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Abstract. This work presents a moving mesh methodology based on the solution of
a pseudo flow problem. The mesh motion is modeled as a pseudo Stokes problem
solved by an explicit finite element projection method. The mesh quality requirements
are satisfied by employing a null divergent velocity condition. This methodology is
applied to triangular unstructured meshes and compared to well known approaches
such as the ones based on diffusion and pseudo structural problems. One of the test
cases is an airfoil with a fully meshed domain. A specific rotation velocity is imposed
as the airfoil boundary condition. The other test is a set of two cylinders that move
toward each other. A mesh quality criteria is employed to identify critically distorted
elements and to evaluate the performance of each mesh motion approach. The results
obtained for each test case show that the pseudo-flow methodology produces satisfac-
tory meshes during the moving process.
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1 Introduction

Nowadays for several CFD problems, the fluid domain encloses or is enclosed by mov-
ing boundaries. Thus, when the moving boundary is subjected to a large amplitude
motion, a moving mesh strategy is necessary. Therefore, a mesh motion algorithm has to
be employed throughout a simulation. This algorithm is basically a numerical solver that
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computes and updates mesh node displacements and velocities, evaluated at any given
time step.

The mesh motion algorithm must fulfill three conditions to be efficient and reliable [10,
11]:

• The algorithm must be compatible with the Geometric Conservation Law;

• The mesh after moving must have good quality;

• The computational effort for mesh motion must be small.

The geometric conservation law states that any change in the element control area or
volume between two consecutive time steps must be equal to the area or volume swept
by the cell boundary during these time steps [17, 19]. As a consequence, the geometric
quantities associated to the moving mesh must be computed in a way that the integration
preserves a uniform flow field. Literature shows that the geometric conservation law
can be represented by a null mesh velocity divergent constraint [21]. Also, there are
cases where the non-fulfillment of this constraint leads to numerical instabilities and as a
consequence to wrong flow solutions or spurious results [7, 17].

The first numerical schemes [2, 16] to solve the mesh motion problem modeled the
mesh as a fictitious structure where linear springs were placed between the nodes. The
stiffness of every linear spring is inversely proportional to the distance between the
nodes. The total stiffness of the pseudo structure has the contribution of each linear
spring. Due to the model characteristics, the finite element method (FEM) was a natural
choice for solving the problem. However, this procedure was limited to problems with
small mesh deformations between consecutive time steps because large deformations
may lead to element collapsing.

Other mesh motion approaches compute the mesh displacement field by solving a
diffusion problem. The displacements are associated to nodal velocity field. The prob-
lem formulation is based on the Laplacian of the nodal velocity field. Hence, the Laplace
equations are solved, and the mesh displacements are recovered by multiplying the re-
sulting velocity field by a predefined time step. The main drawback of this method is the
choice of the right diffusivity coefficient to avoid collapsed elements in the moving mesh
process.

Robust mesh motion approaches based on the solution of pseudo structure problems
use the superposition of linear and torsional springs [9]. From the beginning, the linear
and torsional springs method was developed for two-dimensional triangular elements.
Adapting this technique to three-dimensional elements such as tetrahedrons required a
repositioning of the torsional spring action plane which avoids the element face and vol-
ume collapse [6]. For large mesh deformation, distorted element might still be produced
and as a consequence this can lead to numerical stiffness and wrong flow solutions.

In the last few years several works in the literature proposed new mesh motion ap-
proaches employing geometrical function interpolation and mapping to tackle large mesh
deformation problems. For instance, [28] presented a mesh moving algorithm for dy-
namic meshes. A Delaunay graph is generated for the domain to represent the mov-


