Some Improvements on Hermite-Hadamard's Inequalities for s-convex Functions

Yujiao Li and Tingsong Du*
Department of Mathematics, Science College, China Three Gorges University, Yichang 443002, Hubei, P.R. China.

Received 30 May 2015; Accepted (in second revised version) 15 February 2016

Abstract

Using an integral identity for a once differentiable mapping, this paper establishes Hadamard's integral inequalities for s-convex and s-concave mappings. In particular, our results improve and extend some known ones in the literature. Finally, these inequalities are applied to special means.

AMS subject classifications: 26D15, 26A51, 26E60, 41A55
Key words: Convex function, s-convex function, Hadamard's inequality.

1 Introduction

Throughout the present paper, we use $I \subseteq \mathbb{R}$ to denote the real interval, I° to denote the interior of I.

Let $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a convex function and $a, b \in I$ with $a<b$, then

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x \leq \frac{f(a)+f(b)}{2} \tag{1.1}
\end{equation*}
$$

This remarkable result is well known in the literature as Hermite-Hadamard's inequality for convex mapping. Both inequalities hold in the reversed direction if f is concave.

We know two kinds of s-convexity/concavity $(0<s \leq 1)$ of real valued functions are famous in the literature.

A function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$, where $\mathbb{R}_{+}=[0,+\infty)$ is said to be s-convex function in the first sense, if the inequality

$$
f(\alpha \mu+\beta v) \leq \alpha^{s} f(\mu)+\beta^{s} f(v)
$$

holds for all $\mu, v \in \mathbb{R}_{+}$, and all $\alpha, \beta \geq 0$ with $\alpha^{s}+\beta^{s}=1$.

[^0]Definition 1.1. ([7]) The function $f: I \subseteq[0, \infty) \rightarrow \mathbb{R}$ is said to be s-convex function in the second sense on I, if the inequality

$$
\begin{equation*}
f(\lambda x+(1-\lambda) y) \leq \lambda^{s} f(x)+(1-\lambda)^{s} f(y) \tag{1.2}
\end{equation*}
$$

holds for all $x, y \in I, \lambda \in[0,1]$ and for some fixed $s \in(0,1]$.
In this paper we mainly study Hadamard's integral inequalities for s-convex and s concave mappings in the second sense. Kavurmaci et al. proved the following result connected with the right part of (1.1) in [9].

Lemma 1.1. ([9] Lemma 1) Let $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable mapping on I°, where $a, b \in I$ with $a<b$. If $f^{\prime} \in L[a, b]$, then the following equality holds:

$$
\begin{align*}
& \frac{(b-x) f(b)+(x-a) f(a)}{b-a}-\frac{1}{b-a} \int_{a}^{b} f(u) \mathrm{d} u \\
& =\frac{(x-a)^{2}}{b-a} \int_{0}^{1}(t-1) f^{\prime}(t x+(1-t) a) \mathrm{d} t+\frac{(b-x)^{2}}{b-a} \int_{0}^{1}(1-t) f^{\prime}(t x+(1-t) b) \mathrm{d} t \tag{1.3}
\end{align*}
$$

In recent years, a lot of inequalities of Hermite-hadamard type for convex and sconvex functions were presented, some of them can be reformulated as the following theorems.

Theorem 1.1. ([6]) Suppose that $f:[0, \infty) \rightarrow[0, \infty)$ is an s-convex function in the second sense, where $s \in(0,1]$, and let $a, b \in[0, \infty), a<b$. If $f \in L[a, b]$, then the following inequalities hold:

$$
\begin{equation*}
2^{s-1} f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x \leq \frac{f(a)+f(b)}{s+1} . \tag{1.4}
\end{equation*}
$$

Theorem 1.2. ([11] Theorem 2.1) Let $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable mapping on I°, where $a, b \in I^{\circ}$ with $a<b$ and let $q>1$. If $\left|f^{\prime}\right|^{a}$ is convex on $[a, b]$, then the following inequality holds:

$$
\begin{equation*}
\left|f\left(\frac{a+b}{2}\right)-\frac{1}{b-a} \int_{a}^{b} f(u) \mathrm{d} u\right| \leq\left(\frac{3^{1-\frac{1}{9}}}{8}\right)(b-a)\left(\left|f^{\prime}(a)\right|+\left|f^{\prime}(b)\right|\right) . \tag{1.5}
\end{equation*}
$$

Theorem 1.3. ([1] Theorem 2.5 and [10] Theorem 2) Let $f: I \rightarrow \mathbb{R}, I \subseteq \mathbb{R}$ be a differentiable mapping on I° such that $f^{\prime} \in L[a, b]$, where $a, b \in I, a<b$. If $\left|f^{\prime}\right|^{9}$ is concave on $[a, b]$, for some fixed $q>1$, then the following inequalities hold:

$$
\begin{equation*}
\left|f\left(\frac{a+b}{2}\right)-\frac{1}{b-a} \int_{a}^{b} f(u) \mathrm{d} u\right| \leq \frac{b-a}{4}\left(\frac{q-1}{2 q-1}\right)^{\frac{q-1}{q}}\left[\left|f^{\prime}\left(\frac{a+3 b}{4}\right)\right|+\left|f^{\prime}\left(\frac{3 a+b}{4}\right)\right|\right] \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(u) \mathrm{d} u\right| \leq \frac{b-a}{4}\left(\frac{q-1}{2 q-1}\right)^{\frac{q-1}{q}}\left[\left|f^{\prime}\left(\frac{a+3 b}{4}\right)\right|+\left|f^{\prime}\left(\frac{3 a+b}{4}\right)\right|\right] . \tag{1.7}
\end{equation*}
$$

[^0]: *Corresponding author. Email addresses: yujiaolictgu@163.com (Y. J. Li), tingsongdu@ctgu.edu.cn (T. S. Du)

