New Alternately Linearized Implicit Iteration for M-matrix Algebraic Riccati Equations

Jinrui Guan^{1,*}and Linzhang Lu²

 ¹ Department of Mathematics, Taiyuan Normal University, Shanxi 030619, P.R. China.
² School of Mathematics and Computer Science, Guizhou Normal University, Guizhou 550001, P.R. China.

Received October 16, 2015; Accepted May 17, 2016

Abstract. Research on the theories and the efficient numerical methods of M-matrix algebraic Riccati equation (MARE) has become a hot topic in recent years due to its broad applications. In this paper, based on the alternately linearized implicit iteration method (ALI) [Z.-Z. Bai *et al.*, Numer. Linear Algebra Appl., 13(2006), 655-674.], we propose a new alternately linearized implicit iteration method (NALI) for computing the minimal nonnegative solution of M-matrix algebraic Riccati equation. Convergence of the NALI method is proved by choosing proper parameters for the MARE associated with nonsingular M-matrix or irreducible singular M-matrix. Theoretical analysis and numerical experiments show that the NALI method is more efficient than the ALI method in some cases.

AMS subject classifications: 15A24, 65F30

Key words: M-matrix algebraic Riccati equation, M-matrix, ALI iteration method.

1 Introduction

The nonsymmetric algebraic Riccati equation (NARE) is of the form

$$XCX - XD - AX + B = 0, (1.1)$$

where *A*, *B*, *C* and *D* are real matrices of sizes $m \times m$, $m \times n$, $n \times m$ and $n \times n$ respectively. For (1.1), let

$$K = \begin{pmatrix} D & -C \\ -B & A \end{pmatrix}.$$
 (1.2)

If *K* is an M-matrix, then (1.1) is called an M-matrix algebraic Riccati equation (MARE). M-matrix algebraic Riccati equation arises from many branches of applied mathematics,

http://www.global-sci.org/jms

©2017 Global-Science Press

^{*}Corresponding author. *Email addresses:* guanjinrui2012@163.com (J. Guan), llz@gznu.edu.cn (L. Lu)

J. Guan and L. Lu / J. Math. Study, 50 (2017), pp. 54-64

such as transport theory, Wiener-Hopf factorization of Markov chains, stochastic process, and so on [2,3,5,7,14,18,20]. Research on the theories and the efficient numerical methods of MARE has become a hot topic in recent years. The solution of practical interest is the minimal nonnegative solution. For theoretical background we refer to [5,7,8,10–12,15].

The following are some notations and definitions we need in the sequel.

For any matrices $A = (a_{ij}), B = (b_{ij}) \in \mathbb{R}^{m \times n}$, we write $A \ge B(A > B)$, if $a_{ij} \ge b_{ij}(a_{ij} > b_{ij})$ for all *i*, *j*. *A* is called a Z-matrix if $a_{ij} \le 0$ for all $i \ne j$. A Z-matrix *A* is called an M-matrix if there exists a nonnegative matrix *B* such that A = sI - B and $s \ge \rho(B)$ where $\rho(B)$ is the spectral radius of *B*. In particular, *A* is called a nonsingular M-matrix if $s > \rho(B)$ and singular M-matrix if $s = \rho(B)$.

We review some basic results of M-matrix. The following lemmas can be found in [4, Chapter 6].

Lemma 1.1. Let A be a Z-matrix. Then the following statements are equivalent:

(1) A is a nonsingular M-matrix;

- (2) $A^{-1} \ge 0;$
- (3) Av > 0 for some vectors v > 0;
- (4) All eigenvalues of A have positive real part.

Lemma 1.2. Let A and B be Z-matrices. If A is a nonsingular M-matrix and $A \le B$, then B is also a nonsingular M-matrix. In particular, for any nonnegative real number α , $B = \alpha I + A$ is a nonsingular M-matrix.

Lemma 1.3. Let A be an M-matrix, $B \ge A$ be a Z-matrix. If A is nonsingular or irreducible singular and if $A \ne B$, then B is also a nonsingular M-matrix.

Lemma 1.4. Let A be a nonsingular M-matrix or an irreducible singular M-matrix. Let A be partitioned as

$$A = \left(\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array}\right),$$

where A_{11} and A_{22} are square matrices. Then A_{11} and A_{22} are nonsingular M-matrices.

Lemma 1.5. If A, B are nonsingular M-matrices and $A \le B$, then $A^{-1} \ge B^{-1}$.

For the minimal nonnegative solution of the MARE, we have the following important result [5,7,8,12].

Lemma 1.6. If K is a nonsingular M-matrix or an irreducible singular M-matrix, then (1.1) has a unique minimal nonnegative solution S. If K is nonsingular, then A - SC and D - CS are also nonsingular M-matrices. If K is irreducible, then S > 0 and A - SC and D - CS are also irreducible M-matrices.

There are many numerical methods up to now proposed for the minimal nonnegative solution of MARE, such as Schur method, matrix sign function, fixed-point iteration, Newton iteration, doubling algorithms, and so on. For details see [1,5–7,9,13,16,17,19].