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Abstract. In this paper we consider (hierarchical, Lagrange) reduced basis approxi-
mation and a posteriorierror estimation for potential ows in af nely parametrize d
geometries. We review the essential ingredients: i) a Galerkin projection onto a low-
dimensional space associated with a smooth “parametric man ifold” in order to get a
dimension reduction; ii) an ef cient and effective greedy s ampling method for identi -
cation of optimal and numerically stable approximationsto have a rapid convergence;
iii) an a posteriorerror estimation procedure: rigorous and sharp bounds fort he linear-
functional outputs of interest and over the potential solut ion or related quantities of
interest like velocity and/or pressure; iv) an Of ine-Onli  ne computational decompo-
sition strategies to achieve a minimum marginal computational co$or high performance
in the real-time and many-query (e.g., design and optimizat ion) contexts. We present
three illustrative results for inviscid potential ows inp  arametrized geometries repre-
senting a Venturi channel, a circular bend and an added mass problem.
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1 Introduction and motivation

A great number of engineering problems require the solution of partial differential equa-
tions (PDEs) for many different con gurations of the system. Even the computational
costs for the solution of relatively simple parametrized pr oblems may be very high and
may remain unaffordable — although the computational power has increased consider-
ably in the past few years. This makes necessary to develop techniques which are able
to reduce the complexity of the system without a loss of infor mation or accuracy of the
results. The reduced basis method is a promising approach to |l this gap as it allows not
only a rapid and ef cient, but also a reliablesolution of partial differential equations.

1.1 The input-output relation

In many applications, the main goal is not only the solution o fthe PDEs for the eld vari-
ables but the evaluation of input-output relationships Here, the output is expressed as a
functional of the eld variables and can be for example an aver age quantity in the do-
main, an added mass or even a pointwise velocity and/or press ure. The input-parameter
vector identi es a particular con guration of the system. Usu ally, this includes geomet-
ric variations, but also physical properties as well as boun dary/initial conditions and
sources. The eld variable(as solution of the PDES) connects the input parameters and the
outputs of interest.

1.2 The many-query and real-time contexts

The reduced basis method allows us to reduce the online computational time (both of
the eld solution and of the outputs of interest) notably. Thi s advantage is gained by
additional of ine effort. Therefore, the methodology presented in this work i s suited par-
ticularly for problems arising in the real-time contexbr in the many-query contextFor both
these problem classes, the online performance is extremelyimportant while increased
of ine effort is less critical and both are very challenging to the conventional solution



G. Rozza / Commun. Comput. Phys., 9(2011), pp. 1-48 3

methods. The real-time context arises e.g. for control engineering and in parameter esti-
mation problems in a wide range of applications. Examples fo r the many-query context
are the multi-model/multi-scale simulation or design opti mization. Here the online per-
formance is critical because the solution of a huge number of problems — up to the tens
of thousands input-output relations — is necessary, making the additional of ine effort
affordable.

It is important to note that the reduced basis (RB) method can not replace “classical’
numerical techniques such as the nite element (FE) method. T his is due to two reasons.
First, the application of the RB method to problems which req uire the solution only for
one or a few con gurations would be inef cient. The reduced onl ine complexity would
not balance the of ine effort needed for the application oft he RB method compared to the
FE method (or other solution methods). In addition, the RB me thod is not an independent
method, since it has to be built upon another method for the so lution of the particular
problem. In fact, the RB method tries to approximate the solu tion of the system that
would be obtained by applying the given underlying solution  method to the problem,
and not the exact solution. In this work, we will consider a ni te element discretization
as underlying solution method but also other methods (e.g. n ite volume or spectral
methods) would be possible. See for example [11, 19], applying RB method upon nite
volume and spectral methods, respectively.

1.3 Reduced basis background

A brief introduction to the RB background and the most recent developments of the re-
duced basis method shall be given here. For a more detailed presentation see [49].

The reduced basis method for single parameter problems was r st introduced in the
late 1970s by Almroth, Stern and Brogan in the domain of nonli near structural analy-
sis [1]. The method has been developed further by Noor in the f ollowing years [27—34]
and extended to multiparameter problems. A rst a priori error analysis for single pa-
rameter problems has been carried out by Fink and Rheinboldt [8,9]. Further work fo-
cused on a priori error analysis and on different approximation spaces has be en done by
Porsching [39]. In the 1990s, this topic has been investigagd again by Rheinbolt [45]
and by Barrett and Reddien [4]. At that time the RB method has b een applied to dif-
ferent classes of problems: viscous uid ow and Navier Stok es equations [38], uid
control problems [14-17], ordinary differential equation s [40] and differential algebraic
equations [18]. These early methods were typically rather | ocal and low-dimensional in
parameter. In [3], Balmes rst applied RB methods to general m ulti-parameter problems.

Only recently, the need for reliable a posteriorierror estimators has led to a number
of works on this topic [20-22, 41, 46,52, 54]. Much effort is devoted to effective sampling
strategies for global approximation spaces also for higher dimensional parameter do-
mains [6,26,47]. In the past few years, this methodology has been applied to a wide range
of problems including elliptic as well as parabolic and simp le hyperbolic problems. Prob-
lems came from the eld of elasticity, quantum mechanics/che mistry, acoustics, fracture
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problems, homogenization, Boltzmann models, environment al engineering and inverse
problems (for actual works on these topics refer to [2]). Oth er applications are in uid
ows (e.g. [48, 50, 53]) and in optimization and optimal cont rol (e.g. [10, 35,42, 48]). Two
recent publications give a very comprehensive summary of th e methodology developed
so far for coercive elliptic PDEs with af ne parameter depend ence [37,49].

1.4 Reduced basis method for potential ows

In this paper we will introduce the theory of the reduced basi s (RB) method for potential
ows in parametrized domains with special error bounds onve locity and pressure. After
a short summary of the historical background and recent deve lopments related with the
RB method, we will review in Sections 2-3 the relevant steps for the generation of the
rapidly convergent global RB approximation spaces and the a pproximation of the solu-
tion for parametrized coercive elliptic PDEs with af ne para meter dependence, which
enables an ef cient of ine-online decomposition. A posteriorierror estimators and lower
bounds for the coercivity constant will play an important ro le in this process (Sections
4-5). Finally, the geometric parametrizations used in this work (Sections 6-8) and their
application in the RB context will be presented by three pote ntial ow examples (Sec-

tions 10-12).

2 Problem de nition

In this section, we will review the abstract formulation for coercive elliptic PDEs with
af ne parameter dependence. The methodology of the RB method for potential ows
described further in this work will apply to this wide class o  f problems.

2.1 Exact statement

We consider a suitably regular (smooth) domain W R? with Lipschitz-continuous bound-
ary fW. X¢©is an associated (in nite dimensional) Hilbert space satisf ying (H3(W))"
Xe  (H(W))", where nis the dimension of the problem (scalar if n= 1, vectorial if n> 1).
Here,

HY (W)= fv2 L2(W)jr v2 (L3 (W))%g,  Hg(W)= fv2 H'(W)jvjqw= 0g,

R
and L?(W) = fv measurable | sz nite g. The inner product and norm associated with
X€are given by (, )xeand k kxe=( )i’ez , respectively. Additionally, we de ne an input
parameter domain D RP. The superscript © refers to “exact”, where the “exact” problem

is: for any given parameter m2D  RP, evaluate the scalar output of interest

s (my = 1(u(m),
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where the eld variable u®(m 2 X€ satis es
a(ué(m,v;m= f(v), 8v2 X©, (2.1)

We assume that the form a( , ;m) : X® X©&! R is bilinear, coercive and continuous, and
[():X® R isabounded linear functional. If 1= f, we say that our problem is “compliant”.

2.2 “Truth” nite element approximation

We proceed now to the nite element approximation of (2.1) (se e e.g. [7,43]). We replace
Xewith XNt X®which is a sequence of (conforming) “truth” nite elementapp roxima-
tion spaces of nite but large dimension N;. The “truth” nite element approximation is:

for any given parameter m2D RP, evaluate

sht(m= 1(uM(m),

where uNt(m) satis es
auNt(m),v;m= f(v), 8v2XxN, (2.2)

Our “truth” FE approximation  uNt(m) 2 XNt to u®(n) is thus de ned as the Galerkin pro-
jection of ué(m onto XNt. The nite element discretization shall be assumed to be suf -
ciently rich such that uNt(m) and sNt(m) are suf ciently close to u®(m) resp. s*(m) — this
is the reason why we call it “truth” approximation. The RB eld  solution and RB output
shall approximate this “truth” nite element eld solution uNt(m) and output sNt(nm) and
not the “exact” solutions u®(m) and s°(m). The reduced basis error will thus be evaluated
with respect to the “truth” nite element solutions. Our meth  od remains computation-
ally stable and ef cientas N;! ¥ . We will de ne two different inner products and norms
for members of XNt inherited from X®©. First, an energy inner product and energy norm
de ned respectively as (w,v)m a(w,v;m), 8w,v2 X€and kwkn, (w,w)}n/2 , 8w2 XE

Second, theXNt (resp. X¢) inner product and norm, are de ned as follows: for given
m2D and (non-negative) real t ,

(WV)x (W, V) m+ t(W,V) 2, Bw,v2 X®

R
and kwkyx  (w,w)}?,8w2 X& The L2-normis de nedas (W,v) 2w WV

2.3 Well posedness
We de ne our exact and FE coercivity constants as

a(m= inf ZWWM Ny =y AWM (2.3)

w2xe kwkg w2xM kwkZ
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As we assumed that our bilinear form is coercive and our FE app roximation spaces are
conforming, it follows that aNt(m) a®(m) ap> 0,8m2D. The continuity constants are
de ned similarly as

a(w,v;m

a(w,v;m
e —_
g*(m= sup sup KWk KVKx

, 2.4
W2 Xey2 Xe kax kaX ( )

N -
g ' (m= sup sup
w2 XNt y2 X Nt

It is clear from our continuity and conforming hypothesesth atgNt((m) g®(m) go< ¥,
8m2D . If the bilinear form aful lls these requirements of coercivity and continuity and
if the linear form f is bounded, the system (2.1) has a unique solution.

2.4 Afne parameter dependence

We also make an important assumption on the nature of the para metric dependence of
the problem. In particular, we suppose that the parametric b ilinear form ais “af ne” in
the parameter m this means that it can be expressed as

Qa
alw,v;m= § Qamai(w,v), 8w,v2XxN 8m2D, (2.5)
=1

where Q, should be a nite and preferably small integer. The functions Qa(m):D! R
depend on mand are typically very smooth, while the bilinear forms a3(, ):X¢ X® R
are mindependent X®-continuous bilinear forms. The linear form f may also depend
af nely on the parameter and can in this case be expressed as a aim of QF produces of
parameter-dependent functions and parameter-independen t X®-bounded linear forms.
The assumption of af ne parameter dependence is crucial for t he computational per-
formance of our method as it allows an ef cient of ine-online  decomposition of the rel-
evant computational procedures. In fact, this assumption i s not too restrictive as there
exist many applications with both geometric and property va riations which exhibit an
af ne dependence on the parameter. Some examples are shown with numerical results.

3 Reduced basis approximation

Sections 3-5 contain a review on RB methodology recalling the main features at the state
of the art (a priori convergence, a posteriori error bounds a nd adaptive procedures for
basis assembling). The expert reader may go directly to Secton 6 for more details on ge-
ometrical parametrizations or to Sections 7-8 for original elements dealing with potential
ows and their applications.

The parametric real-time and many-query settings introduc ed before represent two
different computational opportunities. The rst opportuni ty is the fact that in the para-
metric setting our attention can be restricted to a typicall y smooth and rather low-dimen-
sional parametrically induced manifold, which is much smal ler than the unnecessarily
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rich generic approximation spaces of e.g. the FE method. The second opportunity is —

as mentioned before — that an increased of ine time can be accepted in these contexts
if the online evaluation time of the input-output relation i s reduced considerably in ex-
change. In the following, we will describe the main steps of t he reduced basis method
with a special attention to these two opportunities.

3.1 Manifold of solutions

As noted above, the eld variable u®(m) is not an arbitrary member of the in nite-dimen-
sional solution space X¢€ associated with the underlying partial differential equat ion.
In fact, it resides on a much lower-dimensional and typicall y smooth manifold M
fu®(mjm2 Dg induced by the parametric dependence. For example, in the case of a
single parameter m2D  RP=1 u®(m describes a one-dimensional lament that winds
through X€. This situation is depicted in Fig. 1. Thus, the possible solutions u¢(m do not
cover the entire space X €, which means that this space is too general as it can represert a
much wider range of functions.

M = Ue L ED uNt(;uch: e
e by | M = {(u ()i € D)

u™N ()

X° Xe
@ (b)

Figure 1: (a) Low-dimensional manifold on which the eld varidle resides and (b) approximation of a new
solution at myew with the \snapshots" uNt(m]),l n N.

The “truth” nite element approximation space XMt is constructed to approximate
all members of X€. It is therefore still much too general as it includes many fu nctions
which do not reside on the manifold of interest M. To approximate uNt(m) by an adjusted
method, it is suf cient to be able to approximate all function s which lie on M while it
iSs not necessary to represent every single function in XNt. If we exploit this observation
and restrict our attention and adjusted approximation spac e to the parameter-induced
low-dimensional solution manifold, we can effect substant ial dimension reduction and
considerable computational economies.

The basic idea is to construct a special approximation space for the manifold M by
using the pre-computed solutions uMNt(m,) atN N, selected pointsm, along M, as shown
in Fig. 1. The solution uN(mheyw) at a newly chosen point mhey can then be approximated
by taking an appropriate linear combination of the sample po ints uNt(m,), 1 n N,
which means by a projection onto the adjusted approximation space.
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3.2 RB spaces

The starting point is the FE approximation space of dimensio n N¢, XNt. We then want
to construct an associated sequence of hierarchical approxmation spaces with maximum
dimension Npmax, Xm‘, N=1, ,Nmax.- Each ofthese spaces is amN-dimensional subspace
of Xt. Hierarchical means that the spaces are such thatX}'t = X XN XN this
quality will play an important role for computational and me  mory ef ciency.

In this work, we will only use Lagrange reduced basis spaces [ 39]. It is possible to
work with Taylor [31, 39] and Hermite [15] spaces as well and m uch of the methodology
does not change for these spaces. We rst introduce — for given N2f 1, ,Nmaxg—a
set of nested samples in parameter space,

Sv=fm2D, ,m2Dg, 1 N Nmax (3.1)

suchthat S, SN S, (the parameter samples are nested). The associated Lagrang
RB approximation spaces are then given as

wpt=spanfuM(m), 1 n Ng 1 N Npa, (3.2)

where uNt(m,) 2 XNt is the solution to (2.2) for m= m,. By construction, the Langrange RB
spaces are hierarchical:

Wt Wt wyt o xNe

N max

The u,'}" =uN(m),1 n Npax are often called “snapshots” or, more precisely, “retained

shapshots” of the parametric manifold M. The next question we have to address is how
we can choose a good combination of the retained snapshots toapproximate the solution

for a new parameter value and how we can build a stable RB basis out of the retained
snapshots.

3.3 Galerkin projection

Given our hypotheses on aand f, a Galerkin projection gives the reduced basis approxi-
mation un'(m): forany m2D, uN'(m) 2 W' satis es

a(ul'(m,v;m= f(v),  8v2XJ\. (3.3)

We then evaluate

s\ (M) = 1(uy'(m). (3.4)
In theory, we can choose as Lagrange sample points (3.1) any &t of parameter values that
induce a linearly independent set of retained snapshots (3.2). However, the snapshots
will become more and more colinear as N increases because of the rapid convergence of
the Lagrange space: if\NN'\It is already able to approximate well any member of M, thenthe
next snapshot um‘+ 1(m will be “almost” linearly dependent of the members of the “ol  d”
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spaceW',\I\". The direct choice of the retained snapshots as basis functons would therefore
lead to a very poorly conditioned equation system for the sol ution of (3.3). To create a
well-conditioned set of basis functions, we will therefore apply the Gram-Schmidt pro-
cessinthe( , )x inner product to our set of snapshots u“‘(m]), 1 n Npmax. This process
will return a mutually orthogonal set of basis functions z,’}‘t, 1 n Npmax Which we can
choose as our bases for\NNNt (resp. X“t). These basis functions will ful Il the orthonor-
mality condition

(2N, zNYx=dvme 1 nm  Npax, (3.5)

where d, m, is the Kronecker-delta symbol. This orthogonality conditio n is necessary to
ensure a well-conditioned reduced basis algebraic system. The orthonormalization pro-
cess is given as follows [37]:

Nt — Nt Ny, .
z,'= up'l Kuy'ky;

for n= 2:Nmax

n 1
Nt — N o Nt 5N Ni.
Znt_ unt a (untazmt)Xtha (3-6)
m=1
zNe= 2Nt kztky ;
end.

The discrete equations associated to the Galerkin system (33) are then constructed by
inserting the expansion of um‘(m) in the basis functions

N
un (m= & ugi(mzy (3.7)
m=1

and v=z)', 1 n N into (3.3). The equation obtained is the reduced basis stiffness
equation for the reduced basis coef cients uy',(m),1 m N:

N
& a(zy.zismuy,(m= f(z)), 1 n N. (3.8)

m=1

The reduced basis output prediction can then be evaluated as
N S N N
sv'(M= a uyn(mi(zy). (3.9)
m=1

As shown in [37], the condition number of the matrix a(zr'}'f,z,'}";nb, 1 n,m N,isinde-
pendent of N and N; and bounded by g&m)/ a®(nm).
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3.4 Ofine-online procedure

System (3.8) has normally a very small size (and a full structure) compared to the sys-
tem that arises from standard FE discretization of (2.2), since it consists of a set of N
linear algebraic equations in N unknowns, while the FE discretization would lead to a
setof Ny N equationsin N; N unknowns. Nevertheless, the elements of WNNt, the
basis functions z\t, 1 n N, are associated with the underlying FE space and thus N;-
dependent. This makes the formation of the stiffness matrix and the load vector for our
RB system (3.8), for every new value of mN;-dependent, even though the solution of this
system is not. To eliminate this N¢-dependency, which would lead to a very poor online
performance, we construct a very ef cient of ine-online pro cedure. This procedure is
based on the af ne parameter dependence, as we now discuss. Equation (2.5) allows us
to express our system (3.8) as
I

a

N Q
a a Qimai(zh,z) uy,(m=f(z), 1 n N. (3.10)
m=1 g=1

If f is also af nely dependent on the parameter m the right hand side of this equation
can be expanded in a similar sum of Q; af ne terms, but in the following discussion we
will assume that f does not depend on m We see that the terms dependent on thez\t are
now separated of those dependent on the parameter. Therefore we can precompute all
terms independent of the parameter in the of ine stage and th us the operation count for
the online computations is independent of N;.

