A STABILITY ANALYSIS OF THE（k）JACOBI MATRIX INVERSE EIGENVALUE PROBLEM＊

Hou Wenyuan（侯文渊）Jiang Erxiong（蒋尔雄）

Abstract

In this paper we will analyze the perturbation quality for a new algorithm of the（ k ）Jacobi matrix inverse eigenvalue problem．

Key words eigenvalue，Jacobi matrix，（k）inverse problem．
AMS（2000）subject classifications $65 F 18$

1 Introduction

Let

$$
T_{n}=\left(\begin{array}{ccccc}
\alpha_{1} & \beta_{1} & & & 0 \\
\beta_{1} & \alpha_{2} & \beta_{2} & & \\
& \beta_{2} & \ddots & \ddots & \\
& & \ddots & \ddots & \beta_{n-1} \\
0 & & & \beta_{n-1} & \alpha_{n}
\end{array}\right)
$$

be an $n \times n$ unreduced symmetric tridiagonal matrix，and denote its submatrix $T_{p, q},(p<q)$ as follows

$$
T_{p, q}=\left(\begin{array}{ccccc}
\alpha_{p} & \beta_{p} & & & 0 \\
\beta_{p} & \alpha_{p+1} & \beta_{p+1} & & \\
& \beta_{p+1} & \ddots & \ddots & \\
& & \ddots & \ddots & \beta_{q-1} \\
0 & & & \beta_{q-1} & \alpha_{q}
\end{array}\right) \quad p<q .
$$

We call an unreduced symmetric tridiagonal matrix with $\beta_{i}>0$ as a Jacobi matrix． Consider $T_{1, n}$ and $T_{p, q}$ to be Jacobi matrices．The matrix

$$
W_{k}=\left(\begin{array}{cc}
T_{1, k-1} & 0 \\
0 & T_{k+1, n}
\end{array}\right)
$$

is obtained by deleting the $k^{\text {th }}$ row and the $k^{t h}$ column $(k=1,2, \ldots, n)$ from T_{n} ．

[^0]Problem If we don't know the matrix $T_{1, n}$, but we know all eigenvalues of matrix $T_{1, k-1}$, all eigenvalues of matrix $T_{k+1, n}$, and all eigenvalues of matrix $T_{1, n}$, could we construct the matrix $T_{1, n}$.

Let

$$
\begin{aligned}
& S 1=\left(\mu_{1}, \mu_{2}, \cdots, \mu_{k-1}\right), \\
& S 2=\left(\mu_{k}, \mu_{k+1}, \cdots, \mu_{n-1}\right), \\
& \lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)
\end{aligned}
$$

are the eigenvalues of matrices $T_{1, k-1}, T_{k+1, n}$ and $T_{1, n}$ respectively. The problem is that from above $2 \mathrm{n}-1$ data to find other $2 \mathrm{n}-1$ data:

$$
\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}, \quad \text { and } \quad \beta_{1}, \beta_{2}, \cdots, \beta_{n-1} .
$$

Obviously, when $k=1$ or $k=n$ this problem has been solved and there are many algorithms to construct $T_{1, n}$ [3][6], and its stability analysis can be founded in [2]. While $k=2,3 \ldots n-1$, a new algorithm has been put forward to construct $T_{1, n}$ [1]. In this paper we will give some stability properties of the new algorithm in case $k=2,3 \ldots n-1$.

2 Basic Theorem

Theorem 2.1 ${ }^{[1]}$ If there is no common number between $\mu_{1}, \mu_{2}, \cdots, \mu_{k-1}$ and $\mu_{k}, \mu_{k+1}, \cdots, \mu_{n-1}$, then the necessary and sufficient condition for the (k) problem having a solution is:

$$
\begin{equation*}
\lambda_{1}<\mu_{j_{1}}<\lambda_{2}<\mu_{j_{2}}<\cdots<\mu_{j_{n-1}}<\lambda_{n} \tag{2.1}
\end{equation*}
$$

where $\mu=\left(\mu_{j_{1}}, \mu_{j_{2}} \ldots \mu_{j_{n-1}}\right)$, and $\mu_{i},(i=1,2 \ldots n-1)$ are recorded as $\mu_{j_{i}},(i=1,2 \ldots n-1)$ such that

$$
\begin{equation*}
\mu_{j_{1}}<\mu_{j_{2}}<\cdots<\mu_{j_{n-1}} . \tag{2.2}
\end{equation*}
$$

Furthermore, if a given (k) problem has a solution, then the solution is unique.

Algorithm 2.2 ${ }^{[1]}$

Given three vectors $\lambda=\left(\lambda_{1}, \lambda_{2} \cdots \lambda_{n}\right)^{T}, S 1=\left(\mu_{1}, \mu_{2} \cdots \mu_{k-1}\right)^{T}$ and $S 2=\left(\mu_{k}\right.$, $\left.\mu_{k+1} \cdots \mu_{n-1}\right)^{T}$ which are satisfied with (2.1), then we can solve (k) problem by following algorithm:

Step 1 Find α_{k} as

$$
\begin{equation*}
\alpha_{k}=\operatorname{trace}\left(T_{1, n}\right)-\operatorname{trace}\left(W_{k}\right)=\sum_{i=1}^{n} \lambda_{i}-\sum_{i=1}^{n-1} \mu_{i} . \tag{2.3}
\end{equation*}
$$

[^0]: ＊Received：Mar．15， 2003.

