## Second Order Estimates for Non-concave Hessian Type Elliptic Equations on Riemannian Manifolds

Heming Jiao\*

Department of Mathematics, Harbin Institute of Technology, Harbin 150001, Helongjiang Province, P. R. China

Received 18 March, 2015; Accepted 16 July, 2015

**Abstract.** In this paper, we derive second order estimates for a class of non-concave Hessian type elliptic equations on Riemannian manifolds. By applying a new method for  $C^2$  estimates, we can weaken some conditions, which works for some non-concave equations. Gradient estimates are also obtained.

AMS subject classifications: 35J15, 58J05, 35B45.

**Key words**: Non-concave fully nonlinear elliptic equations, Riemannian manifolds, a priori estimates, Dirichlet problem, subsolutions.

## 1 Introduction

In this paper we continue our previous work in [5,6] to study the Dirichlet problem for Hessian type equations

$$\begin{cases} f(\lambda(\nabla^2 u + A[u])) = \psi(x, u, \nabla u) \text{ in } M, \\ u = \varphi \text{ on } \partial M \end{cases}$$
(1.1)

on a compact Riemannian manifold  $(M^n,g)$  of dimension  $n \ge 2$  with smooth boundary  $\partial M$ , where f is a symmetric smooth function of n variables,  $\nabla u = du$  which is often identified with the gradient of u,  $\nabla^2 u$  denotes the Hessian of u,  $A[u] = A(x,u,\nabla u)$  is a (0,2) tensor which may depend on u and  $\nabla u$ , and

$$\lambda(\nabla^2 u + A[u]) = (\lambda_1, \dots, \lambda_n)$$

denotes the eigenvalues of  $\nabla^2 u + A[u]$  with respect to the metric *g*.

Our motivation to study equations (1.1) is mainly from their significant applications in differential geometry (see [5]).

http://www.global-sci.org/jms

©2015 Global-Science Press

<sup>\*</sup>Corresponding author. *Email address:* jiao@hit.edu.cn (H. Jiao)

As in [1], the function  $f \in C^2(\Gamma)$  is assumed to be defined in an open, convex, symmetric cone  $\Gamma \subset \mathbb{R}^n$  with vertex at the origin,

$$\Gamma_n \equiv \{\lambda \in \mathbb{R}^n : \text{each component } \lambda_i > 0\} \subseteq \Gamma \neq \mathbb{R}^n,$$

and to satisfy

$$f_i \equiv \frac{\partial f}{\partial \lambda_i} > 0 \text{ in } \Gamma, \ 1 \le i \le n, \tag{1.2}$$

which implies (1.1) is elliptic for the solution  $u \in C^2(\overline{M})$  satisfying  $\lambda(\nabla^2 u + A[u]) \in \Gamma$ ; we shall call such functions *admissible* (see [1]).

Another fundamental assumption is

$$\sup_{\partial \Gamma} f < \psi < \sup_{\Gamma} f, \text{ where } \sup_{\partial \Gamma} f \equiv \sup_{\lambda_0 \in \partial \Gamma} \limsup_{\lambda \to \lambda_0} f(\lambda)$$
(1.3)

which prevents the degeneracy of (1.1).

In the literature, the function f is often assumed to be concave in  $\Gamma$ , which is crucial to the second order estimates and Evans-Krylov theorem. We wish to establish the *a priori* estimates and existence of solutions for (1.1) with respect to some non-concave f. The contribution of this paper is to weaken the concavity condition of f in establishing the second order estimates. We first consider those f which are concave when  $|\lambda|$  is sufficiently large. Our main idea is to treat another function  $\tilde{f}$  instead of f, where  $\tilde{f}$  is a concave function on  $\Gamma$  satisfying that  $\tilde{f} \ge f$  in  $\Gamma$ ,  $\tilde{f}(\lambda) = f(\lambda)$  when  $|\lambda|$  is sufficiently large and that

$$\widetilde{f}_i \equiv \frac{\partial \widetilde{f}}{\partial \lambda_i} > 0 \text{ in } \Gamma.$$
(1.4)

We assume in this paper that A[u] and  $\psi[u]$  are smooth on  $\overline{M}$  for  $u \in C^{\infty}(\overline{M})$  and  $\varphi \in C^{\infty}(\partial M)$ . As in [5] and [6], we shall use the notations

$$A^{\xi\eta}(x,\cdot,\cdot):=A(x,\cdot,\cdot)(\xi,\eta),\,\xi,\eta\in T^*_xM$$

and therefore,  $A^{\xi\eta}[v] := A^{\xi\eta}(x, v, \nabla v)$  for a function  $v \in C^2(M)$ . We assume that

e assume mat

$$-\psi(x,z,p)$$
 and  $A^{\varsigma\varsigma}(x,z,p)$  are concave in  $p$ , (1.5)

$$-\psi_z, A_z^{\zeta\zeta} \ge 0, \quad \forall \xi \in T_x M. \tag{1.6}$$

and moreover, there exists an admissible subsolution  $\underline{u} \in C^2(\overline{M})$  satisfying

$$\begin{cases} f(\lambda(\nabla^2 \underline{u} + A[\underline{u}])) \ge \psi(x, \underline{u}, \nabla \underline{u}) \text{ in } \overline{M}, \\ \underline{u} = \varphi \text{ on } \partial M. \end{cases}$$
(1.7)

Now we can state our main theorem as follows.