In the of ine stage— performed only once —we rstcomputethe uMNt(m,),1 n  Npmax
and formthe zN', 1 n  Npmax. After that,

f(zN), 1 n  Npax (3.11)

and
a(zN,zNy, 1 nm Npax, 1 g Qa (3.12)

can be computed and stored. This requires O(QaN?2,,N;) operations and O(QaN2.y)
storage. In the online stage— performed many times, for each new value of m— we use
the precomputed matrices (3.12) to assemble the (full) N N stiffness matrix

O

alQq(m)aq(z,'}'{,zr'}"), 1 nm N. (3.13)
1

T Qo

We then solve the resulting system (3.10) to obtain the um‘m(m), 1 m N and evaluate the
output approximation (3.9). The operation count for the onl ine stage is then O(Q4N?) to
assemble (3.12),0(N3) to invert the full stiffness matrix and O(N) to evaluate the in-
ner product for the output computation. Thanks to the hierar chical condition, the online
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storage is only O(QaN2,,)+ O(Nmax), as for any given N the necessary RBN N matri-
ces may be extracted of the corresponding “maximum” Nmax Nmax System. The crucial
pointis that our online computational costs are dependento n Qzand N, but independent
of N;. SinceN  N¢, we can expect signi cant (orders of magnitude) speedup inth e online
stage compared to the pure FE approach. This implies also that we may choose N; very
large in order to eliminate the error between the exact solut ion and the FE predictions
without affecting the reduced basis online ef ciency. In fac t, the bigger the underlying
FE system and thus N; is chosen, the bigger the speedup by the use of the RB method in
the online stage will be. However, we should keep in mind that the of ine phase is still
N¢-dependent.

3.5 Sampling strategy: A “greedy” algorithm

The question we deal with in this section is how to choose the s ample points m,, 1 n N
foragiven N in an optimal way, such that the accuracy of the resulting RB a pproximation
is maximized. The key ingredient is a rigorous, sharp and ine xpensive a posteriori error
bound Dm‘(m) (de ned later in (4.8)-(4.9)) such that

kuMi(m) uy'(Mkx  DRY(M (3.14)

for all m2 D and for all N. The properties of sharpness and rigor can be quanti ed by
introducing the effectivity

N
Dy'(m
kuNe(m) - Uyt (mkx
Rigor means that we require that DH‘(H) is never less than the true error. Sharpness

means that we require that Dm‘(m) is not too much larger than the true error. To put this
into one equation, D' () must ful I

hNt(m) (3.15)

1 h“t(rr) hmax, UB» 8m2D ’ 1 N Nmax,

where hnax us is nite (preferably close to 1) and independent of N. The computation
of the error bound is “inexpensive” if we can compute m! DH‘(H) extremely fast, which
implies that in the limit of many evaluations the marginal co st is independent of N;. We
discuss the construction and properties of such an error estimate in detail in Section 4. We
will now proceed to the “greedy” procedure which makes use of this a posteriori error
estimate to construct hierarchical Lagrange RB approximation spaces.

We are given Npmax, Which can be set either directly or through a prescribed err or
tolerance gy, and a training sample Xgain D (@ discrete set representing a very ne
sample of Nyain = jXirain] POINts in the parameter domain). This “training” sample sha I
serve as surrogate for D in the subsequent generation of the reduced basis space and
the choice of nygin and Xyain has therefore important of ine and online computational
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implications. We then choose at random my 2 Xy4in , the rst sample point to be added to
the Lagrange parameter samplesS; = f mg, and set

WthGreedy = spanf uM(m)g.

The algorithm proceeds as follows:
for N=2:Nmax
— DNt .
my = arg max Dy (M

ex 1= D' ((my);

if env 1 €

Nmax= N 1; (3.16)
end;
S“‘= Sn o1l MmN,

N;Greedy _ N;Greedy N
Wy W'+ spanfu™t(my)g

end.

Hence, the greedy algorithm chooses in each iteration N that particular candidate snap-
shot (over all candidate snapshots uNt(n), m2 Xgain) which is worst well approximated

by the projection on the “old” RB space W\ '%**" and appends it to the retained snap-
shots. The most crucial point of this strategy is that the err or is not measured by the
(very expensive) “true” error  kuNt(m) um‘(n) kx but by the inexpensive a posteriori er-
ror bound DH‘(m). In doing so we need to compute only the Npax (typically very few)

FE retained snapshots! This permits us to perform of ine a very exhaustive search fo r
the best sample with ng4in very large and thus get most rapidly uniformly convergent

spacesW'N\"Greedy. Online, we can exploit the low marginal cost of the error est imate and

the hierarchical condition of the WNN‘Greedy, 1 N Npax to determine the smallest N (the
most ef cient approximation) for which we rigorously achiev e the desired accuracy.

3.6 Convergence analysis

We will now re-state some theoretical evidence that the redu ced basis approximation in-
deed converges to the FE approximation, if a good low-dimens ional approximation space
exists and consequently a good Lagrange RB approximation space can be constructed by
the greedy algorithm. In addition, results shall be present ed that con rm the existence
of suited RB approximation spaces and provide upper bounds f or convergence rates in
terms of the given data for the problem.

TThis is contrary to the proper orthogonal decomposition (PO D) approach, where we have to compute the FE
solutions for all members of Xyain as we measure the error by the true error kuMNt(m) um‘(n‘)kx, see [37,49].



G. Rozza / Commun. Comput. Phys., 9(2011), pp. 1-48 13

3.6.1 Optimality

First, the classical Galerkin optimality result for the pro jection in the RB approximation
space shall demonstrated:

kuNt(m)  uN (mMkm= inf kuMNe(m) - wiy (Mkm, (3.17)
WNZXNt
W) uNmke= S ine kaMm) wa (mk (3.18)
N X N X .
ae(nwaZX,'::t

and for the compliant case also

sV(m sy (M= kuM(m) ugi(mka= inf kaM(m) w (MK, (3.19)

WNZXNt

as well as
o<sM(m sy(m (M) inf kuMNe(m)  wi (MK, (3.20)

N

To prove (3.17), we rst state, since our reduced basis space s conforming, X“t XNt
the Galerkin orthogonality: indicating as  e(m) := uNt(m) uN(m) 2 XN, we have that

a(e(m),v;m= a(uM(m ug(m,v;m=0, 8v2Xy. (3.21)

It then follows that for any wy = uN'+ vy 2 X! (v 6 0),

a(uM(m wy,uM(m wysm= a(uMi(m) ug(m o vau™ ug(m o vagm
=a(u™(m ug(m,uM(m ug(mim o 2a(uM(m) uRt(m),vnm+ v, v
a(uM(m)  up (m,uM(m) up(mim (3.22)

from (3.21), symmetry of a and coercivity (2.3). Inequality (3.17) in the energy norm
then follows directly. To obtain the result in the X-norm (3.18), we apply the energy-
norm bound (3.17) together with coercivity and continuity.  The output result (3.19) is
found by invoking compliance and Galerkin orthogonality (c onsidering a “compliant”
case, sV (m) sy (M= f(e(m)= a(u™(m),e(m);m = a(e(m),e(m);n) and then using again
the energy-norm bound (3.17). The result (3.20) follows from (3.19) and continuity.

The output approximation sm‘(n“) thus converges to sNt(m) as the square of the error
in the eld variable u“t. We also note that s“t(n“) is a lower bound for sNt(m).

3.6.2 A brief comment on a priori convergence theory

We brie y review some results about a priory convergence the ory for problems with one
parameter (P= 1), see for more details and proofs [23,24,37]. First, we de ne the param-
eter domain D =[ Myin,Mnax], and m = Mpax/ Myin. We introduce then the non-hierarchical
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Lagrange equi-In spacesWNt™, 1 N Npax, given by W{"'"" = spanfuM:(nf,),1 n Ng,
for the parameter points given by

n 1
N 1

My = Min €XP nm , 1 n N Nmax- (3.23)

These spaces contain certain optimality properties as the apriori theory suggests. Denot-

ing by um"” the corresponding RB approximations, we obtain the followi ng result: for

any N Ngit and 8m2D,

k N¢ N¢In k
u (@NUN (MKm exp N 1
ku t(I’T])km Nerie 1

(3.24)

where Nt = 1+[ 2elnm]+ . Here, [ ]+ returns the smallest integer greater than or equal to
its real argument. This result leads to several important co nclusions [37,49].

