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Abstract. In the partition of unity finite element method, the nodal basis of the stan-
dard linear Lagrange finite element is multiplied by the Pk polynomial basis to form
a local basis of an extended finite element space. Such a space contains the P1 Lagrange
element space, but is a proper subspace of the Pk+1 Lagrange element space on trian-
gular or tetrahedral grids. It is believed that the approximation order of this extended
finite element is k, in H1-norm, as it was proved in the first paper on the partition of
unity, by Babuska and Melenk. In this work we show surprisingly the approximation
order is k+1 in H1-norm. In addition we extend the method to rectangular/cuboid
grids and give a proof to this sharp convergence order. Numerical verification is done
with various partition of unity finite elements, on triangular, tetrahedral, and quadri-
lateral grids.
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1 Introduction

The partition of unity finite element was proposed in 1996 [10]. The method is based on
the P1 Lagrange finite element

uh(x)= ∑
vi∈Vh

uiφi(x), (1.1)

where ui is the nodal value of a continuous function uh at a vertex, uh(vi),Vh is the index
set of vertices in a triangulation Th, and φi is a piecewise P1 function on the grid Th assum-
ing value 1 at one vertex vi and zero at the rest vertices. Instead of multiplied by the P0
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polynomial in (1.1), in one partition of unity method each nodal basis φi(x) is multiplied
by the Pk polynomial basis, cf. [1, 8, 10],

uh(x)= ∑
vi∈Vh

ui(x)φi(x), ui(x)= ∑
|α|≤k

ui,α(x−vi)
α, (1.2)

where α is a multi-index, e.g., when k=2 in 2D, xα ∈{1,x,y,x2,xy,y2}.
Obviously, the extended finite element space contains the P1 Lagrange finite ele-

ment as a subspace, by letting ui(x) ∈ R in (1.2). On the other side, because the sum
of three P1 basis functions at the three vertices of a triangle K is a constant function 1, the
extended finite element space also contains the Pk(K) Lagrange element space as a sub-
space locally, on this triangle K only. But globally, on a triangular grid in 2D, the dimen-
sion of P1×Pk finite element space (P1 Lagrange basis multiplied by Pk polynomials) is
C(k+1)(k+2)/2 ∼ Ck2/2 while that of Pk Lagrange finite element space is Ck2, by the
Euler formula, where C is about the number of vertices. For large k,C0-(P1×Pk) 6⊃C0-Pk.
Nevertheless, the first partition of unity paper [10] proved an O(hk) H1-convergence and
an O(hk+1) L2-convergence for this partition of unity finite element method. This is not
trivial, to prove a smaller space having the same order of approximation.

We may compare the P1×Pk finite element space with the Pk+1 Lagrange element
space. Each extended finite element function uh is a p1×pk = pk+1 polynomial, on each
element. The partition of unity finite element space is clearly a subspace of the Pk+1

Lagrange space. In 1D, because the number of elements is the same as the number of ver-
tices (one less), from a dimension counting, the extended finite element space is precisely
the Pk+1 Lagrange space in 1D. In [7] proved an one-order higher convergence than that
of [10] in 1D.

But the problem is less trivial in 2D and 3D, and remains open for twenty some years.
For example, for the P2 triangular element in 2D, the finite element dimension is the sum
of the number of vertices and the number of edges. For the P1×P1 partition of unity finite
element, the space dimension is 3 times the number of vertices. By the Euler formula, the
number of edges is about three times of the number of vertices. The dimension of the
P1×P1 space is about 3/4 of that of the P2 Lagrange space. Similarly, the dimensions
of P1×Pk partition of unity finite element space and Pk+1 Lagrange finite element space
are about the number of vertices times (k+1)(k+2)/2 and (k+1)2, respectively, on 2D
triangular grids. For large k, the former is about half of the latter. On 3D tetrahedral grids,
the dimensions of P1×Pk partition of unity finite element space is about the number of
vertices times (k+1)(k+2)(k+3)/6 while that of Pk+1 Lagrange finite element space is
about the number of vertices times (k+1)3. The ratio is about 1/6 for large k. These
ratios become even smaller for the Q1×Pk partition of unity finite element space and
the Qk+1 Lagrange finite element space, on 2D and 3D rectangular grids. We also extend
this method to rectangular/cuboid grids in this paper.

Though the P1×Pk partition of unity finite element space is a proper subspace of
the Pk+1 Lagrange finite element space, we prove both have the same order of conver-
gence in this paper. That is, we show that the P1×Pk partition of unity finite element



Y. Huang and S. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-13 3

solution converges at O(hk+1) in H1-norm and at O(hk+2) in L2-norm when solving
the second order elliptic boundary value problems. We note that on one element the
interpolation does not recover a Pk+1 polynomial, but on a patch of elements a quasi-
interpolation does recover the Pk+1 polynomial at the central element. Because the basis
functions of partition of unity finite element are supported on a larger patch of elements
than that of Lagrange Pk+1 element, the solution from a subspace, the partition of unity
finite element space, could be as accurate as the solution from the whole Pk+1 Lagrange
element space. This theory is confirmed numerically. In addition, observed from nu-
merical tests, when the solution of Pk+1 Lagrange element is superconvergent, so is the
partition of unity finite element solution.

Some influential works on the partition of unity method are [2, 3, 11, 13].

2 The P1×Pk finite element

Let a polygonal or a polyhedral domain be partitioned in to a regular triangular or tetra-
hedral grids Th, of grid size h. The partition of unity P1×Pk finite element spaces are
defined by

Vh=

{

uh= ∑
vi∈Vh,|α|≤k

ci,α(x−vi)
αφi(x)

∣

∣φi∈C0,

φi|K ∈P1(K), φi(vj)=δi,j, ∀vi,vj∈Vh

}

, (2.1)

V
(0)
h ={uh ∈Vh | uh|∂Ω=0}, (2.2)

where K∈Th,Vh is the set of vertices of Th, and α is a 2D, or 3D multi-index. We solve the
following second-order elliptic equation: Find u∈H1(Ω) such that u|∂Ω = g and

a(u,v)=( f ,v), ∀v∈H1
0(Ω), (2.3)

where

a(u,v)=
∫

Ω
(A∇u)·∇vdx, ( f ,v)=

∫

Ω
f vdx,

where A= A(x) is a d×d matrix, uniformly symmetric and positive definite on Ω. The
finite element approximation problem reads: Find uh∈Vh such that uh|∂Ω = Ik+1g and

a(uh,vh)=( f ,vh), ∀vh ∈V
(0)
h , (2.4)

where Ik+1 is the continuous Pk+1 Lagrange interpolation on the boundary of domain Ω.

Remark 2.1. The set of spanning functions, {(x−vi)
αφi(x),vi∈Vh,|α|≤k}, is not linearly

independent, i.e. it does not form a basis for Vh, but a frame for Vh. This can be seen if the
triangulation consists of only one triangle, or one tetrahedron in 3D. In computation, if
using an iterative solver such as the conjugate gradient iteration, one can simply use the
linearly dependent frame (2.1). Otherwise we do an extra Gaussian elimination on the
stiffness matrix to block dependent spanning functions from entering the set of basis.



4 Y. Huang and S. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-13

3 The convergence theory

We will study an overlapping interpolation and show its optimal order of approximation.
The optimal order of convergence of the finite element solution would follow as it is
an optimal projection of the true solution.

We first prove a trivial lemma. Its purpose is to show a Pk+1-preserving map from
R

dimPk+1 to [RdimPk ]d (d=2,3).

Lemma 3.1. On a triangle or tetrahedron K,

span
{

(x−vi)
αφi(x) |vi are vertices of K,|α|≤ k

}

=Pk+1(K). (3.1)

Proof. We prove the case of 3D. Let {vi} be the four vertices of K. Let {λ1,. . .,λ4} be
the barycentric coordinate variables. These are linear functions satisfying λi(vj) = δi,j.
For any polynomial u∈ Pk+1(K), we have a unique expansion under the homogeneous
barycentric polynomials

u= ∑
i1+i2+i3+i4=k+1

ci1i2i3i4 λi1
1 λi2

2 λi3
3 λi4

4 , (3.2)

i.e. the polynomial in barycentric coordinate variables, instead of Cartesian coordinate
variables. We separate u into four functions

u1= ∑
i1+i2+i3+i4=k+1

i1
k+1

ci1i2i3i4 λi1
1 λi2

2 λi3
3 λi4

4 ,

u2= ∑
i1+i2+i3+i4=k+1

i2
k+1

ci1i2i3i4 λi1
1 λi2

2 λi3
3 λi4

4 ,

u3= ∑
i1+i2+i3+i4=k+1

i3
k+1

ci1i2i3i4 λi1
1 λi2

2 λi3
3 λi4

4 ,

u4= ∑
i1+i2+i3+i4=k+1

i4
k+1

ci1i2i3i4 λi1
1 λi2

2 λi3
3 λi4

4 .

(3.3)

We remark that those i1 =0 terms vanish in u1 above. So we can factor out a λ1 from the
sum of u1, assuming λ1(vi)=1, i.e. vi is the first vertex of K,

u1=λ1 ∑
i1+i2+i3+i4=k

c̃i1i2i3i4 λi1
1 λi2

2 λi3
3 λi4

4 =φi(x)pk, (3.4)

where

c̃i1i2i3i4 = c(i1+1)i2i3i4

i1+1

k+1

and pk∈Pk(K). The Pk polynomial in (3.4) has a unique expansion under basis {(x−vi)
α}

which gives
u1=φi(x) ∑

|α|≤k

ci,α(x−vi)
α. (3.5)
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Similarly, u2,u3 and u4 have a unique linear expansion of basis functions at the other
three vertices of K, in (3.1). As

u=u1+u2+u3+u4,

u is in the span.

We define an interpolation operator. Because of the non-local frame functions (x−vi)
α,

similar situations happened also in [5,6,9,14–18], the interpolation operator cannot be lo-
cal (Ihu|K depends on u|K only), but quasi-local, i.e. (Ihu)|K depends on u|ωK

, where ωK is
the union of elements which touch a vertex of K. On a mesh Th, we select sequentially but
randomly some free elements (none of its vertices is a vertex of a selected element) until
no more such an element, see Fig. 1 for an illustration. We attach each of the left-over
such isolated vertices to anyone neighbor selected element. That is, the set of vertices is
separated into disjoint sets

Vh =
ie
⋃

i=1

{V(Ki)}
⋃

[

i0
⋃

i=1

{xi}

]

, (3.6)

where V(Ki) is the set of d vertices of Ki, ie =7 and i0 =3 for the example in Fig. 1.
On each element Ki in (3.6), let uL ∈Pk+1(Ki) be the standard Lagrange interpolation

of u on the element. Using the unique decomposition method (3.2)-(3.5), we get

uL|Ki
=

d+1

∑
j=1

φj(x)pj(x), (3.7)

where {xj} are d+1 vertices of Ki, and pj is a Pk polynomial. For an isolated vertex xi in
(3.6), let xi be the first vertex of element K0 which is or touches the neighbor element Ki

of xi. As the interpolation has been determined at the other d vertices of K0 by (3.7), let
p1∈Pk(K) be anyone Lagrange interpolation (with no node on face φ1=0) of

p1(x)= Ik

(

φ−1
1

(

u(x)−
d+1

∑
m=2

φm(x)pm(x)

))

. (3.8)
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Figure 1: Selecting interpolating triangles (without mutual vertices) and three left-over nodes.
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We note that if u is a one-piece Pk+1 polynomial on a large patch which covers K0 and all
those d pm’s Ki, then the function φ−1

1 (u(x)−∑
d+1
m=2φm(x)pm(x)) itself is a Pk polynomial.

By (3.6)-(3.8), the interpolation is defined as

(Ihu)(x)= ∑
xi∈Vh

φi(x)pi(x)∈Vh. (3.9)

Theorem 3.1. Let u∈Hk+2(Ω) and Ihu be defined in (3.9). Then

1

∑
i=0

hi‖u− Ihu‖i ≤Chk+2|u|k+2. (3.10)

Proof. As the interpolation is determined by u on a large region ωK which includes all
elements (which determine the (d+1)-pi(x)) and elements in between, by the standard
technique, cf. [12], we have the following interpolation stability:

|Ihu|H1(K)≤C|u|H1(ωK)
,

where C is independent of h as both regions are of size Ch. Further, if u is a one-piece
Pk+1 polynomial on whole ωK (including those K having an left-over vertex in (3.6)),

(Ihu)|K =u|K.

By the above stability, the above polynomial preserving property, and the finite overlap-
ping, following the standard argument [12], i.e. choosing an averaging Taylor polynomial
pK ∈Pk+1(ωK) for each K∈Th, we have

|u− Ihu|21= ∑
K∈Th

|u− Ihu|2H1(K)

≤2 ∑
K∈Th

|u−pK|
2
H1(K)+|Ih(pK−u)|2H1(K)

≤C ∑
K∈Th

|u−pK|
2
H1(ωK)

≤C ∑
K∈Th

h2k+2|u|2Hk+2(ωK)

=Ch2k+2|u|2Hk+2(Ω).

