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Abstract. A more general algebraic expression for the calculation of the four-mode Franck-
Condon factors was derived straightforwardly on the base of the closed form expression of
the Franck-Condon integrals between arbitrary multidimensional harmonic oscillators un-
der the Duschinsky mixing effects. This new algebraic expression was applied to study
the photoelectron spectra of D2CO+(eA 2B1). Franck-Condon analyses and spectral simu-
lations were carried out on the D2CO+(eA 2B1) - D2CO(eX 1A1) photoionization processes.
The spectral simulations of vibrational structures based on the computed Franck-Condon
factors are in excellent agreement with the observed spectra.
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1 Introduction

The square of the vibrational overlap integral between two electronic states is called the
Franck-Condon factor (FCF). Calculations of FCFs are crucial for interpreting vibronic spec-
tra of molecules as well as studying nonradiative processes. Recently, we have developed a
new method for calculating Franck-Condon factors of multidimensional harmonic oscillators
including the Duschinsky effect [1, 2]. Some explicit algebraic formulas of two-dimensional
(two-, three-, and four-mode) Franck-Condon factors were derived straightforwardly by the
properties of Hermite polynomials and Gaussian integrals. This new method was applied to
study the photoelectron spectra of ClO−2 , SO2, CH3OO− and so on [3–7]. Our approach is
alternative to other existing ones [8–19] and has the advantages of being efficient and having
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no singular points. Accordingly, our method can be applied to any displaced-distorted-rotated
harmonic oscillators and should be valuable in the studies of vibronic spectroscopy and non-
radiative processes of molecules. However, up to date, an explicit algebraic form expression
to calculate the three-dimensional four-mode Franck-Condon factors under the Duschinsky
mixing effects has not been reported according to our knowledge.

In this work, we extended our approach to calculate three-dimensional Franck-Condon
factors. An analytical expression for the calculation of the three-dimensional four-mode
Franck-Condon integrals has been exactly derived. In addition, a general explicit formula
of the three-dimensional Franck-Condon factors was given. As an example we present a cal-
culation of the intensity distribution in the photoelectron spectrum of the D2CO+(eA2B1) –
D2CO(eX 1A1) transition of Formaldehyde.

2 Theoretical method

In Refs. [1, 2], a closed form expression for multidimensional Franck-Condon integrals be-
tween displaced distorted-rotated harmonic potential surfaces has been derived
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Here I is an N×N unit matrix, and symmetric matrices P and Q and the N×N matrix R are
defined by

P=SQST , Q=(1+ST S)−1, R=QST , (4)

with
S=λω′Jλ
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