An algebraic expression of the three-dimensional Franck-Condon factors and its application

Hong-Mo Huang ${ }^{a, *}$ and Jun Liang ${ }^{b, *}$
${ }^{a}$ Department of Physics, Anhui Tongcheng Normal College, Tongcheng 231400, China
${ }^{b}$ College of Physics and Electronic Information, Anhui Normal University, Wuhu 241000, China

Received 1 December 2010; Accepted (in revised version) 14 January 2011
Published Online 28 February 2011

Abstract

A more general algebraic expression for the calculation of the four-mode FranckCondon factors was derived straightforwardly on the base of the closed form expression of the Franck-Condon integrals between arbitrary multidimensional harmonic oscillators under the Duschinsky mixing effects. This new algebraic expression was applied to study the photoelectron spectra of $\mathrm{D}_{2} \mathrm{CO}^{+}\left(\widetilde{A}^{2} \mathrm{~B}_{1}\right)$. Franck-Condon analyses and spectral simulations were carried out on the $\mathrm{D}_{2} \mathrm{CO}^{+}\left(\widetilde{A}^{2} \mathrm{~B}_{1}\right)-\mathrm{D}_{2} \mathrm{CO}\left(\widetilde{X}^{1} \mathrm{~A}_{1}\right)$ photoionization processes. The spectral simulations of vibrational structures based on the computed Franck-Condon factors are in excellent agreement with the observed spectra.

PACS: 31.15.-p, 31.15.xr, 33.15.-e
Key words: overlap integral, Franck-Condon factor, duschinsky effect, spectral simulation

1 Introduction

The square of the vibrational overlap integral between two electronic states is called the Franck-Condon factor (FCF). Calculations of FCFs are crucial for interpreting vibronic spectra of molecules as well as studying nonradiative processes. Recently, we have developed a new method for calculating Franck-Condon factors of multidimensional harmonic oscillators including the Duschinsky effect $[1,2]$. Some explicit algebraic formulas of two-dimensional (two-, three-, and four-mode) Franck-Condon factors were derived straightforwardly by the properties of Hermite polynomials and Gaussian integrals. This new method was applied to study the photoelectron spectra of $\mathrm{ClO}_{2}^{-}, \mathrm{SO}_{2}, \mathrm{CH}_{3} \mathrm{OO}^{-}$and so on [3-7]. Our approach is alternative to other existing ones [8-19] and has the advantages of being efficient and having

[^0]no singular points. Accordingly, our method can be applied to any displaced-distorted-rotated harmonic oscillators and should be valuable in the studies of vibronic spectroscopy and nonradiative processes of molecules. However, up to date, an explicit algebraic form expression to calculate the three-dimensional four-mode Franck-Condon factors under the Duschinsky mixing effects has not been reported according to our knowledge.

In this work, we extended our approach to calculate three-dimensional Franck-Condon factors. An analytical expression for the calculation of the three-dimensional four-mode Franck-Condon integrals has been exactly derived. In addition, a general explicit formula of the three-dimensional Franck-Condon factors was given. As an example we present a calculation of the intensity distribution in the photoelectron spectrum of the $\mathrm{D}_{2} \mathrm{CO}^{+}\left(\widetilde{A}^{2} \mathrm{~B}_{1}\right)-$ $\mathrm{D}_{2} \mathrm{CO}\left(\widetilde{X}^{1} \mathrm{~A}_{1}\right)$ transition of Formaldehyde.

2 Theoretical method

In Refs. [1, 2], a closed form expression for multidimensional Franck-Condon integrals between displaced distorted-rotated harmonic potential surfaces has been derived