Similarly, cf. [12], we prove the L2 error estimate.

Theorem 3.2. Let u and uh be the exact solution of PDE (2.3) and the finite element solution of
(2.4), respectively. Assuming the full regularity assumption (3.11) and u∈Hk+2(Ω), we have

‖u−uh‖0+h|u−uh|1≤Chk+2|u|k+2.

Proof. Noting the finite element solution uh is the orthogonal projection of u in the inner-
product a(·,·), we have

|u−uh|
2
1≤Ca(u−uh,u−uh)≤Ca(u− Ihu,u− Ihu)

≤C|u− Ihu|21≤Ch2k+2|u|2k+2.
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By the standard duality argument, cf. [4], we prove the L2 error estimate next. Let w solve
the equation

a(w,v)=(u−uh,v), ∀v∈H1
0(Ω),

and satisfy
‖w‖2 ≤C‖u−uh‖0. (3.11)

Then we have

‖u−uh‖
2
0= a(w,u−uh)= a(w−wh,u−uh)

≤|w−wh|1|u−uh|1≤Ch|w|2hk+1|u|k+2

≤Chk+2|u|k+2‖u−uh‖0.

Canceling one ‖u−uh‖0 on each side above, we obtain the L2 estimate.

4 The partition of unity method on rectangular and cuboid grids

Let domain Ω be partitioned into a rectangles/cuboids, noted as a set Th. The standard Q1

finite element space is defined by

V
(0)
h =

{

uh= ∑
vi∈Vh

ciφi(x)
∣

∣φi∈C0,φi|K ∈Q1(K),

φi(vj)=δi,j for all vertices vi and vj,uh|∂Ω=0

}

,

where K∈Th, and Vh is the set of vertices of Th. We define Q1×Pk partition of unity finite
element space by

Vh=

{

uh = ∑
vi∈Vh,|α|≤k

ci,α(x−vi)
αφi(x)

∣

∣φi∈C0,φi|K ∈Q1(K),

φi(vj)=δi,j for all vertices vi and vj,uh|∂Ω =0

}

, (4.1)

where α is a 2D, or 3D multi-index.
For less notations, we do the analysis in 2D only. To define an interpolation operator,

we first select rectangles as before, cf. Fig. 2,

Vh =∪ie
i=1V(Ki). (4.2)

On K1, let the standard Ihu be expressed as

Ihu=∑
i,j

ci,jφi,j,
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1 2 3

4 5 6

Figure 2: Selecting interpolating rectangles (no shared vertex).

where φi,j be the Qk+1 basis functions, i.e. on [0,1]2,

φi,j= ∏
0≤i1≤k+1,

i1 6=i

∏
0≤j1≤k+1,

j1 6=j

x−i1/(k+1)

(i−i1)/(k+1)
·

y− j1/(k+1)

(j− j1)/(k+1)
.

Consider the decomposition,

u1=∑
i,j

ci,j
k+1−i

k+1

k+1− j

k+1
φi,j, u2=∑

i,j

ci,j
i

k+1

k+1− j

k+1
φi,j,

u3=∑
i,j

ci,j
i

k+1

j

k+1
φi,j, u4=∑

i,j

ci,j
k+1−i

k+1

j

k+1
φi,j.

Then we obtain a unique expansion of Ihu on K1 as

Ihu=
4

∑
i=1

pi(x)φi(x).

Repeating on all ie elements in (4.2), we define all pi(x) at all nodes, and we define

Ihu= ∑
xi∈Vh

pi(x)φi(x). (4.3)

We repeat the proof in last section to get the following theorems.

Theorem 4.1. Let u∈Hk+2(Ω) and Ih be defined (4.3). Then

1

∑
i=0

hi‖u− Ihu‖i ≤Chk+2|u|k+2.

Theorem 4.2. Let u and uh be the exact solution of PDE (2.3) and the Q1×Pk finite element solu-
tion of (2.4) with Vh being defined in (4.1), respectively. Assuming the full regularity assumption
(3.11), we have

‖u−uh‖0+h|u−uh|1≤Chk+2|u|k+2.
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5 Numerical test

We present three numerical examples, computed on triangular grids in 2D, on square
grids in 2D, and on tetrahedral grids in 3D.

5.1 Example 1. 2D triangular grids

We solve the Poisson equation with homogeneous Dirichlet boundary condition on the
unit square Ω=(0,1)×(0,1), where the exact solution is

u=sin(πx)sin(πy). (5.1)

The grids for the computation are displayed in Fig. 3. In the Tables 1-4, we list the con-
vergence history of the P1×Pk partition of unity solution, in comparison with that of Pk+1

Lagrange finite element solution, where Ĩh is the nodal interpolation operator to the space
of C0-Pk+1 finite elements. The error this way indicates superconvergence, for example,
for the P1×P1 finite element solution. The numerical order of convergence confirms the
theory.
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Figure 3: The first three levels of grids used in Example 1.

Table 1: The error and the numerical order of convergence (one-order superconvergent) for (5.1) (with k= 1)
on grids shown Fig. 3.

Grid
By triangular P1×P1 partition of unity FE

‖uh− Ĩhu‖L2 hn |uh− Ĩhu|H1 hn dimVh

6 0.5248e-06 4.0 0.4543e-04 3.0 3267

7 0.3283e-07 4.0 0.5676e-05 3.0 12675

8 0.2053e-08 4.0 0.7094e-06 3.0 49923

9 0.1283e-09 4.0 0.8867e-07 3.0 198147

Grid
By triangular P2 Lagrange finite element

‖ũh− Ĩhu‖L2 hn |ũh− Ĩhu|H1 hn dimṼh,2

6 0.5481e-06 4.0 0.5806e-04 3.0 4225

7 0.3436e-07 4.0 0.7320e-05 3.0 16641

8 0.2150e-08 4.0 0.9187e-06 3.0 66049

9 0.1347e-09 4.0 0.1151e-06 3.0 263169
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Table 2: The error and the numerical order of convergence for (5.1) (with k=2) on grids shown Fig. 3.

Grid
By triangular P1×P2 partition of unity FE

‖uh− Ĩhu‖L2 hn |uh− Ĩhu|H1 hn dimVh

5 0.6348e-06 4.1 0.6844e-04 3.0 1734

6 0.3913e-07 4.0 0.8504e-05 3.0 6534

7 0.2435e-08 4.0 0.1061e-05 3.0 25350

8 0.1520e-09 4.0 0.1326e-06 3.0 99846

Grid
By triangular P3 Lagrange finite element

‖ũh− Ĩhu‖L2 hn |ũh− Ĩhu|H1 hn dimṼh,3

5 0.1343e-05 4.1 0.2061e-03 3.1 2401

6 0.8325e-07 4.1 0.2569e-04 3.0 9409

7 0.5180e-08 4.0 0.3205e-05 3.0 37249

8 0.3229e-09 4.0 0.4003e-06 3.0 148225

Table 3: The error and the numerical order of convergence for (5.1) (with k=3) on grids shown Fig. 3.

Grid
By triangular P1×P3 partition of unity FE

‖uh− Ĩhu‖L2 hn |uh− Ĩhu|H1 hn dimVh

3 0.2261e-04 5.3 0.8161e-03 4.5 250

4 0.6963e-06 5.0 0.4743e-04 4.1 810

5 0.2171e-07 5.0 0.2911e-05 4.0 2890

6 0.6778e-09 5.0 0.1811e-06 4.0 10890

Grid
By triangular P4 Lagrange finite element

‖ũh− Ĩhu‖L2 hn |ũh− Ĩhu|H1 hn dimṼh,4

3 0.2455e-04 5.4 0.1135e-02 4.3 289

4 0.7786e-06 5.2 0.7157e-04 4.2 1089

5 0.2444e-07 5.1 0.4480e-05 4.1 4225

6 0.7644e-09 5.1 0.2800e-06 4.0 16641

Table 4: The error and the numerical order of convergence for (5.1) (with k=4) on grids shown Fig. 3.

