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Abstract. In this note, for k−quasiconformal mappings of a bounded domain into the
complex plane, we give an upper bound of Burkholder integral. Moreover, as an ap-

plication we obtain an upper bound of the Lp−integral of
√

J f and |D f | for certain

K−quasiconformal mappings.
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1 Introduction

Let Ω and Ω′ be two bounded simply connected domains of the complex plane C. A
homeomorphism f : Ω −→ Ω′ is called k−quasiconformal, if it belongs locally to the

Sobolev class W
1,2
loc(Ω) and satisfies the Beltrami equation

∂ f

∂z
=µ f

∂ f

∂z
a.e. z∈Ω,

where the Beltrami coefficient has bounded L∞ norm: ||µ f ||∞ ≤ k < 1. In particular, a
homeomorphism of C onto itself is called principal solution of the Beltrami equation

∂ f

∂z
=µ f

∂ f

∂z
,

if it satisfies the asymptotical normalization condition

f (z)= z+
b1

z
+

b2

z2
+···, f or |z|−→∞.
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We denote the formal partial derivatives of f by

∂ f = fz =
∂ f

∂z
=

1

2

(
∂ f

∂x
−i

∂ f

∂y

)
and ∂ f = fz =

∂ f

∂z
=

1

2

(
∂ f

∂x
+i

∂ f

∂y

)
,

and use the notation

|D f |= | fz |+| fz| and J f = | fz|2−| fz|2.

Here the value |D f | is the operator norm for D f and J f is the Jacobian of f .
A continuous function E : Rn×n −→R is said to be quasiconvex if for every f ∈ A+

C∞
0 (Ω,Rn), we have

E [ f ] :=
∫

Ω
E(D f )dx≥

∫

Ω
E(A)dx=E(A)|Ω|,

where A stands for an arbitrary linear mapping (or its matrix) and Ω⊂Rn is any bounded
domain. In other words, one requires that compactly supported perturbations of linear
maps do not decrease the value of the integral. This notion is very important in the
calculus of variations [7]. Another notion is that of rank-one convexity, which requires
just that t→E(A+tX) is convex for any fixed matrix A and for any rank one matrix X. E is
rank-one concave (resp. quasiconcave) if −E is rank-one convex (resp. quasiconvex). The
most famous rank-one concave function in dimension two is the Burkholder functional
defined for any 2×2 matrix A by

BP(A)=

[
p

2
detA+

(
1− p

2

)
|A|2

]
|A|p−2, p≥2. (1.1)

where |A| is the operator norm of A, see [3]. Morrey’s work [8] implies that quasicon-
vexity implies rank-one convexity. For the dimension n of Rn is bigger than 2, S̆verák’s
paper [10] showed that the converse is not true. However, for dimension n=2, [5] and [7]
gave the evidence to the possibility for a different outcome. So in [1], the authors gave
the following conjecture in the spirit of Morrey,

Conjecture 1.1. Rank-one convex functions E :R2×2−→R are quasiconvex.

For the A= Id, the authors of [1] showed that the Burkholder function is quasiconcave
within quasiconformal perturbations of the identity. They showed that when f :Ω→Ω is
a k−quasiconformal map of Ω onto itself with extending to the identity on the boundary,
then

∫

Ω
Bp(D f )dz=

∫

Ω

(
1− p|µ(z)|

1+|µ(z)|

)
(| fz(z)|+| fz(z)|)pdz≤

∫

Ω
Bp(Id)dz= |Ω|, (1.2)

where 2≤ p≤1+ 1
k .

In this paper, we first use the method learned from [1] to prove the following result:


