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Received 29 October 2013; Accepted (in revised version) 24 March 2014

Available online 8 August 2014

Abstract. The solution of complex rarefied flows with the BGK equation and the Dis-
crete Velocity Method (DVM) requires a large number of velocity grid points leading
to significant computational costs. We propose an adaptive velocity grid approach ex-
ploiting the fact that locally in space, the distribution function is supported only by a
sub-set of the global velocity grid. The velocity grid is adapted thanks to criteria based
on local temperature, velocity and on the enforcement of mass conservation. Simula-
tions in 1D and 2D are presented for different Knudsen numbers and compared to a
global velocity grid BGK solution, showing the computational gain of the proposed
approach.
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1 Introduction

In hydrodynamic regimes, fluid flows can be simulated thanks to standard models such
as Navier-Stokes or compressible Euler equations. However, some regimes cannot be
qualified as hydrodynamic and the continuum equations are not able to correctly de-
scribe the dynamics of the flow. The parameter that dictates whether or not a flow is
hydrodynamic is the Knudsen number Kn. It is defined as the ratio between the mean
free path λ between the particles and the characteristic length of the physical problem
L. When this number goes towards zero, the hydrodynamic regime is reached. For large
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Knudsen numbers (usually higher than 10−2), the regime is qualified as rarefied and the
governing equation is the Boltzmann equation [9].

Directly solving the Boltzmann equation is computationally prohibitive because of
the high-dimensionality and of the complexity of the collision operator, see for instance
[14]. However, several numerical methods exist in the literature to get around this dif-
ficulty. One of the most popular methods is the Direct Simulation Monte Carlo (DSMC,
[7]). This is a statistical approximation of the Boltzmann equation that is numerically vi-
able for high Knudsen numbers, but becomes very costly for low Knudsen numbers as
the number of collisions increases and a strong restriction appears on the time step [21].
For these regimes it also has the disadvantage of generating noisy results.

Hence, attempts have been made to derive numerical solvers for the Boltzmann equa-
tion which are not based on particles [25]. For a recent review of deterministic methods
for Boltzmann equation, see [15], and the references therein. Numerical solvers for Boltz-
mann equation have to deal with the complexity of the collision term. For this reason,
simplified kinetic models can be extremely attractive. A particularly successful model is
the BGK model [6], in which the collision term of Boltzmann equation is approximated
as a relaxation towards a Maxwellian distribution function. More recently, an extension
to BGK has been widely studied to include thermal effects which are not correctly repre-
sented in the standard BGK model. It is the ES-BGK model [3]. The ability of this model
to correctly approximate the full Boltzmann equation has been studied in [2].

For small relaxation times, a strong restriction on the time step exists also for explicit
schemes to integrate the BGK model, but this constraint can be treated by using implicit
schemes, such as IMEX [19, 22] which have been successfully applied to the BGK model,
[23] and [13]. Recently, this technique has been extended to the efficient integration of the
ES-BGK model [1, 17]. IMEX numerical schemes provide efficient solvers which give the
correct asymptotic properties [16, 18, 24].

Such models are usually implemented thanks to the discrete velocity method (DVM)
[8], that requires a discretization of the velocity space. The same global velocity grid is
employed for each space discretization point. A major bottleneck of such an approach
is the size of the velocity grid. Indeed, the boundaries of the velocity grid have to be
determined according to the maximum velocity and temperature in the flow while its
spacing depends on the minimum temperature. In realistic test cases like hypersonic
atmosphere re-entries or satellite engines, very strong gradients in temperature can be
observed. Then, the solution needs a very large and fine grid, so that the computational
requirements increase quickly and make the phenomenon difficult to simulate especially
in 3D.

This important problem has already been addressed in [11]. There, an AMR technique
is presented in velocity space for the unified gas-kinetic scheme [27]. A careful work has
been carried out on the error estimation due to quad/octree meshes to make the method
accurate. Since the grids are not connected, interpolation is required in the transport step,
to match the velocity grids in the neighbouring space cells. This interpolation can lead
to approximation errors and possible increasing computational time. In [4] a criteria to