Grid
By triangular P1×P4 partition of unity FE

‖uh− Ĩhu‖L2 hn |uh− Ĩhu|L2 hn dimVh

3 0.2340e-05 5.7 0.1157e-03 4.7 375

4 0.3173e-07 6.2 0.3351e-05 5.1 1215

5 0.4508e-09 6.1 0.1017e-06 5.0 4335
6 0.6917e-11 6.0 0.3199e-08 5.0 16335

Grid
By triangular P5 Lagrange finite element

‖ũh− Ĩhu‖L2 hn |ũh− Ĩhu|H1 hn dimṼh,5

3 0.1492e-05 6.3 0.8012e-04 5.3 441
4 0.2362e-07 6.2 0.2495e-05 5.2 1681

5 0.3691e-09 6.1 0.7770e-07 5.1 6561
6 0.5673e-11 6.1 0.2452e-08 5.0 25921
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5.2 Example 2. 2D square grids

We solve the Poisson equation with homogeneous Dirichlet boundary condition on the
unit square Ω= (0,1)×(0,1), where the exact solution is defined in (5.1). The grids for
the computation are displayed in Fig. 4. In Table 5, we list the convergence history of
the Q1×Pk partition of unity solution. We do not have an explicit proof for the Q1×Pk

partition of unity method on square grids. But it could be similar to that of P1×Pk. The
numerical order of convergence confirms this. It is interesting to note that the proof for
Q1×Qk elements can be very similar to the proof here. But the method is deteriorated to
the standard Qk+1 method, in 2D and 3D, and in 1D (proved in [7]).

Figure 4: The first three levels of grids used in Example 2.

Table 5: The error and the order of convergence for (5.1), on 2D rectangular grids, where Ĩh is the Qk+1
Lagrange interpolation.

Grid
‖uh− Ĩhu‖L2 hn |uh− Ĩhu|H1 hn

By square Q1×P1 partition of unity FE

5 0.4823e-04 3.2 0.2684e-02 2.1

6 0.6034e-05 3.1 0.6696e-03 2.1

7 0.7544e-06 3.0 0.1673e-03 2.0

By square Q1×P2 partition of unity FE

4 0.1051e-04 4.4 0.6560e-03 3.3

5 0.6538e-06 4.2 0.8118e-04 3.1

6 0.4082e-07 4.1 0.1012e-04 3.1

By square Q1×P3 partition of unity FE

3 0.9326e-05 5.9 0.4381e-03 4.8

4 0.2756e-06 5.4 0.2593e-04 4.4

5 0.8451e-08 5.2 0.1597e-05 4.2

By square Q1×P4 partition of unity FE

1 0.2079e-02 0.3576e-01

2 0.3137e-04 7.4 0.9976e-03 6.3

3 0.3957e-06 7.0 0.2660e-04 5.8
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5.3 Example 3. 3D tetrahedral grids

We solve the Poisson equation with homogeneous Dirichlet boundary condition on the
unit cube Ω=(0,1)×(0,1)×(0,1), where the exact solution is defined by

u(x,y,z)=sin(πx)sin(πy)sin(πz). (5.2)

The grids for the computation are displayed in Fig. 5. In Table 6, we list the convergence
history of the P1×Pk partition of unity solution. The numerical order of convergence
confirms the theory. We note that, as for the P2 Lagrange finite element, we also have one
order of superconvergence for the tetrahedral P1×P1 partition of unity finite element.
Such a superconvergence phenomenon is not analyzed in this manuscript.
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Figure 5: The first three levels of grids used in Example 3.

Table 6: The error and the order of convergence for (5.2), on 3D tetrahedral grids show in Fig. 5, where Ĩh is
the Pk+1 Lagrange interpolation.

Grid
‖uh− Ĩhu‖L2 hn |uh− Ĩhu|H1 hn

By tetrahedral P1×P1 partition of unity FE

4 0.0002734 3.4 0.0063318 2.8

5 0.0000191 3.8 0.0008149 3.0

6 0.0000012 4.0 0.0001033 3.0

By tetrahedral P1×P2 partition of unity FE

3 0.0003270 4.2 0.0106771 3.0

4 0.0000235 3.8 0.0015859 2.8

5 0.0000016 3.9 0.0002124 2.9

By tetrahedral P1×P3 partition of unity FE

2 0.0015049 3.2 0.0307538 2.9

3 0.0000531 4.8 0.0021201 3.9

4 0.0000017 5.0 0.0001198 4.1
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[10] J. M. Melenk and I. Babuška, The partition of unity finite element method: Basic theory and
applications, Comput. Methods Appl. Mech. Eng., 139(1-4):289–314, 1996.

[11] J. M. Melenk and I. Babuška, Approximation with harmonic and generalized harmonic polyno-
mials in the partition of unity method, Comput. Assist. Mech. Eng. Sci., 4:607–632, 1997.

[12] L. R. Scott and S. Zhang, Finite-element interpolation of non-smooth functions satisfying bound-
ary conditions, Math. Comp., 54:483–493, 1990.
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