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Abstract. We propose a finite-difference ghost-point approach for the numerical solu-
tion of Cauchy-Navier equations in linear elasticity problems on arbitrary unbounded
domains. The technique is based on a smooth coordinate transformation, which maps
an unbounded domain into a unit square. Arbitrary geometries are defined by suit-
able level-set functions. The equations are discretized by classical nine-point stencil on
interior points, while boundary conditions and high order reconstructions are used to
define the field variables at ghost-points, which are grid nodes external to the domain
with a neighbor inside the domain. The linear system arising from such discretization
is solved by a multigrid strategy. The approach is then applied to solve elasticity prob-
lems in volcanology for computing the displacement caused by pressure sources. The
method is suitable to treat problems in which the geometry of the source often changes
(explore the effects of different scenarios, or solve inverse problems in which the ge-
ometry itself is part of the unknown), since it does not require complex re-meshing
when the geometry is modified. Several numerical tests are successfully performed,
which asses the effectiveness of the present approach.
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1 Introduction

Physics-based models of ground deformation at volcanoes have been very promising
for their ability to predict surface displacements from forces acting within the Earth.
By comparing or fitting surface observations to the predictions from these mathemat-
ical models, better constraints on important properties of volcanic systems have been
inferred [16, 35, 47]. Models based on analytical and semi-analytical solutions of the
elasto-static Cauchy-Navier equations are often used to provide a first approximation
of the expected surface deformation [27, 49]. However, several features, such as irregu-
lar geometries (volcano topography and composite source of deformation) and heteroge-
neous medium properties, cannot be accounted for in analytical formulations. Numerical
solutions based on Finite Element and Boundary Element methods have been investi-
gated, showing that these features may significantly affect the solutions (see for exam-
ple [8, 15, 35, 43, 46, 47] for deformation computations with realistic geophysical data).
Despite the capability to solve deformation models in complex domains, the use of FEM
is computationally expensive since the mesh is geometry-dependent and mesh construc-
tion requires careful design, testing, and validation to ensure that the configuration leads
to an acceptable solution. Therefore, for a complex geometry, generation of a good mesh
is not a trivial task and may require a considerable amount of work [31]. On the other
hand, Boundary Element methods cannot be employed in problems with heterogeneous
media or in presence of source.

In volcanology the elasto-static problem is usually posed in an unbounded (infinite)
domain, meaning that the fields extend toward infinity. For solving such a problem, the
unbounded domain is typically truncated at a sufficiently large distance from the source
and appropriate Artificial Boundary Conditions (ABCs) have to be imposed on these
new external artificial boundaries in such a way that the solution of the truncated model
approaches the one of the unbounded medium. This method is used in several fields,
such as acoustic, electro-dynamics, solid and fluid mechanics [2, 25, 44, 48].

Discretizing the truncated domain with a uniform grid usually requires a very large
number of grid nodes, making the method rather inefficient. Furthermore, the definition
of the appropriate ABCs is an open problem, since various different approaches have
been proposed in the literature [17, 30, 33, 34] and it is not clear what are their relative
merits. In some cases, the choice of ABCs is not unique [22, 44, 48] and strongly affects
the solutions. A similar approach has been recently adopted in [39]: the problem is trans-
formed into an infinite system of equations and a careful convergence theory suggests
where to perform the truncation.

Another strategy consists of using Quasi-Uniform Meshes (QUM) (see, for instance, [1,
20,29]) that adopts a smooth, strictly monotonic function to map the original unbounded
domain into a bounded one, which is then discretized by a uniform mesh. By this ap-
proach, the drawbacks of the truncated domain are avoided, since all the infinite domain
is taken into account in the mapping. The nodes of QUM are located at mid-point of each
cell in order to avoid the numerical issue caused by the last (infinite) spatial step (see


