real vector. Under
the assumption that the system (1.1) has a non-negative solution, we study the
following problem: out of all non-negative solutions of (1.1) compute the solution
that has the least norm when the norm considered on R

n is strictly convex. This
naturally, includes the ℓp-norm, 1 < p < ∞. The algorithm proposed in this work
solves the minimal norm problem

(P ) min {‖x‖ | Ax = b, x ∈ R
n, x ≥ 0}.

We assume that b 6= 0, because otherwise the problem is trivial. All the steps of
the algorithm for computing the solution of (P ) will be shown to be feasible. Its
global convergence will then be proved.

To solve the given problem, a dual problem, denoted (P ′), will be associated
with (P ). An outline of the correspondence between (P ) and (P ′) will be given.
The main application of this work is the ℓp-norm case. Namely, find x ∈ R

n that
minimizes the ℓp- problem

(1.2) minimize{ ‖x‖p | Ax = b, x ∈ R
n, x ≥ 0}.

It should be noted here that the objective function in (1.2) need not be twice
differentiable. The case 1 < p < 2 has been more troublesome since methods
requiring second derivatives will not be defined for certain non-zero points. While
(1.2) is a smooth convex programming problem and thus susceptible to general
programming procedures, it seems natural to take into account in our algorithm
the special structure of the problem. For its convergence the proposed algorithm
does not need extra differentiability of the norm.
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For p = 2, problem (1.2) becomes a special case of what Lawson and Hanson
referred to in [7] as the least distance programming (LDP) and for which they gave
a finite algorithm. This algorithm (or any other similar purpose one) is used in this
work as follows: at each iteration step of our algorithm, the LDP problem

Ax = b, x ≥ 0, ‖x− ak‖2(min),

where (ak) is a sequence defined by the algorithm, is solved using the LDP algo-
rithm.

The main contribution of this paper is to propose a method of solution of probelm
(P ) that is not limited to a single norm such as the ℓ2-norm. Different applications
suggest different norms to use. Ideally, we seek a solution that optimize general
norms. In many applications, a system of linear equations may have many solutions
(e.g. when solving linear operator equations) and it may be needed, following a
discretization, to select one solution under a given criteria. This criteria could be
to find a solution that has the least norm or a solution that is the closest to a (target)
point a in which case one needs to minimize ‖x− a‖ among all solutions of a linear
system. The classical ℓ2-norm may not be always the best choice. For instence,
in sparse solution construction and compressed sensing, similar ℓp minimization
problems arise for 0 < p < 1. Other applications arise when solving some variational
problems.

2. Main notation and duality

Let the norm ‖ · ‖ on R
n, n ≥ 1, be arbitrary. The norm is said to be smooth

if and only if through each point of unit norm there passes a unique hyperplane
supporting the closed unit ball B = {x ∈ R

n | ‖x‖ ≤ 1}. The norm is said to be
strictly convex if and only if the unit sphere S = {x ∈ R

n | ‖x‖ = 1} has no line
segment on it.

To introduce the dual problem (P ′), we define the dual norm ‖ · ‖′ on R
n by

‖y‖′ = max{〈x, y〉 | ‖x‖ = 1, x ∈ R
n}.

For any vector v ∈ R
n, v 6= 0, a ‖ · ‖-dual vector, v′ is defined by

(2.1) ‖v′‖ = 1, 〈v′, v〉 = ‖v‖′.

Similarly, for the dual norm, a ‖ · ‖′-dual vector v∗ is defined by

‖v∗‖′ = 1, 〈v∗, v〉 = ‖v‖.

The map y 7→ y′ (resp. y 7→ y∗) is odd, continuous and positively homogeneous
of degree zero on R

n\{0}, if the norm is strictly convex (resp. smooth). For v 6= 0,

we have the relations v
′∗ = v/‖v‖′ (resp. v∗

′

= v/‖v‖) when the norm ‖ · ‖ is
smooth (resp. strictly convex.)

When ‖ · ‖ = ‖ · ‖p, 1 < p < ∞, is the usual ℓp-norm, then ‖ · ‖′ = ‖ · ‖q, where
p+ q = pq. In terms of components, the dual vectors are given by

v′i = (|vi|/‖v‖q)
q−1sgn (vi), v∗i = (|vi|/‖v‖p)

p−1sgn (vi), i = 1, . . . , n.

Let K = {x ∈ R
n | x ≥ 0, Ax = b}. Given problem (P ), we associate a dual

problem ([1], [8])

(P ′) max{〈b, y〉 | ξ ∈ R
n, ξ ≥ 0, y ∈ R

m, ‖ξ +AT y‖′ ≤ 1},

where AT is the transpose of the matrix A. The relation between (P ) and (P ′) is
studied in the next two results.


