ON OPPENHEIM＇S INEQUALITY＊

Yang Shangjun（杨尚俊）Cai Qian（蔡 茜）

Abstract

We prove several inequalies for symmetric postive semidefinite，general M－ matrices and inverse M－matrices which are generalization of the classical Oppenheim＇s Inequality for symmetric positive semidefinite matrices．

Key words Hadamard＇s inequality，Fischer＇s inequality，Oppenheim＇s inequality，M－ matrices，inverse M－matrices，Hadamard product．
AMS（2000）subject classifications $15 A$

For simplicity we denote the set of all $n \times n$ positive semidefinite，symmetric positive semidef－ inite，nonsingular M－matrices，general M－matrices，inverse M－matrices by $\mathcal{P}, \mathcal{S P}, \mathcal{M}, \overline{\mathcal{M}}, \mathcal{M}^{-1}$ ， respectively；denote the Hadamard product of A, B by $A \circ B$ ；dneote the $(n-1)$ th leading principal submatrix of the $n \times n$ matrix A by $A(n)$ ．

The following inequality is known as Oppenheim＇s inequality：
Theorem OPP（［2］，Theorem 7．8．6））If $A, B \in \mathcal{S P}$ ，then

$$
\begin{equation*}
(\operatorname{det} A) \prod_{i=1}^{n} b_{i i}=b_{11} \cdots b_{n n} \leq \operatorname{det} A \circ B . \tag{1}
\end{equation*}
$$

We shall establish several inequalities which generalize Oppenheims inequality．First we give some lemmas．

Lemma $1 A, B \in M_{n}(R)$ satisfy inequality（1）if and only if for arbitrary positive diagonal matrices $D_{1}, D_{2}, \hat{A}=D_{1} A, \hat{B}=B D_{2}$ satisfy（1）．

Proof Suppose that the real matrices A, B satisfy inequality（1）．Then

$$
\begin{aligned}
(\operatorname{det} \hat{A})\left(\hat{b}_{11} \cdots \hat{b}_{n n}\right) & =\left(\operatorname{det} D_{1}\right)(\operatorname{det} A)\left(b_{11} \cdots b_{n n}\right)\left(\operatorname{det} D_{2}\right) \leq\left(\operatorname{det} D_{1}\right)(\operatorname{det} A \circ B)\left(\operatorname{det} D_{2}\right) \\
& \left.=\operatorname{det}\left(D_{1} A\right) \circ\left(B D_{2}\right)\right)=\operatorname{det} \hat{A} \circ \hat{B}
\end{aligned}
$$

[^0]as desired. Since $A=D_{1}^{-1} \hat{A}, B=D_{2}^{-1} \hat{B}$ with D_{1}^{-1}, D_{2}^{-1} being positive diagonal, the converse part also holds.

Lemma 2 If $A \in \mathcal{M} \cup \mathcal{M}^{-1}$, then there is a positive diagonal matrix D such that $A D+$ $D A^{T} \in \mathcal{P}$.

Proof When $A \in \mathcal{M}$, the result is well known (see Theorem 2.5.3. of [3]).
If $A \in \mathcal{M}^{-1}$, then $A^{-1} \in \mathcal{M}$ and for some positive diagonal matrix D we have $A^{-1} D+$ $D A^{-T} \in \mathcal{P}$ from which $D A^{T}+A D \in \mathcal{P}$ follows.

Lemma 3 For any $n \times n$ real matrix $A, H(A)=A+A^{T} \in P$ implies $\operatorname{det} A>0$.
Proof Let $F(A)=\left\{x * A x: x \in C^{n}, x * x=1\right\}, \sigma(A)$ be the field of values of A (see chapter 1 of [3]) and the spectrum of A, respectively. Then $\sigma(A) \subset F(A) \subset\{z \in C: \operatorname{Re}(z)>0\}$ by properties 1.2.5 and 1.2.6 of [3] which imply A is positive stable, then $\operatorname{det} A>0$ by observation 2.1.4 of [3].

Definition ${ }^{[3]}$ An $n \times n$ real matrix A is strictly row diagonally dominant if

$$
\left|a_{i i}\right| \geq \sum_{j \neq i}^{n}\left|a_{i j}\right|
$$

A is strictly diagonally dominant of its column entries if $\left|a_{j j}\right|>\left|a_{i j}\right|, \forall i \neq j$.
Proposition 1 (i) if A is strictly row diagonally dominant, then $\operatorname{det} A>0$ and A^{-1} is strictly diagonally dominant of its column entries. (ii) if $A \in \mathcal{M}$, then there is a positive diagonal matrix D such that $A D$ is strictly row diagonally dominant. (iii) if $A \in \mathcal{M}^{-1}$, then there exist positive diagonal matrices D_{1}, D_{2} such that $D_{1} A D_{2}=\left(\alpha_{i j}\right)$ satisfy $\alpha_{i i}=1, \forall i ; \alpha_{i j}<1, \forall i \neq j$.

Proof (i) and (ii) are known (see Chapter 2 of [3]); and (iii) can be easily deduced from (i) and (ii).

Lemma 4 If $A \in \mathcal{P} \cup \mathcal{M}$ and $B \in \mathcal{P} \cup \mathcal{M} \cup \mathcal{M}^{-1}$, then $\operatorname{det}(A \circ B)>0$.
Proof If $A, B \in \mathcal{P}$, then $A \circ B \in \mathcal{P}$ by Schur product theorem (Theorem 7.5.3 of [2]), hence $\operatorname{det}(A \circ B)>0$ as desired.

If $A \in \mathcal{P}, B \in \mathcal{M} \cup \mathcal{M}^{-1}$, then there is a positive diagonal matrix D such that $B D+D B^{T} \in \mathcal{P}$ by Lemma 2 and $A \circ(B D)+(A \circ(B D))^{T}=A \circ\left(B D+D B^{T}\right) \in \mathcal{P}$ by Schur product theorem.

Therefore $\operatorname{det}(A \circ(B D))>0$ holds by Lemma 3 . Now we have

$$
\operatorname{det}(A \circ B) \operatorname{det} D=\operatorname{det}((A \circ B) D)=\operatorname{det}(A \circ(B D))>0 .
$$

Since $\operatorname{det} D>0$, the desired conclusion follows.
If $A \in \mathcal{M}, B \in \mathcal{M} \cup \mathcal{M}^{-1}$, then from Propsotion 1 and Lemma 1 we may assume, without loss of generality, that A is strictly row diagonally dominant and B is strictly row diagonally

[^0]: ＊Supported by National Natural Science Foundation of China（60375010）．
 Received：Dec．13， 2002.