First, the interpretation of RB approximation in a “paramet er domain” analogue to FE
approximation in the “physical domain” has also a quantitat ive relevance. Second, while
FE convergence relies on spatial regularity, RB convergene is based on smoothness in
parameter and discontinuities in space may be allowed. Thir d, the RB convergence rate
upper bound (3.24) does not depend on N;. The actual convergence rate however does
depend on the underlying FE approximation space, but this de pendence vanishes asN;
increases for any xed N. The next conclusion is that the RB convergence rate depends
only relatively weakly on the extent of the parameter domain as the exponent in the
convergence rate decreases only logarithmically with m. Last, we can con rm that the
RB approximation can converge very quickly (exponentially ).

For higher parameter dimensions P> 1, there is unfortunately no any closed a pri-
ori convergence theory. Numerical examinations show howev er that there is a very
rapid convergence also in this case (the convergence rate wth N appears to depend only
weakly on P) and that the RB method can in fact treat problems with “many” parameters.

4 A posteriori error estimation

In this section we deal with a posteriori error estimation in  the reduced basis context for
af nely parametrized elliptic coercive PDEs by an of ine-on line procedure decomposi-
tion to guarantee an ef cient and reliable computation. Conc erning ef ciency both the
of ine and online computational procedure bene tfromthe ap  plication of error bounds.
As already mentioned before, the greedy algorithm can use a signi cantly larger training
sample with (at the same time) considerably decreased computational costs if a posteriori
error estimators are used instead of the real error. This leads to a better accuracy of the
reduced basis approximation which can be achieved with a sma ller number N of basis
functions — this means that we have in turn computational sav ings in the online stage.
Another possibility to save online computational time isto use the error bounds directly
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in the online stage to nd the smallest RB dimension N that allows us to achieve a cer-
tain prescribed accuracy. To sum up, the a posteriori error b ounds are an essential tool to
control the error and hence to minimize the computational co sts.

The second keyword — reliability — has a more direct connecti on to error bounds. As
the of ine sampling procedures only work with a nite trainin g set of parameter points,
the error for large parts of our parameter domain D remains uncharacterized. By the help
of an ef cient a posteriori error bound, we can make up for this error quanti cation for
each new parameter value min the online stage and thus can make sure that constraints
are satis ed, feasibility (and safety/failure) conditions are veri ed and prognoses are
valid (in each case not only for the RB approximation but for t he “truth” FE solution).
That means that we do not loose any con dence in the solution co mpared to the under-
lying FE solution while exploiting the rapid predictive pow er of the RB approximation.

In addition, the pre-asymptotic and essentially ad hoc or em pirical nature of reduced
basis discretization together with the fact that the RB basi s functions can not be directly
related to any spatial or temporal scales (which makes physi cal intuition of little value),
and the special needs of deployed real-time systems virtual ly demand rigorous a poste-
riori error bounds.

4.1 Preliminaries

We introduce two basic ingredients of our error bounds: the e rror residual relationship
and coercivity lower bounds. The residual r(v;m) 2 (XN)9(the dual space to X\) is de-
ned as

r(vim  f(v;im)  a(un(m),v;m), 8v2 XM, (4.1)
Together with
f(v;m)= a(u™,v;m), 8v2 XN 4.2)

and the bilinearity of a, we can establish the error residual relationship for the er ror e(m)=
uNe(m) g (m) 2 XN

a(e(m),v;m = r(v;m), 8v2 X", (4.3)
We will also introduce the Riesz representation of r(v;m): &m) 2 XNt [37] satis es
(&M, v)x =r(v;m), 8v2 XN, (4.4)
This allows us to write (4.3) as
a(e(m),v;m=(&m,v)x, 8v2X™, (4.5)

and it follows that the dual norm of the residual can be evalua ted through the Riesz
representation:
r(v;m

o, = Kemkx. (4.6)

kr( ,n’)k(XNl)o sup

v2 XNt
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This shall prove to be important for the of ine-online decom position procedures. As a
second ingredient, we need a positive lower bound at'é(m) for aNt(m):

0 al(m aV(m, 8m2D, (4.7)

where the online computational time to evaluate m! als(m) has to be independent of N,
in order to ful Il the ef ciency requirements on the error boun  ds articulated before.

4.2 Error bounds

We de ne our error estimator for the energy norm as:

pgr(my 2D (4.9)
ajs(m
An equivalent estimator for the output error is de ned as
A 2
D} (M keISI:TD 3 (4.9)
ag(m

We also introduce the effectivities associated to these error estimators in the energy norm,
analogue to (3.15), that help us to quantify rigor and sharpnesand thus the quality of the
proposed estimator:

en Dﬁln
h'(m o U (ke (4.10)
and
hs (m & (4.11)
EREENCIETG

As already stated in (3.5), the effectivities should be as close as possible to unity for sharp-
ness, and 1 for rigor. We will now derive some results that state that th e error bounds
introduced above indeed ful ll the requirements of rigorand  sharpness [37]. If we choose
v=¢g(n) in (4.5) it follows with the Cauchy-Schwarz inequality and t he de nition of the
coercivity constant (2.3) that

aM(mke(mky a(e(m).e(m):m k e(mka=(&m.e(m)x k Emkxke(mkx. (4.12)

From inequalities in (4.12) together with the de nition of th e effectivity (4.8), we can con-
clude that hi"(m) 1, that means that our energy error bound is indeed a rigorous upper
bound for the error measured in the energy norm — feasibility and safety are guaran-
teed. A similar procedure, but now with  v= &n) in (4.5) gives us, with the de nition of
the continuity constant (2.4) and again with the Cauchy-Sch warz inequality:

k&(mKE k &mKke(mkm  k&(mkn (g°(m) 2k&(mKy. (4.13)



G. Rozza / Commun. Comput. Phys., 9(2011), pp. 1-48 17

Now the de nition of the effectivity (4.10) together with the  inequalities (4.13) lead to the
following result:

DRM(m =( ays(m) éké(n)kx (9%(m) 2(aly(m) Zke(Mkm
en g&(m
hy'(m .
) N( a’[‘é( i

a'his result states that the energy error bound overestimate s the true error by at most

(4.14)

(g&(m/ at'é(n“)), independent of N, and hence is stable with respect to RB re nement.
Stability with respect to FE re nements can be achieved if we ¢ an nd a lower bound for
the coercivity constant at'é(m) which depends only on m or if aNt(m)/ at'é(n) is bounded
by a constant for most m2 D . The effectivity is then bounded by [49]

S s S
e N €
per 9AM - anm gdAM gpp (4.15)
ag(m ajp(m  a%(m
We will present the construction of such a lower bound for the coercivity constant in
Section 5. Similar results can be proven for the output error bound if we use equation
(3.19), which states thatsM((m)  sn'(m) = ke(m)kZ,and DY, () =( DE(m) %

s a_ (DRM(M)®_ e 2o
h (M= ke(Ninjkrzn—(hN (m)=. (4.16)
Tosumup, forany N=1, ,Npnax, the effectivities satisfy
S
en 9%(m s 9°(m
1 h -, h -, 8m2D. (4.17)
N(rrb aEé(n‘) N(rr) aEé(n‘)

4.3 Of ine-online procedure

The error bounds developed in the previous section are only u seful if they allow for
an ef cient of ine-online computational procedure that lea ds to an online complexity
independentof N;. The of ine-online decomposition presented in the followi ng is mainly
based on the dual norm of the residual. With the af ne decompos ition of u“t(m) (2.5)and
the expansion of um‘(m) in the N basis functions (3.7), the residual can be expressed as

N

Qa
r(vim= f(v) a(uy'(m,vim=f(v) & upy(ma Qi(ma’(zi,v). (4.18)

n=1 g=1

Together with (4.4) and linear superposition, this gives us

Qa N
(mM.V)x=f(v) & & QUmup,(mai(zh,v). (4.19)

og=1n=1
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It then follows that we may write  &m) 2 XNt as

a

Qoo
T Qo=

QYmuy,(MAT, (4.20)

1

(m=F+

1

Ko}
Il

where F 2 XNt and AR 2 XNt (called FE “pseudo’-solutions) satisfy

(F .v)x = f(v), 8v2 XN, (4.21)
(Afv)x= al(zN,v), 8v2XxN, 1 n N,1 g Qa (4.22)

We note that (4.21) and (4.22) are simple parameter-indeperdent Poisson-like problems
and thus can be solved once in the of ine stage. It then follow s that:

|
Qa

o)

5 & st 0
kmki= F+& & QUMuNL(MALF+ & & Q¥(muNidmATL,
g=1n=1 ( g=1n%=1 X )
(ga N N q (ga N 0 N q AP
=(F.F)x+a a QUmuy,(m 2(F,Apx+ a a QY(muytdmM(AnA)x . (4.23)
g=1n=1 q=1n0=1

This expression can be related to the requisite dual norm of t he residual through (4.6).
It is the sum of products of parameter-dependent known funct ions and parameter inde-
pendent inner products, formed of more complicated but prec omputable quantities. The
of ine-online decomposition is thus clear.