$$
\begin{align*}
\left\langle v_{1}^{\prime \prime} \cdots v_{n}^{\prime \prime} \mid v_{1}^{\prime} \cdots v_{N}^{\prime}\right\rangle= & \left\langle 0_{1}^{\prime \prime} \cdots 0_{N}^{\prime \prime} \mid 0_{1}^{\prime} \cdots 0_{N}^{\prime}\right\rangle\left(\prod_{j=1}^{N}(-1)^{v_{j}^{\prime \prime}+v_{j}^{\prime}}\left(v_{j}^{\prime \prime}!v_{j}^{\prime}!\right)^{-1 / 2}\right) \\
& \times \exp \left(\frac{1}{2} \boldsymbol{\sigma}^{\prime \prime T}(\mathbf{I}-2 \mathbf{Q}) \boldsymbol{\sigma}^{\prime \prime}+\frac{1}{2} \boldsymbol{\sigma}^{\prime T}(\mathbf{I}-2 \mathbf{P}) \boldsymbol{\sigma}^{\prime}-2 \boldsymbol{\sigma}^{\prime T} \mathbf{R} \boldsymbol{\sigma}^{\prime}\right) \\
& \times \frac{\partial_{1}^{v_{1}^{\prime \prime}+\cdots+v_{N}^{\prime \prime}+v_{1}^{\prime}+\cdots v_{N}^{\prime}}}{\partial \sigma_{1}^{\prime \prime \nu_{1}^{\prime \prime}} \cdots \partial \sigma_{N}^{\prime \prime \nu_{N}^{\prime \prime}} \partial \sigma_{1}^{/ v_{1}^{\prime}} \cdots \partial \sigma_{N}^{\prime v_{N}^{\prime \prime}}} \\
& \times \exp \left(-\frac{1}{2} \boldsymbol{\sigma}^{\prime \prime T}(\mathbf{I}-2 \mathbf{Q}) \boldsymbol{\sigma}^{\prime \prime}-\frac{1}{2} \boldsymbol{\sigma}^{\prime T}(\mathbf{I}-2 \mathbf{P}) \boldsymbol{\sigma}^{\prime}+2 \boldsymbol{\sigma}^{\prime \prime T} \mathbf{R} \boldsymbol{\sigma}^{\prime}\right), \tag{1}
\end{align*}
$$

where

$$
\begin{equation*}
\left\langle 0_{1}^{\prime \prime} \cdots 0_{N}^{\prime \prime} \mid 0_{1}^{\prime} \cdots 0_{N}^{\prime}\right\rangle=2^{N / 2}\left(\operatorname{det} \boldsymbol{\Gamma}^{\prime} \boldsymbol{\Gamma}^{\prime \prime}\right)^{1 / 4}(\operatorname{det} J Q)^{1 / 2} \exp \left(-\frac{1}{2} \boldsymbol{\delta}^{T}(1-\mathbf{P}) \boldsymbol{\delta}\right), \tag{2}
\end{equation*}
$$

and

$$
\binom{\boldsymbol{\sigma}^{\prime \prime}}{\boldsymbol{\sigma}^{\prime}}=\sqrt{2}\left(\begin{array}{cc}
\mathbf{I}-2 \mathbf{Q} & -2 \mathbf{R} \tag{3}\\
-2 \mathbf{R}^{T} & \mathbf{I}-2 \mathbf{P}
\end{array}\right)^{-1}\binom{-\mathbf{R} \boldsymbol{\delta}}{(\mathbf{I}-\mathbf{P})-\boldsymbol{\delta}} .
$$

Here I is an $N \times N$ unit matrix, and symmetric matrices \mathbf{P} and \mathbf{Q} and the $N \times N$ matrix \mathbf{R} are defined by

$$
\begin{equation*}
\mathbf{P}=\mathbf{S Q S}^{T}, \quad \mathbf{Q}=\left(1+\mathbf{S}^{T} \mathbf{S}\right)^{-1}, \quad \mathbf{R}=\mathbf{Q S}^{T} \tag{4}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathbf{S}=\boldsymbol{\lambda}_{\omega^{\prime}} \mathbf{J} \boldsymbol{\lambda}_{\omega^{\prime \prime}}^{-1}, \quad \boldsymbol{\lambda}_{\omega}=\operatorname{diag}\left(\sqrt{\omega_{1}}, \cdots, \sqrt{\omega_{N}}\right), \quad \boldsymbol{\delta}=h^{-1 / 2} \boldsymbol{\lambda}_{\omega^{\prime}} \mathbf{K} . \tag{5}
\end{equation*}
$$

[^0]: ${ }^{*}$ Corresponding author. Email addresses: hhmd@163.com (H. M. Huang); jliang@mail.ahnu.edu.cn (J. Liang)

