On the Reduction of a Complex Matrix to Triangular or Diagonal by Consimilarity ${ }^{\dagger}$

Tongsong Jiang ${ }^{1}$ and Musheng Wei ${ }^{2, *}$
${ }^{1}$ Department of Mathematics, Linyi Teacher's University, Shandong 276005, China/ Department of Computer Science and Technology, Shandong University, Jinan 250100, China.
${ }^{2}$ Department of Mathematics, East China Normal University, Shanghai 200062, China.
Received March 4, 2004; Accepted (in revised version) April 15, 2005

Abstract

Two $n \times n$ complex matrices A and B are said to be consimilar if $S^{-1} A \bar{S}=B$ for some nonsingular $n \times n$ complex matrix S. This paper, by means of real representation of a complex matrix, studies problems of reducing a given $n \times n$ complex matrix A to triangular or diagonal form by consimilarity, not only gives necessary and sufficient conditions for contriangularization and condiagonalization of a complex matrix, but also derives an algebraic technique of reducing a matrix to triangular or diagonal form by consimilarity.

Key words: Consimilarity; real representation; contriangularization; condiagonalization.
AMS subject classifications: 15A21, 15A23

1 Introduction

When studying time reversal of quantum mechanics, physicists often encounter antilinear transformations in complex vector spaces. An antilinear transformation T is a mapping from one complex vector space V into another W, which is additive $(T(\alpha+\beta)=T \alpha+T \beta$ for all $\alpha, \beta \in V)$ and conjugate homogeneous $(T(a \alpha)=\bar{a} T \alpha$ for any complex a and all $\alpha \in V)$. Two $n \times n$ complex matrices A and B are said to be consimilar if $S^{-1} A \bar{S}=B$ for some nonsingular $n \times n$ complex matrix S. Consimilarity of complex matrices arises as a result of studying antilinear transformation referred to different bases in complex vector spaces, and the theory of consimilarity of complex matrices plays an important role in quantum mechanics [1].

A complex matrix A is said to be contriangularizable if there exists a nonsingular complex matrix S such that $S^{-1} A \bar{S}$ is upper triangular; it is said to be condiagonalizable if S can be chosen so that $S^{-1} A \bar{S}$ is diagonal. In the articles [1-3], the authors studied the contriangularization and condiagonalization of complex matrices by means of coneigenvalue and coneigenvector, and obtained necessary and sufficient conditions for a matrix to be condiagonalizable and contriangularizable. In this paper, by introducing real representations of complex matrices, we study

[^0]characterizations of contriangularization and condiagonalization of complex matrices, and derive an easy and effective criterion and a technique of reducing a matrix to triangular or diagonal form by consimilarity.

Let \mathbf{R} denote the real number field, \mathbf{C} the complex number field. For $x \in \mathbf{C}, \bar{x}$ is the conjugate of complex x. $\mathrm{F}^{m \times n}$ denotes the set of $m \times n$ matrices on a field F, \bar{A} the conjugate of A. We write $A \stackrel{s}{\sim} B$ if A is similar to $B, A \stackrel{c s}{\sim} B$ if A is consimilar to B, and $A \stackrel{p s}{\sim} B$ if A is permutation similar to B. Permutation similarity is both a similarity and consimilarity relations.

2 Real representation of a complex matrix

Let $A \in \mathbf{C}^{n \times n}, A$ can be uniquely written as $A=A_{1}+A_{2} i, A_{1}, A_{2} \in \mathbf{R}^{n \times n}, i^{2}=-1$. Define real representation matrix

$$
A^{\sigma}=\left(\begin{array}{cc}
A_{1} & A_{2} \tag{1}\\
A_{2} & -A_{1}
\end{array}\right) \in \mathbf{R}^{2 n \times 2 n}
$$

the real representation matrix A^{σ} is called real representation of A.
Let I_{s} be the $s \times s$ identity matrix, set $P_{s}=\left(\begin{array}{cc}I_{s} & 0 \\ 0 & -I_{s}\end{array}\right), Q_{s}=\left(\begin{array}{cc}0 & I_{s} \\ -I_{s} & 0\end{array}\right)$. For any vector $\alpha \in \mathbf{C}^{2 n \times 1}$, define $\alpha^{q}=Q_{n} \alpha$. If A is a $n \times n$ complex matrix, then by the definition of real representation, there exist real vectors $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n} \in \mathbf{R}^{2 n \times 1}$ such that

$$
\begin{equation*}
A^{\sigma}=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}, \alpha_{1}^{q}, \alpha_{2}^{q}, \cdots, \alpha_{n}^{q}\right) \tag{2}
\end{equation*}
$$

in which α_{i} is the i th column vector of $2 n \times 2 n$ real matrix A^{σ}.
Lemma 2.1. Let $A, B \in \mathbf{C}^{n \times n}, \alpha, \beta \in \mathbf{C}^{2 n \times 1}$, and $\lambda, \mu \in \mathbf{C}$. Then
(1) $(A B)^{\sigma}=A^{\sigma} P_{n} B^{\sigma}=A^{\sigma}(\bar{B})^{\sigma} P_{n}$;
(2) $\left(A^{\sigma} \alpha\right)^{q}=-A^{\sigma} \alpha^{q},(\lambda \alpha+\mu \beta)^{q}=\lambda \beta^{q}+\mu \beta^{q},\left(\alpha^{q}\right)^{q}=-\alpha$;
(3) A is nonsingular if and only if A^{σ} is nonsingular;
(4) If λ is an eigenvalue of A^{σ}, then so are $\pm \lambda$ and $\pm \bar{\lambda}$.

Proof It is easy to prove (1) and (2) by direct calculation, and (3) follows immediately from (1). If $A^{\sigma} \alpha=\lambda \alpha$, then by (2),

$$
A^{\sigma} \bar{\alpha}=\bar{\lambda} \bar{\alpha}, A^{\sigma} \alpha^{q}=-\lambda \alpha^{q}, A^{\sigma} \bar{\alpha}^{q}=-\bar{\lambda} \bar{\alpha}^{q}
$$

therefore (4) holds.
Lemma 2.2. (1) If real vectors $\alpha_{1}, \alpha_{1}^{q}, \cdots, \alpha_{t}, \alpha_{t}^{q}, \alpha_{t+1}$ are linearly independent, then real vectors $\alpha_{1}, \alpha_{1}^{q}, \cdots, \alpha_{t}, \alpha_{t}^{q}, \alpha_{t+1}, \alpha_{t+1}^{q}$ are also linearly independent;
(2) If W is a nonzero subspace of $\mathbf{R}^{2 n \times 1}$ with $\alpha \in W$ implying $\alpha^{q} \in W$, and $\alpha_{1}, \cdots, \alpha_{s}$ is a basis of W, then there exist m vectors $\alpha_{1}, \cdots, \alpha_{m}$ in the basis, such that $\alpha_{1}, \alpha_{1}^{q}, \cdots, \alpha_{m}^{q}, \alpha_{m}^{q}$ form a basis of W.

Proof (1) is extracted from [4]. Since $0 \neq \alpha_{1} \in W$, so $\alpha_{1}^{q} \in W$. By (1) $\alpha_{1}, \alpha_{1}^{q}$ are linearly independent. When $\operatorname{span}\left\{\alpha_{1}, \alpha_{1}^{q}\right\}=W$, the assertion is proven. If $\operatorname{span}\left\{\alpha_{1}, \alpha_{1}^{q}\right\} \neq W$, choose a vector α_{2} (without loss of generality) in above basis with $\alpha_{1}, \alpha_{1}^{q}, \alpha_{2}$ linearly independent, then by (1) and induction we prove (2).

For $A \in \mathbf{C}^{n \times n}$, let $f_{A}(\lambda)$ be the characteristic polynomial of complex matrix A.

[^0]: *Correspondence to: Musheng Wei, Department of Mathematics, East China Normal University, Shanghai 200062, China. Email: mwei@math.ecnu.edu.cn
 ${ }^{\dagger}$ This paper is supported by the National Natural Science Foundation of China (10371044).