In the ofine stage we rst solve (4.21), (4.22) for the parame ter-independent FE
“pseudo’-solutions F and A7,1 n Nmawl ¢ Qaand form/store the parameter-
independent inner products (F,F)x, (F,ADx, (AR ADx,1 N Nmaw1l g Qa The
of ine operation count depends then on  Npmax, Qa and N.

In the online stage — performed for each new value of m— we simply evaluate the
sum (4.23) interms of the Q9(m),1 q Qzand u“tn(n), 1 n N (already computed for
the output evaluation) and the precalculated and stored (pa rameter-independent) (, )x
inner products. The online operation count, and hence the marginal and asymptotic
average cost, is only O(Q2N?), and thus the crucial point — the independence of N; —is
again achieved. We further note that, unless Q, is quite large, the online cost associated
with the calculation of the residual dual norm and the online cost associated with the
calculation of sm‘(n’) are comparable. Again, the hierarchical properties of our r educed
basis approximation spaces allow us to simply extract the ne cessary quantities for any
N2f1, ,Nmaxgfrom the corresponding quantities for N = Nyax.

4.4 Upper and lower bounds for the outputs

The output error estimators introduced in the previous sect ions for the compliant case
can serve us to compute reliable upper and lower bounds s“” (m and s“t (m) for the
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“truth” output  sNt(m) for each new value for mbased on the RB output sm‘(m), such that

s\(m o SN(m s\ (M), 8m2D, 8N2[1, ,Nmax]- (4.24)

We establish these limits as
s (M= syi(m, (4.25)
sy (M= sy (m+ DR (m). (4.26)

To demonstrate that equation (4.25) is indeed valid, we note that in the compliant case

s“(m) syt (M= FuM(m) uge(m) = a(uM(m),u™(m) uy(nim
=a(uM(m uy(m,u™(m  uy(mim o

This results of the de nition of the symmetry of a, Galerkin orthogonality (3.21) and
coercivity. This important result (which has also been stat ed in Section 3.6.1) con rms
that our reduced basis approximation is a lower bound for the FE solution. The validity
of the upper bound (4.26) results directly from (4.17):

N 1) DM sM(m o osyi(m ) sy (M= sy(m+ DY () sM(m).

These upper and lower bounds for the underlying “truth” FE ou tput play an important
role for example in optimization problems. They assure that possible constraints are not
only met for the reduced basis output, but also for the “truth " output. In many other
applications this property has a great importance.

(4.27)

5 Coercivity lower bounds

We review the ef cient computation of lower bounds for the coe rcivity constant (2.3)
whose discrete version is a generalized eigenvalue problem. We will recall here the Suc-
cessive Constraint Method (SCM) described in [13, 49]. This algorithm has been devel-
oped for the special requirements of the reduced basis method and thus features an ef -
cient of ine-online strategy which makes the online calcul ation complexity independent
of Ny — a fundamental requisite.

5.1 Coercive problems: The successive constraint method

Even if we still consider a symmetric, continuous and coerci ve bilinear form a, which is
af ne in the parameter, the following results can be readily e xtended to non-symmetric
operators [49] and general non-coercive operators [37]. We introduce an objective func-
tion FP:D RQal R givenby

, Qa .
Fo(my)= & QUmyq, with y=(y1, ,Yq.)- (5.1)
=1
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Next, the setY 2 RQzis de ned by
( 2 ) )
_ a N _ allWy,Wy
Y= y2RPOw,2XM st y,= AR q Qa . (5.2)

The af ne parameter decomposition (2.5) allows us now to expr ess our FE coercivity
constant (de ned in 2.3) as

aNt(m) = inf PPi(my). (5.3)
y2Y
The next step is to introduce a “continuity constraint” box
mn #
Qa a a
B=@ inf VW) (w,w) (5.4)

> 7
g1 waxNe kwks oy kwk

which, from our continuity hypothesis, is bounded. The last ingredient is a “coercivity
constraint” sample, C,=fni,,2D, ,nﬁCMZDg; Cg"’mdenotes the subset ofC, with the
M (1) points closest (in the Euclidian norm) to a given m2 D . We make the convention
c)'™=cjif M> 3

5.1.1 Lower bound

Our strategy is to de ne a set Y, g(mCj; M) which is relatively easy/cheap to compute
and which can be used as surrogate for Y in (5.3). For given C;2D and M 2 N, this set
must contain the original set Y, that means

Y YLB(mCJ,M), 8m2D. (55)

If we choose
( o, )
Yis(mCyM)  y2RQy2B, § QinPy, a“(nf), snf2c)™ (5.6)
=1

as our “surrogate set”, we can prove that (5.5) is indeed ful | led. In fact, from the de ni-
tion of Y (5.2) it follows that forany y2Y, 9wy 2 XNt such that

a
a= 7aézvvz;(gy)a 1 g9 Qa
Then, since ; . ;
5w e 2 67
and also o
éaqu(@aqéVV\‘:igy):a(mﬁyzxm aM(n), 8m2D, (5.8)
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we can deduce that every member y of Y is also a member of Y}{(mC3,M), which con-
cludes the proof. We can now de ne our lower bound as

a's(mCyM)= min  PP(my). (5.9)
yZYLB(mCJ,M)

This de nition is indeed a correct choice, as we can show with ( 5.5), that for given C; D
and M2 N

alg(m=, min  PA(my) min F(my)= ay(m, 8m2D.

Yig(mc ;M)

This means that the necessary requirement for a lower bound, at'é(m) aMNt(m), 8m2D,
is ful lled. The computation of our lower bound (5.9) is in fac t a linear optimization

problem (or Linear Program (LP)) [49]. It contains Qj design variables and 2Q,+ M in-
equality constraints. Itis important to note that again, th is approach allows us to evaluate
m at'é(n) with a computational cost independent of Ny, if B and the setf aNt(nf)jnf2 C,g
are given. The (of ine) computation of these quantities how ever is N;-dependent. We
will discuss the of ine-online decomposition and computat ional costs in more detail in
Section 5.1.4.

5.1.2 Upper bound

Althoughi it is not directly necessary for our error bounds, w e may also compute an upper
bound for the coercivity constant. This will serve us for the ef cient construction of a
good coercivity constraint sample C;. Similar to the approach for the lower bound, we
introduce an “upper bound” set  Yyg(mCy;,M)2RQas

n 0
Yis(mCyM)= y (nf)jnP2cl"™ (5.10)
where y (m)= arginfy,y PPI(my). Our upper bound is then de ned by

N¢ _ . bj

a5 (MCyuM)= min P (my).

UB( ) ) y2Y g(MCyM) ( y)

As we can see directly from (5.10), Yys(mCj; M) Y. It then follows that, for given C;,
M2N :, aL'\J"B(mCJ,M) aMNt(m),8m2D . That means our choice foraL'\J"B(rT) is indeed suited
as upper bound for the coercivity constant. Again we can stat e that the operation count

for the online evaluation m! a)L(m is independent of N (if the set fy (nf)jnP2 Cyg is
already given).

5.1.3 Selection of C;

The selection process for C; will be based on a greedy algorithm somewhat similar to
the greedy selection process for the basis functions descrbed in Section 3.5. We shall
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again introduce a “train” sample  Xyainsem = fMfansom:  Mhamaemd D Of Niain,scm
parameter points and a tolerance escy 2 [0,1] for the error in the lower bound prediction.
We start with J= 1 and C; = f nxcmg chosen arbitrary. The greedy algorithm is then given

by

n #
N¢ N¢
. a L(mMCyM) a;s(mCyM)
While a) = _ max B c L:/I > escm!

train, SCM B aUB(m I ) 4

o1 al5(mCyM) a§(mCyM)

oq= arg _max N ;

M2 Xirain,scm aU‘B(m CiM) (5.11)
Cw1=Col mieyy 3 I+ 1

end.
Set Jnax= J.

We chooseayg(mC; M) in the denominator of afol, as this value is strictly positive, con-
trary to a_g(mCj; M) which may be negative or zero.

Indeed, the strategy is basically the same as in the greedy aorithm in Section 3.5.
In each iteration of the greedy procedure, we add to our “coer civity constraint” sample
that point in D for which the current lower bound approximation is least acc urate. The
true error is thereby replaced by a (computationally cheape r) surrogate which makes
it possible to perform a more ef cient and more exhaustive sea rch. Furthermore, it is
important to note that our choice of stopping criterion allo ws us to bound

aNt(@ - aNt(@ aLI\JItB(mCJmaX’M)
as(MCyaoM)  ays(mCy M) als(mCy,, M)
aNt(m 1 1

: 8m2 Xyrai :
aﬂtB(qunax) 1 esem 1 escm train,SCM

This result can be inserted in (4.15) to obtain the upper boun ds for the effectivities which
are now independent of N and N;. Usually, we set escy = 0.75, which is rather crude.
Nevertheless this choice has relatively little detrimenta | effect on our error bounds.

5.1.4 Ofine-online procedure

Finally, we precise the of ine-online decomposition for th e computation of the coercivity
lower bounds and give an overview of the operation counts inv olved.

In the of ine stage, we rst have to build B and the setf aN«(nP)jnP2 C;  g. This re-
sults in 2Q, resp. Jnax eigenproblems over XNt, Second, we have to subsequently form
the setfy (nP)jnf2 C1.0c9 (InaxQa inner products over XNt). The last of ine step is the so-
lution of the Nyain scm Jdnax linear optimization problems of “size” 2 Qs+ M to perform the
“arg max”. The of ine computational cost thus roughly scale s asO(N; (2Qa+ Jnax))+



G. Rozza / Commun. Comput. Phys., 9(2011), pp. 1-48 23

O(NtQadnax)*+ O(Nyrainscm naxQaM). As already mentioned before, the of ine compu-
tational costs of course depend on N, but N; and ny,in scm do not occur as a product in
any of the terms — there is no term O(N;Nyainscm). This means that we can choose both
Nt and Nyain scm Very large.

For each evaluation m! aEé(mCJ,M) in the online stage, we rst perform a sort of
the Jnax points in C; . to determine the set Cgﬂn;:". The operation count here is at most
O(MJmax). Then we must perform the (M + 1)Q, evaluations n?! od(nP),1 q Qa
which results in an operation count of O((M+ 1)Qg). The last step is the extraction of
the selectedM members of the pre-computed set f aNt(nf)jnP2 C;g and the solution of the
resulting linear optimization problem to obtain aEé(mCJ,M). The fundamental point is
again that the online evaluation count is independent of N; and the rapid evaluation of
the error bounds is supported by the SCM procedure.

6 Afne geometric parametric variations

In the following, the fundamentals for af ne geometric varia tions in the reduced basis
context in two-dimensional domain will be presented. A more detailed introduction with
many examples for different kinds of geometries can be found in [49].

6.1 Some preconditions

The RB recipe requires a parameter independent domain W as the snapshots we use for
the construction of our basis functions have to be de ned rela tive to the same spatial con-
guration. This dif culty can be resolved by interpreting W as parameter independent
reference domain which is related to the parameter-depende nt “actual” or “original” do-
main of interest Wo(m) via an af ne mapping T2f(x;m). We can then introduce a domain
decomposition of Wy(m),

Wo(m= ), 6.1)

k=1

which consists of mutually nonoverlapping open subdomains  WK(m), 1 k Kgom, WE(m)\
W‘go(n“)= A1 k<k® Kgom. Ourreference domain is then simply de ned for a reference
parameter value me;2D asW  Wo(mes); in the following we will identify — WK= WK(mes),
1 k Kgom forbrevity. The “ Kyom” domain decomposition of W shall be denoted our “RB
triangulation”; it will play an important role in the genera  tion of our af ne representation
(2.5). The very ne N; FE mesh will be a subtriangulation of the RB triangulation. B oth
the FE and RB approximations are de ned over the reference dom ain. The choice of me¢
has an in uence on the accuracy of the underlying FE approxim ation as it controls the
distortion of the mesh for the actual domains. As mentioned b efore, the original domain
(resp. the original subdomains) and the reference domain (resp. the reference subdo-
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mains) must be connectable via an af ne mapping T2 ( ;m) :WKI WE(m),1 Kk Kgom:
WM = TAMR WA, 1k Kaom; (6.2)

the af ne mappings must be individually bijective and collec tively continuous, that means
they have to ful Il the following interface condition:

TafkGem = TARxn), 8x2 WA W 1 k< K0 Kgom. 6.3)

For reasons of computational ef ciency it is important to not e that K4o,, is de ned with
respect to the exact problem and therefore does not depend on N;. The concrete af ne
transformations are then givenfor1  k Kgom, forany m2D and for any x2 WX as

] d
=1

for given translation vectors Ck:D! R9 and linear transformation matrices Ga™:D!
RY 4 The linear transformation matrices can effect rotation, s caling and/or shear and
have to be invertible. The associated Jacobians can be de nedas "X(m)= jdet(G&"K(m)j,
1 k Kyom; forinvertible mappings they are strictly positive. We not e that the interface
condition (6.3) allows us to interpret the set of local mappi ngs as a global bijective piece-
wise af ne transformation T2f( ;m):W! W,(m). This global mapping is then given for
any m2D by

T (x;m) = T3K(x;m), k= min K (6.5)
K2f 1, Kgomjx2 WK

6.2 Afne mappings for a single subdomain

Let us focus on the technology to de ne our af ne mappings and pr esent the basic build-
ing blocks of our RB triangulation that allow well-de ned afn e transformations. As
for these purposes it is suf cient to concentrate on a single s ubdomain, we shall sup-
press the subdomain superscript for clarity of exposition. The matrices C¥f(m) 2 RY and
G (m 2 RY 9in (6.4) are now called “mapping coef cients”.

We will now recall some of the properties of af ne transformat ions in two dimensions.
First, straight lines are mapped to straight lines, paralle lism is preserved and parallel
lines of equal length are also mapped on parallel lines of equ al length. Consequently, a
parallelogram is mapped to a parallelogram and hence a trian gle maps to a triangle. Sec-
ond, an af ne transformation maps ellipses to ellipses. Thes e features will be exploited
in the following for the development of a domain decompositi on technique that is suit-
able for the RB context. The af ne mapping contains in the two- dimensional (d= 2) case
d(d+ 1)= 6 degrees of freedom, the mapping coef cients. It is therefor e suf cient, for any
given m2 D, to consider the relationship between three non-colinear p re-image points in
W, (z},22,2%) and three parametrized image nodes in Wo(m), (z&(m),z2(m),z3(m). Note
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that every point consists of two components (Z' ,ziz), 1 i 3 resp.(ziol,zioz), 1 i 3,and
therefore the application of (6.4) to these points constitu tes a system of six independent
equations to determine the six mapping coef cients:

2
z(m=c"(mM+ 3 G"(mMz", 1 i 2, 1 m 3 (6.6)
=1

The assumption that the af ne transformation is bijective th ereby ensures that the image
nodes are perforce also non-colinear (if the pre-image nodes are non-colinear) and hence
the equations are perforce linear independent.

Our RB triangulation shall be built on (standard) triangles , elliptical triangles and
general “curvy” triangles. They admit symbolic and numeric al automation and are there-
fore the building blocks of choice in the roMIT software packa ge [44] that we use for the
reduced basis computations in this work. This software, the techniques applied and its
usage are brie y presented in Section 9. The three basic building block types are dis-
cussed in detail below, with a special emphasis on elliptica | triangles.

6.2.1 Standard triangles

In the case of a standard triangle subdomain the three vertic es of the triangle in the refer-
ence domain shall serve as pre-image nodes while the three vertices of the triangle in the
actual (mdependent) domain shall serve as image nodes. In this case,our three points
uniquely de ne not only the transformation but also the refer ence domain and parame-
trized domains. We recall that the pre-image nodes are obtained as the image nodes for
a particular value of the parameter mes. We can then readily establish the system of six
linear equations to determine the six unknown mapping coefc ients. In this way, we
can construct an af ne transformation from any reference tri angle in R? onto any desired
triangle in R2. We note that it is not mandatory to choose the vertices of the triangles
as our nodes de ning the transformation, other characterist ic points e.g. the barycentric
coordinates of the FE context are also possible.

6.2.2 Elliptical triangles

The class of elliptical triangles covers a much greater range of possible geometries and
their formulation is also necessary for the more general case dealing with curvy triangles.
We can distinguish two different kinds of elliptic triangle s: “inwards” and “outwards”
triangles. Both types are depicted in Fig. 2. In both cases, the elliptical triangle Wy(m)
is de ned by the three vertices zi(m), Z2(m), z3(m), the two straight lines zi(m)z2(m) and
z1(mz3(m as well as the elliptical arc zg(m)zg(n“)arc.

We shall now precise the de nition and description of the elli ptical arc and explain the
constraints that must be met by the location of the third poin t z}(n) to ensure “proper”
triangles and a continuous and well-de ned global mapping in  the multidomain context.
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z() z()

7() ()
@ (b)

Figure 2: (a) \Inwards" elliptical triangle and (b) \outwar ds" elliptical triangle.

cost
sint

O( )+ Qrot( )S( )

Figure 3: De nition of a point on a prescribed parametrized kpbse.

First, the description of the elliptical arc shall be derive d from the de nition of a pa-
rametrized ellipse as depicted in Fig. 3. The ellipse is described implicitly by

(X0 O(M) "Qrot(MS (M Qrot(MT(xo O(M)= 1. (6.7)

A particular point on this ellipse is then given by

Xo X = 0o(m+ Qu(ms(m % (6.8)

Xo2 sint

for given t2 R. As we can see in Fig. 3,0(m):D! R?is the center of the ellipse, r (M :
D! R; andr,:D! R; de nethelength of the semi-axes of the ellipse and f (m):D! R
is the angle of inclination. With these quantities, the scal ing matrix S(m) and the rotation
matrix Qrot(nM) can be de ned:

r{(m 0 _ cosf(m)  sinf(m
M T o Q@M Gt m cost (m)

The description of the elliptical arc with these means is the n as follows:

Zg(@zg(r@arcz O(M+ Qrot(MS(m cost tp t tz3 . (6.9)

sint
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with t,2 R and t32 R chosen such that the points z2(m) and z3(m) are given as the end-
points of the elliptical arc for t=t, and t= ts:

coStm

Z)(M= O(M+ Qu(mMS(m ", m=23. (6.10)
In addition, we have to make surethat0 t3 t,< p. Itremains to specify the location of
the third point z3(m). For elliptical triangles, this location has to be chosen in a way that
ensures that the af ne transformation generates the desired elliptical arc (6.9). First, this
ensures a continuous global mapping; second, to obtain well -de ned elliptical triangles
and consequently a well de ned domain in the multidomain cont ext, several internal
angle conditions have to be met by the choice for zX(m): 0< q < p, 8q 2f g'2,¢°%,¢°'g.
The rst requirement can be ful lled by the expression of the th  ree corner points as

costy
sint

zg'(M= O(M+ WmQrot (M S(M , 1 m 3, (6.11)
for given wy;= w2 R, wo=wz= 1andt; 2 [tp,t3]. Consequently, the pre-image points are
given as

costm

gt 0 L om 3 (6.12)

z5'(Mef) = O(Mef) + WmQrot (Mef) S(Mef)
From these representations we can identify our af ne mapping as

zg(m= C*(m+ G (mz"
=( O(n‘) Qrot(@s(@s(mef) lQrot(mef)To(mef))
+( Qrot (M S(M) S(Mer) lQrot(mref)-r)zm- (6.13)

The second requirement — the internal angle conditions — is i llustrated in Fig. 4 [49].
In the inwards case, a necessary and suf cient condition to en sure the internal angle
conditons0< q <p,8q 2f g*? o3 g’lgis given for an inwards elliptical triangle by
zt(m 2 Rin (M), where

Rn(m= Z5(M2R2 (24 2m) n(m <o,
(M ) (M < 0(zX(m XM TRAM<0 , (6.14)
and for the outwards elliptical triangle by ~ z3(1m) 2 Rou (1), where
Reu(m=  Z5(M 2R (25(m) Z(m) TA(m) > 0.zX(m  ZmM) (M >0 . (6.15)

Here n?(m) and n3(m) are the outwards-facing normals to the ellipse at z2(m) and z3(m)
respectively, (M= (2(m)+ z3(m) and n>3(n) is the “outwards-facing” normal to the

line segment z3(m)z3(m) at z5™(m).
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{ (xo* O( )" Qux (IS ?()
Qrot ( )T(x0° o()=1

Figure 4: Regions in whictzi(m) must reside for an elliptical triangle in the inwards caseR({,(n)) and the
outwards case Rout(mM).

We note here that for elliptical triangles it is possible to d erive explicit conditions on
w such that the internal angle conditions (6.14) and (6.15) are satis ed, for details see [49].
These conditions are independent of m An important feature of the elliptical triangles is
that they are consistent under re nement, that means that if w e split an elliptical triangle
for which the internal angle conditions (6.14) and (6.15) are ful lled, the resulting two
elliptical triangles also satisfy the internal angle condi tions. To enlarge the possible range
of geometries even more, the elliptical triangles are extended to “curvy” triangles. This
is done by replacing (cost,sint)" in (6.9) with a general parametrization (gi(t),g2(t))T.

6.2.3 Piecewise-af ne mappings for multiple subdomains

To treat more complex geometries, it is necessary to allow our domain to be built of
several (standard, elliptical or curvy) triangles, dealin g with a piecewise af ne mapping
based on this domain decomposition. We can thus consider geometrical domains and re-
gions for which the boundary and internal interfaces can be r epresented either by straight
edges or by elliptical triangles as presented in the numeric al tests.

The multi-domain mapping process is then performed in three steps. First, the RB
triangulation is generated on the reference domain W together with the associated refer-
ence subdomains. The RB triangulation has to be compatible with the mapping continu-
ity condition (6.3) and all elliptical and curvy subtriangl es have to be well-de ned and to
ful Il the internal angle conditions (6.14) and (6.15). The p rocedure applied to generate
this RB triangulation is implemented in the rbMIT software pa ckage [44]. In the second
step, the necessary parameter-dependent af ne mappings for each subdomain are con-
structed, as described in the previous section. In the last step we have to translate the
parametric mappings obtained for each subdomain into PDE co ef cients.
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6.3 Bilinear forms for af ne geometric parametric variatio  ns

In this section we deal with the use of the af ne mappings deriv ed in the previous
sections to get an af ne representation (2.5) of the problem (which has a parameter-
dependent geometry) on a parameter-independent reference geometry. We will rst ad-
dress the transformation of the formulation on the original domain to the formulation on
the reference domain and then explain how the af ne represent ation can be derived.

If we consider a problem analogue to (2.1) with a parameter-d ependentdomain Wq(m)
which realizes the af ne geometry precondition as described in the previous section, this
problem can be written in general form as: given m2D, evaluate

ss(m = lo(ug(m), (6.16)
where u§(m) 2 X§(m) satis es
ao(ug(m,v;m = fo(v), 8v2Xg(m. (6.17)

For simplicity we assume that we have homogeneous Dirichlet boundary conditions over
the entire boundary, which correspondsto X§(m) = H3(Wo(n)). A suf cient condition on
a( , ;M :HI(Wo(m)) HY(Wo(m)! R that ensures an af ne expansion of the bilinear

form (if the af ne geometry precondition is ful lled) is ful ll ed if we have
Kdom Z h q [ ﬂﬂV #
2o(w,v;m= g - (Mg (6.18)
k= 1 V\"(r@ ﬂxol ﬂXOZ O ﬂxoz

The matrices Ky :D'! R?2 21 k Kgom are in the symmetric case symmetric positive
de nite matrices. A similar requirement may be posed on  fo( ;M :HYX(Wo(m)! R: we
require that it can be expressed as

Kdom z
fo(vim= a Fok(Myv, (6.19)
k=1 WS(”")

with Foi:D! R, 1 k Kyom. To transform this formulation on the reference domain
to recover (2.1), we rstidentify s¥(m)= ss(m) T2 (;m) and ud(m= u§(m T (;m). We
then recall that

j af‘fk aff,k 11 i=
o™ Do (O O =12 620

in WE(m) and dWK(m) = PTX(m)dw. It then follows that the transformed bilinear form  a
can be expressed as

KdomZ h #
awvim= 3 %Tli <im o (6.21)
=1

k 'ITX2
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TheKK:D! R? 2are given by
KM= P G (MKox(M(G(M)T, 1 k Kaom, (6.22)
while the GX:D! R2 2 are given by
G(m=G*m 1, 1 k Kgom-
The transformed linear form can be expressed similarly as

Kdom YA
f(vm= &  F<(my,
k=1 Wk

where the FK:D! R are given by

F{(m= PP M Fok(m, 1 Kk Kdom-

In general, the KX(m) and FX(m) will be different for each subdomain WX. The af ne
formulation (6.21) can then be derived by simply expanding t his expression (in terms of

the subdomains WK and the different entries of Ki‘l?,l ij 2,1 k Kgom)- Thisresultsin
z Z
Tw v w qv
w,v;m = K} — —+ki — ——+ 6.23
a(w,v;m) = Kiy(m T T 12(m T %0 (6.23)

The af ne representation is now clear: for each termin (6.23) the (parameter-independent)
integral represents a%(w,Vv), while the (parameter-dependent) prefactor represents Q9(m).
The linear form f admits a similar treatment. The af ne representation obtain ed by this
process contains at mostQ,= 3Kyom terms. In some special cases the number of nonzero
terms in (6.23) is even reduced to Q;= 2Kgom, like dealing with potential ows (without
mixed derivatives in the Laplacian). In other situations, m any terms can be economized if
linear dependent entries are assembled together. Another possibility to reduce the num-
ber of terms Q4 is an intelligent choice of user-provided initial control p oints and edges
for the RB triangulation. This can help to exploit symmetry e ffects and isolate geometric
variation. We will come back to this issue in the practical pa rt of this work.

