New Alternately Linearized Implicit Iteration for M-matrix Algebraic Riccati Equations

Jinrui Guan ${ }^{1, *}$ and Linzhang Lu ${ }^{2}$
${ }^{1}$ Department of Mathematics, Taiyuan Normal University, Shanxi 030619, P.R. China.
${ }^{2}$ School of Mathematics and Computer Science, Guizhou Normal University, Guizhou 550001, P.R. China.

Received October 16, 2015; Accepted May 17, 2016

Abstract

Research on the theories and the efficient numerical methods of M-matrix algebraic Riccati equation (MARE) has become a hot topic in recent years due to its broad applications. In this paper, based on the alternately linearized implicit iteration method (ALI) [Z.-Z. Bai et al., Numer. Linear Algebra Appl., 13(2006), 655-674.], we propose a new alternately linearized implicit iteration method (NALI) for computing the minimal nonnegative solution of M-matrix algebraic Riccati equation. Convergence of the NALI method is proved by choosing proper parameters for the MARE associated with nonsingular M-matrix or irreducible singular M-matrix. Theoretical analysis and numerical experiments show that the NALI method is more efficient than the ALI method in some cases.

AMS subject classifications: 15A24, 65F30
Key words: M-matrix algebraic Riccati equation, M-matrix, ALI iteration method.

1 Introduction

The nonsymmetric algebraic Riccati equation (NARE) is of the form

$$
\begin{equation*}
X C X-X D-A X+B=0 \tag{1.1}
\end{equation*}
$$

where A, B, C and D are real matrices of sizes $m \times m, m \times n, n \times m$ and $n \times n$ respectively. For (1.1), let

$$
K=\left(\begin{array}{cc}
D & -C \tag{1.2}\\
-B & A
\end{array}\right)
$$

If K is an M-matrix, then (1.1) is called an M-matrix algebraic Riccati equation (MARE). M-matrix algebraic Riccati equation arises from many branches of applied mathematics,

[^0]such as transport theory, Wiener-Hopf factorization of Markov chains, stochastic process, and so on $[2,3,5,7,14,18,20]$. Research on the theories and the efficient numerical methods of MARE has become a hot topic in recent years. The solution of practical interest is the minimal nonnegative solution. For theoretical background we refer to [5,7,8,10-12,15].

The following are some notations and definitions we need in the sequel.
For any matrices $A=\left(a_{i j}\right), B=\left(b_{i j}\right) \in \mathbb{R}^{m \times n}$, we write $A \geq B(A>B)$, if $a_{i j} \geq b_{i j}\left(a_{i j}>b_{i j}\right)$ for all i, j. A is called a Z-matrix if $a_{i j} \leq 0$ for all $i \neq j$. A Z-matrix A is called an M-matrix if there exists a nonnegative matrix B such that $A=s I-B$ and $s \geq \rho(B)$ where $\rho(B)$ is the spectral radius of B. In particular, A is called a nonsingular M-matrix if $s>\rho(B)$ and singular M-matrix if $s=\rho(B)$.

We review some basic results of M-matrix. The following lemmas can be found in [4, Chapter 6].

Lemma 1.1. Let A be a Z-matrix. Then the following statements are equivalent:
(1) A is a nonsingular M-matrix;
(2) $A^{-1} \geq 0$;
(3) $A v>0$ for some vectors $v>0$;
(4) All eigenvalues of A have positive real part.

Lemma 1.2. Let A and B be Z-matrices. If A is a nonsingular M-matrix and $A \leq B$, then B is also a nonsingular M-matrix. In particular, for any nonnegative real number $\alpha, B=\alpha I+A$ is a nonsingular M-matrix.

Lemma 1.3. Let A be an M-matrix, $B \geq A$ be a Z-matrix. If A is nonsingular or irreducible singular and if $A \neq B$, then B is also a nonsingular M-matrix.
Lemma 1.4. Let A be a nonsingular M-matrix or an irreducible singular M-matrix. Let A be partitioned as

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)
$$

where A_{11} and A_{22} are square matrices. Then A_{11} and A_{22} are nonsingular M-matrices.
Lemma 1.5. If A, B are nonsingular M-matrices and $A \leq B$, then $A^{-1} \geq B^{-1}$.
For the minimal nonnegative solution of the MARE, we have the following important result $[5,7,8,12]$.

Lemma 1.6. If K is a nonsingular M-matrix or an irreducible singular M-matrix, then (1.1) has a unique minimal nonnegative solution S. If K is nonsingular, then $A-S C$ and $D-C S$ are also nonsingular M-matrices. If K is irreducible, then $S>0$ and $A-S C$ and $D-C S$ are also irreducible M-matrices.

There are many numerical methods up to now proposed for the minimal nonnegative solution of MARE, such as Schur method, matrix sign function, fixed-point iteration, Newton iteration, doubling algorithms, and so on. For details see [1,5-7,9,13,16,17,19].

[^0]: *Corresponding author. Email addresses: guanjinrui2012@163.com (J. Guan), 1lz@gznu.edu.cn (L. Lu)

