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Abstract. In this article, a level-set approach for solving nonlinear elliptic Cauchy
problems with piecewise constant solutions is proposed, which allows the defini-
tion of a Tikhonov functional on a space of level-set functions. We provide con-
vergence analysis for the Tikhonov approach, including stability and convergence
results. Moreover, a numerical investigation of the proposed Tikhonov regular-
ization method is presented. Newton-type methods are used for the solution of the
optimality systems, which can be interpreted as stabilized versions of algorithms in
a previous work and yield a substantial improvement in performance. The whole
approach is focused on three dimensional models, better suited for real life appli-
cations.
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1 Introduction

We start by introducing the inverse problem under consideration. Let Ω⊂R3, be an
open bounded set with piecewise Lipschitz boundary ∂Ω. Further, we assume that

∂Ω = Γ1 ∪ Γ2,

where Γi are two open disjoint parts of ∂Ω. Given the function q : R → R+, we define
the second order elliptic operator

P(u) := −∇ · (q(u)∇u) . (1.1)

∗Corresponding author.
URL: http://www.mtm.ufsc.br/∼aleitao/
Email: herbert.egger@rwth-aachen.de (H. Egger), acgleitao@gmail.com (A. Leitao)

http://www.global-sci.org/aamm 729 c©2009 Global Science Press



730 H. Egger, A. Leitao/ Adv. Appl. Math. Mech., 6 (2009), pp. 729-749

We denote by nonlinear elliptic Cauchy problem the following problem



P(u) = f , in Ω,
u = g1, on Γ1,
q(u)uν = g2, on Γ1,

(CPnl)

where the pair of functions (g1, g2) ∈ H1/2(Γ1)× H1/2
00 (Γ1)′ are given Cauchy data and

f∈L2(Ω) is a known source term in the model (see [32, p. 66] or [14] for a definition of
the Sobolev spaces).

A solution of (CPnl) is a distribution in H1(Ω), which solves the weak formulation
of the nonlinear elliptic equation P(u)= f in Ω and further satisfies the Cauchy data
on Γ1 in the sense of the trace operators. Notice that, if we know the Neumann (or
Dirichlet) trace of u on Γ2, say q(u) uν|Γ2=ϕ, then u can be computed as the solution
of a nonlinear mixed boundary value problem (BVP) in a stable way, namely




P(u) = f , in Ω,
u = g1, on Γ1,
q(u)uν = ϕ, on Γ2,

(BVP)

Therefore, in order to solve (CPnl), it is enough to consider the task of determining the
Neumann trace of u on Γ2 (a distribution in H1/2

00 (Γ2)′).

Remark 1.1. For simplicity of the presentation the boundary parts Γi are assumed to
be connected. Using standard elliptic theory one can prove that the results in this
article also hold without this assumption. Moreover, the theory derived here extends
naturally to Cauchy problems defined on domains with ∂Ω=Γ1 ∪ Γ2 ∪ Γ3, where Γi
are disjoint and some extra boundary condition (Dirichlet, Neumann, Robin, . . . ) is
prescribed on Γ3.

Remark 1.2. Let P be the linear elliptic operator defined in Ω by

P u := −
3

∑
i,j=1

Di(ai,jDju),

where the real functions ai,j∈L∞(Ω) are such that the matrix A(x) := (ai,j)d
i,j=1 satisfies

ξt A(x)ξ>α||ξ||2, for all ξ∈R3 and for a.e. x∈Ω. Here α is some positive constant.
The linear elliptic Cauchy problem corresponds to the problem (CPnl) obtained when the
operator P is substituted by P and the Neumann boundary condition is substituted
by uνA |Γ1=g2. The linear version of (CPnl) has been intensively investigated over the
last years [5–8, 11, 13, 17, 19, 23, 25, 28, 30, 31].

Linear elliptic Cauchy problems were used by Hadamard in the 1920’s as an ex-
ample of (exponentially) ill-posed problem [22]. For linear elliptic operators with an-
alytical coefficients, uniqueness of solutions is known for over half a century [10, 12].
Moreover, as a straightforward argumentation with the Schwarz reflection principle


