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ADAPTIVE FINITE ELEMENT METHODS FOR PARAMETER
ESTIMATION PROBLEMS IN LINEAR ELASTICITY

TAO FENG, MÅRTEN GULLIKSSON, AND WENBIN LIU

Abstract. In this paper, the Lamé coefficients in the linear elasticity problem

are estimated by using the measurements of displacement. Some a posteriori

error estimators for the approximation error of the parameters are derived, and

then adaptive finite element schemes are developed for the discretization of

the parameter estimation problem, based on the error estimators. The Gauss-

Newton method is employed to solve the discretized nonlinear least-squares

problem. Some numerical results are presented.
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1. Introduction

In this paper, we consider a parameter identification problem in the linear elasticity
problem

(1) −µ∆u−(λ + µ)∇(∇ · u) = f in Ω,
u = uD on ΓD

where Ω is a polygonal domain in two dimensional space with the Lipschitz-continuous
boundary, and the boundary ΓD is positive dγ−measurable. As usual, u denotes
the displacement, and f and uD represent the body force and the boundary dis-
placement, respectively. Let U =

{
u ∈ (H1

0 (Ω))2
}

and u ∈ U +uD = Y , where the
space U is assumed to have the product norm

u = (u1, u2) → ||u||1,Ω = (
2∑

i=1

||ui||21,Ω)
1
2 .

We define the strain tensor (εij(u)) as

εij(u) = εji(u) =
1
2
(∂jui + ∂iuj), 1 ≤ i, j ≤ 2,

and the stress tensor (σij) is then given by Hooke’s law for isotropic bodies

σij(u) = σji(u) = λ(
2∑

k=1

εkk(u))δij + 2µεij(u), 1 ≤ i, j ≤ 2,

where δij is Kronecker’s symbol. The Lamé coefficients λ and µ are given by

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)

with Poisson’s ratio ν and Young’s modulus E. It is well known that λ ≥ λ′ > 0
and µ ≥ µ′ > 0.
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In our parameter estimation problem, we aim to recover the constants λ and µ
by using the known measurements of displacement u. To this end, the well-known
output least-squares formulation is used, i.e., we solve

(2) min
m

1
2
||Qu(m)− z||2Z ,

where u is the solution of the linear elastic equation (1) and m = (m1,m2)
T =

(λ, µ)T . The vector z ∈ Z is a given set of measurements and the observation space
Z is supposed to be a Hilbert space. Furthermore, we set Q : Y → Z as a linear
bounded observation operator.

Usually, the parameter estimation problem is ill-posed or ill-conditioned; see [16].
Some regularization terms are added to the cost function (2) such that

(3) min
m

{
1
2
||Qu(m)− z||2Z +

β

2
||m−mref ||2

}
,

where the penalty parameter β is assumed to be a very small positive number and
mref is a reference model. The regularization term β/2 · ||m −mref ||2 improves
the conditioning of the inverse problem. Here ||·|| denotes the l2 norm of the
vector. A good regularization parameter β should yield a fair balance between the
perturbation error and the regularization error. Assume that the data z contains
noise with known standard deviation e, then the regularization parameter should
be chosen such that

||Qu(m)− z||Z = ||e||Z ;
see [23]. To solve the problems without known deviation, methods such as L-curve
criterion, generalized cross-validation and the quasi-optimality criterion can be used
for the regularization parameter selection; for more details, see [15, 23, 29].

To solve the parameter estimation problem, one must approximate the infinite-
dimensional problem by introducing discretizations for the state space Y such as
a finite element or difference approach. It is clear that the efficiency of our nu-
merical methods will be influenced by the discretization scheme. In recent years,
adaptive finite element method has been extensively and successfully investigated;
see [1]. By using the adaptive finite element method, a numerical solution with a
prescribed tolerance can be obtained with a minimal amount of work. This ensures
a higher density of nodes in a certain area of the given domain, where the solution
is more difficult to approximate. Although adaptive finite element approximation is
widely used in the numerical simulation, it is not yet fully utilized in the parameter
estimation problem. Very recently, some a posteriori error estimators have been
derived for the parameter estimation problem [4, 8, 19]. In this paper, an adaptive
finite element method for our parameter estimation problems is developed. Our
emphasis here is to derive some a posteriori error estimators which control the er-
ror in the unknown parameters, instead of the cost function [4, 7]. Moreover, these
error estimators are used to guide our mesh refinement.

We note that some efficient a posteriori error estimators have been derived by
using the adjoint equation approach [4, 8]. In these error estimators, the local
residuals of the solution are multiplied by weights which measure the dependence
of the error on the local residuals. The weights are obtained by approximately
solving an adjoint problem. However, the exact solution itself is included in these
error estimators, which must be approximated by techniques such as higher order
interpolation. Furthermore, since λ ≥ λ′ > 0 and µ ≥ µ′ > 0, we get inequality
constraints (see the optimal conditions (8) in section 2). In general, it is not clear
how to apply the adjoint approach to this inequality constraint minimization prob-
lem. Thus, our corresponding error estimators are based on the approach developed
by Kunisch, Liu and Yan [19]. In our error estimator, the weights are absorbed to


