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NUMERICAL ANALYSIS FOR A NONLOCAL ALLEN-CAHN
EQUATION
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Abstract. We propose a stable, convergent finite difference scheme to solve

numerically a nonlocal Allen-Cahn equation which may model a variety of

physical and biological phenomena involving long-range spatial interaction. We

also prove that the scheme is uniquely solvable and the numerical solution will

approach the true solution in the L∞ norm.
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1. Introduction

Consider the following problem

ut =
∫

Ω

J(x− y)u(y)dy −
∫

Ω

J(x− y)dy u(x)− f(u)(1)

in (0, T )× Ω, with initial condition

u(0, x) = u0(x),(2)

where T > 0 and Ω ⊂ Rn is a bounded domain. The unknown u is a real-valued
order parameter, the interaction kernel satisfies J(−x) = J(x), and f is bistable.

The equation (1) can be derived as an L2 gradient flow for the free energy

(3) E =
1
4

∫ ∫
J(x− y) (u(x)− u(y))2dx dy +

∫
F (u(x)) dx,

where F is a double well function.
The L2 gradient flow for the classical Ginzberg-Landau energy functional

(4) E =
1
2

∫
|∇u|2dx +

∫
F (u(x)) dx,

is the Allen-Cahn equation:

ut = 4u(x)− f(u)(5)

As mentioned in [3], the equations (1) and (5) are important for modelling a va-
riety of physical and biological phenomena involving media with properties varying
in space. There is by now a lot of work on equation (1) and (5) (see for example
[1], [2], [5], [7], [8], [9], [11], [12], [13], [15], [16], [17], and the references therein).

To the best of our knowledge, there are very few results on the numerical solutions
to (1). In this paper, we develop a finite difference scheme for equation (1) for n = 1
and n = 2. We also prove that the difference scheme is stable and that the numerical

Received by the editors May 1, 2007 and, in revised form, December 13, 2007.
2000 Mathematics Subject Classification. 35K57, 34A34, 65L12, 65N06.

33



34 P. W. BATES, S. BROWN, AND J. HAN

approximation converges to the solution of (1) as the spatial and temporal mesh
size approaches zero. Our numerical results coincide with the theoretical results in
[12].

2. Analysis of the proposed scheme

In this section, we consider finite difference approximations of equation (1) for
n = 1 and n = 2. For the sake of exposition, we take f(u) = u3 − u, but the
analysis applies to the general smooth bistable function if care is taken in the
choice of linearization.

We use the following notation:
For n = 1 with Ω = (−L,L),

Ωx = {xi|xi = −L + i4x, 0 ≤ i ≤ M},
Ωt = {tk| tk = k4t, 0 ≤ k ≤ K},

where 4x = 2L/M and 4t = T/K. Our difference scheme for equation (1) for
n = 1 is as follows:

u0
i = u0(xi), for 0 ≤ i ≤ M,(6)

δtu
k
i = (J ∗ uk)i − (J ∗ 1)iu

k
i + ψ(uk

i , uk+1
i ) for 0 ≤ i ≤ M, 0 ≤ k ≤ K − 1,(7)

where

δtu
k
i =

uk+1
i − uk

i

4t
,

(J ∗ uk)i =4x

[
1
2
J(x0 − xi)uk

0 +
M−1∑
m=1

J(xm − xi)uk
m +

1
2
J(xM − xi)uk

M

]
,

and

ψ(uk
i , uk+1

i ) = uk
i − (uk

i )
2
uk+1

i .

For a rectangular domain (−L,L)× (−W,W ) ⊂ R2, we have

Ωx, y = {(xi, yj)|xi = −L + i4x, yj = −W + j4y, 0 ≤ i ≤ M, 0 ≤ j ≤ N},
Ωt = {tk| tk = k4t, 0 ≤ t ≤ K},

where 4x = 2L/M and 4y = 2W/N.
Our difference scheme in this case is

u0
i, j = u0(xi, yj) for 0 ≤ i ≤ M, 0 ≤ j ≤ N,(8)

δtu
k
i, j = (J ∗ uk)i, j − (J ∗ 1)i, ju

k
i, j + ψ(uk

i, j , u
k+1
i, j )(9)

for 0 ≤ i ≤ M, 0 ≤ j ≤ N, 0 ≤ k ≤ K − 1,

where

δtu
k
i, j =

uk+1
i, j − uk

i, j

4t
,


