Some Improvements on Hermite-Hadamard's Inequalities for *s*-convex Functions

Yujiao Li and Tingsong Du*

Department of Mathematics, Science College, China Three Gorges University, Yichang 443002, Hubei, P.R. China.

Received 30 May 2015; Accepted (in second revised version) 15 February 2016

Abstract. Using an integral identity for a once differentiable mapping, this paper establishes Hadamard's integral inequalities for *s*-convex and *s*-concave mappings. In particular, our results improve and extend some known ones in the literature. Finally, these inequalities are applied to special means.

AMS subject classifications: 26D15, 26A51, 26E60, 41A55 **Key words**: Convex function, *s*-convex function, Hadamard's inequality.

1 Introduction

Throughout the present paper, we use $I \subseteq \mathbb{R}$ to denote the real interval, I° to denote the interior of *I*.

Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be a convex function and $a, b \in I$ with a < b, then

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d}x \le \frac{f(a)+f(b)}{2}.$$
(1.1)

This remarkable result is well known in the literature as Hermite-Hadamard's inequality for convex mapping. Both inequalities hold in the reversed direction if f is concave.

We know two kinds of *s*-convexity/concavity ($0 < s \le 1$) of real valued functions are famous in the literature.

A function $f : \mathbb{R}_+ \to \mathbb{R}$, where $\mathbb{R}_+ = [0, +\infty)$ is said to be *s*-convex function in the first sense, if the inequality

$$f(\alpha\mu + \beta\nu) \le \alpha^s f(\mu) + \beta^s f(\nu)$$

holds for all $\mu, \nu \in \mathbb{R}_+$, and all $\alpha, \beta \ge 0$ with $\alpha^s + \beta^s = 1$.

©2016 Global-Science Press

^{*}Corresponding author. *Email addresses:* yujiaolictgu@163.com (Y. J. Li), tingsongdu@ctgu.edu.cn (T. S. Du)

Definition 1.1. ([7]) The function $f: I \subseteq [0, \infty) \to \mathbb{R}$ is said to be *s*-convex function in the second sense on *I*, if the inequality

$$f(\lambda x + (1 - \lambda)y) \le \lambda^s f(x) + (1 - \lambda)^s f(y)$$
(1.2)

holds for all $x, y \in I$, $\lambda \in [0,1]$ and for some fixed $s \in (0,1]$.

In this paper we mainly study Hadamard's integral inequalities for *s*-convex and *s*-concave mappings in the second sense. Kavurmaci et al. proved the following result connected with the right part of (1.1) in [9].

Lemma 1.1. ([9] Lemma 1) Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable mapping on I° , where $a, b \in I$ with a < b. If $f' \in L[a,b]$, then the following equality holds:

$$\frac{(b-x)f(b) + (x-a)f(a)}{b-a} - \frac{1}{b-a} \int_{a}^{b} f(u) du$$

$$= \frac{(x-a)^{2}}{b-a} \int_{0}^{1} (t-1)f'(tx + (1-t)a) dt + \frac{(b-x)^{2}}{b-a} \int_{0}^{1} (1-t)f'(tx + (1-t)b) dt.$$
(1.3)

In recent years, a lot of inequalities of Hermite-hadamard type for convex and *s*-convex functions were presented, some of them can be reformulated as the following theorems.

Theorem 1.1. ([6]) Suppose that $f : [0,\infty) \to [0,\infty)$ is an s-convex function in the second sense, where $s \in (0,1]$, and let $a, b \in [0,\infty)$, a < b. If $f \in L[a,b]$, then the following inequalities hold:

$$2^{s-1}f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} f(x) dx \le \frac{f(a)+f(b)}{s+1}.$$
 (1.4)

Theorem 1.2. ([11] Theorem 2.1) Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable mapping on I° , where $a, b \in I^\circ$ with a < b and let q > 1. If $|f'|^q$ is convex on [a,b], then the following inequality holds:

$$\left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_{a}^{b} f(u) \mathrm{d}u \right| \le \left(\frac{3^{1-\frac{1}{q}}}{8}\right) (b-a) \left(\left| f'(a) \right| + \left| f'(b) \right| \right).$$
(1.5)

Theorem 1.3. ([1] Theorem 2.5 and [10] Theorem 2) Let $f : I \to \mathbb{R}, I \subseteq \mathbb{R}$ be a differentiable mapping on I° such that $f' \in L[a,b]$, where $a, b \in I$, a < b. If $|f'|^q$ is concave on [a,b], for some fixed q > 1, then the following inequalities hold:

$$\left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_{a}^{b} f(u) du \right| \le \frac{b-a}{4} \left(\frac{q-1}{2q-1}\right)^{\frac{q-1}{q}} \left[\left| f'\left(\frac{a+3b}{4}\right) \right| + \left| f'\left(\frac{3a+b}{4}\right) \right| \right]$$
(1.6)

and

$$\left|\frac{f(a)+f(b)}{2} - \frac{1}{b-a} \int_{a}^{b} f(u) \mathrm{d}u\right| \le \frac{b-a}{4} \left(\frac{q-1}{2q-1}\right)^{\frac{q-1}{q}} \left[\left|f'\left(\frac{a+3b}{4}\right)\right| + \left|f'\left(\frac{3a+b}{4}\right)\right| \right].$$
(1.7)