7 Potential ows

We now consider the RB approximation and error bounds togeth er with the af ne ge-
ometry decomposition applied to potential ows which can be considered as one of the
simplest two- or three-dimensional ow models describing | aminar non-viscous and ir-
rotational ows [5, 36, 51]. This case is of interest in the RB methodology development
because we are going to consider outputs and error bounds rel ated with the gradient of
the state solution and not just related with the solution its elf.
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We will rst precise the de nition and properties of potential ows. We will then
reformulate the necessary equations in order to obtain a pro blem equivalent to (2.1). As
the special structure of potential ows allows us to solve a s calar equation for the so-
called potential function f : instead of a vectorial system for the velocity components and
the pressure, we also develop a new set of special a posterioi error bounds for velocity
and pressure based on the original error bounds for the scalar variable whose gradient
gives the irrotational velocity elds:

u=r f,

where u=(u,u,) T is the velocity and its components in x; and x, direction. Together
with the continuity equation r u= 0, we obtain the governing Laplace equation for the
potential:

Df =0, inWy(m. (7.1)

The pressure p at an arbitrary point in the domain  Wy(m) can then subsequently be ob-
tained by Bernoulli's equation:

1. 1. ., .
p+ EFJUJ2= Pin + ErJUinJZ, in Wo(),

and the pressure coef cient ¢, can be de ned as

_ P DPn _ juj?
Cp= T 5 1 —
51 Uin] JUin]

where piy is the pressure of the undisturbed ow on the in ow boundary a nd uj, is the
velocity vector of the undisturbed ow on the in ow boundary . Gravity effects are not
included in this formulation, but could easily be added to th e equation. Furthermore, a
time dependency could be introduced in the pressure calcula tion by using a time depen-
dent formulation of Bernoulli's equation, see e.g. [51]. Bo undary conditions are given by

homogeneous Neumann conditions

it _
to describe non-penetration on walls G, (m, inhomogeneous Neumann conditions
qf

where f i, = ujp n in order to impose the velocity uj, on the in ow boundary G (m) and
by (homogeneous or inhomogeneous) Dirichlet conditions

f=frr, onGu(m (7.4)

to prescribe the level of the potential, for example on the ou t ow boundary Gy ().
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The weak formulation of the governing equations on the origi nal domain Wy(m) can
be found by standard integration by parts and reads as follow s: nd f 2 X® H&Gm s.t.

af ,v;m= f(v;m, 8v2XE (7.5)

with z z z
f,vym= rfruv, f(v;m= finVv r Rf s IV, 7.6

a( m) Wo(m) ( ITD (M in Wo(m) ref ( )
where Rf ¢ 2 HY(W) is a lift function s.t. Rf eig,, = frer- From the formulation (7.5)
on the parameter dependent domain Wy(m), the formulation on the reference domain W
can be derived with the methods introduced in Section 6. The m ain steps are the af ne
decomposition of the original domain, the identi cation of t he af ne mappings and in
the end the “translation” of the af ne mapping coefcients tot he formulation on the
reference domain (2.1).

8 Error bounds for velocity and pressure

The a posteriori error bounds developed in Section 4 can be used to bound the error in
the solution for the scalar potential function. To get an err or bound for the error in ve-
locity and pressure, we introduce some new considerations. This development allows to
consider error bounds depending directly on the gradient of the state solution, enriching
the variety of certi ed outputs we may consider.
We start with a given nite element triangulation of the domai  n (Ty,) with triangles

Tn,. The kinetic energy computed on a triangle Ty, can then be represented by
K =iZ jir £NG20 i T

Nt T, Tn, J N>
the potential function f can be expected to be smooth enough to giver f 2 CO(W) and
r f can be interpreted pointwise; we may assume that f 2 C1(W), while f Nt2 XNt is the
eld solution of the FE “truth” approximation (2.2). The RB so lution f {2 Wit XN
then fullls a(f N',v) = I(v), 8v2 W], For simplicity, we omit the mdependency of the
bilinear/linear forms and the error bounds in this section. Recall that the error between
the reduced basis solution and the FE approximation €)' is de nedas eyt=f N¢ f . With
DR’ being our usual energy error bound (4.8), we note that

4
ae,e)=jr e\ji® (DY) 8.1)
W
follows from the inequalities in (4.12). The RB approximati on of KL’?‘ is given as
T 1 z
K "= = _jr £} in Ty, (8.2)

Ne T
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We next introduce
Z 1/2

| Ne ir f N2 . 8.3
N WJ N (8.3)

. o T .
Our aim is now to develop an error bound for the kinetic energy KNNl on Ty,. On asingle
triangle, we note that

A Z
Tve T L N2 eNg2 - L Ne ¢ Ni Ney § N
Kne  Kn T TNtJr e gr f T TNtr (f fa)r(f fuh)
= b ™ Ny N Near (N FN gl
e g 1
1 Z Z ! 12 7z ! 1/2
T—@ jr(eMi*+2 jr (eMi® riNie Al (84
Nt T, TN, Ny

Hence all over the domain we compute the following quantity, giving the error on kinetic
energy weighted with the area of each triangle of the mesh:

o . T TN, -
a JTndiKy' K
Tn 2T,
Z A
a r(ENefN) T (FN FRD+2 3§ r(fNeFNO T fR
TNt 2T N¢ TNt TNt 2T N¢ TNt
Z Z ! 12 7 ! 1/2
a jr (ei*+2 & INCWIE jr f N2
TNt 2T Nt TNt TNt 2T Nt Nt TNt
Z Z
. . 1 [e) . . [e) . .
ir (it S & r (dMi*+s & jr £\
w TNI 2T Nt TNt TNt 2T Nt TNt
1+§ (DEH2+s(13)?  (DFH2+21'D§" DY, (8.5)

by using the Young inequality and choosing, in particular, s= Sop= DY/ I,'\\I“. Thus Dﬁ is
a L(W) error bound for the RB prediction for the velocity squared (jr f ,'Ql“jz). An error
bound for the pressure can be obtained using (8.5) and Bernoulli's equation. If we de ne

r. . r. .
e — Bi, Ejr thJZ ’ pyt= = Bin Ejr thJZ ’

where B, pint %juinjz is given, the error bound for the pressure, as before, follow s
directly as
o . .. T T™n.. T
& iTndipy' Py 5PN Dy
Tn 2T,
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8.1 Pointwise error bounds

We introduce also error bounds for pointwise calculations o f velocity and pressure. Let
us consider a point X, as an internal point of the mesh triangle Tyto. With 1 owe indicate a
discrete gradient computed on Tyt and since we are using P; nite elements the gradient
of the solution (f) is constant over each triangle Ty and so the velocity Vyo(Xo) and
pressure pno(Xo) given by

z z

1
r 0f No» pNo(Xo)= 1

. : ir of Noi?.
JTNIOJ TNtoJ of Nol

VNo(XO) =

j TN t0j Tnto

We now develop an error bound for the pointwise squared veloc ity j(r fno)2 (r fo)?.
By indicating with pedix h the quantities related with FE solution, we note that

Z Z
. . o . 1
KK Gi= = grf?in fa2 = 1 (e fa) 1 (et fa)
szh h Th
-1 r(fn fn)r(fn fa)+2r (fn fn)rfn
Th Th |
1 Z Z 12 Z 12"
= NP2 e jr fnj?
h Th Th Th

Hence

ITaoli (T fno)? (M Fo)2 & (Taedi K KLY

Tnt2T e
Z Z 12 Z 1/2
a jr i+ a 2 jr &'j° jr fnj?
TNIZTNIZ Tt 1TN12T Nt 7 Toe 1Z—Nl
a jr eN'i*+= & jr N'i*+s @ jr fnij?
Tne2Te W Tu2Tpe TN Tae2Tne TNt
1
1+ (O)Z+sIE (DF)?+ 213D% Df,
choosing s = sopt= DY In so that
i(r frno)? (1 fo)3 ;((De”)2+ 212D ;DK
Tl NN Tl
and 1
JPNo  Pol JTNtoJ N

We thus see that ﬁDK, is essentially a L*(W) error bound on the RB prediction for the

pointwise velocity squared (jr fj?) and ﬁDE is essentially a L*(W) error bound on the
RB prediction for pointwise pressure.
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9 Software, geometries and ow models

For all computations, the rbMIT software [44] has been used. T his library is designed
for the solution of af ne linear elliptic PDEs with the reduce d basis method and is fully
implemented in MATLAB. A documentation for roMIT software isa vailable in [12, 37].

The software is based on an af ne decomposition of the paramet rized domain ge-
ometry into the three basic building blocks presented in Section 6.2: standard triangles,
elliptical triangles and more general curvy triangles. The geometry has been provided by
a set of points (can be parameter dependent) and edges describing different regions. The
edges can be either straight edges or parameter dependent cuved lines, which have to
be formulated as

Xor _ Oi(m _ cosf(m  sinf(m ry(m O aa(t) 9.1)
Xo2 O2(m sinf (m  cosf (M 0 ra(m got) ’ '

for t 2 [t1,t2]. Each edge has to be either convex or concave. This correspods to the
de nition of our curvy triangles in Section 6.2. If we choose g;(t)= cost and gx(t) = sint,
we obtain the de nition of an elliptical arc ful lling the af ne geometry precondition.

The software rst performs the three main steps described in S ection 6.2.3. We recall
that the aim is to construct a domain decomposition (6.1) of t he reference geometry W
(de ned by the user inputs) compatible with the interface con dition (6.3). In addition, all
elliptical and curvy triangles have to satisfy the consiste ncy/continuity condition (6.11)
and the internal angle conditions (6.14) and (6.15).

The software rst focuses on all elliptical and curvy edges ma king part of the domain.
For each elliptical or curvy arc, an elliptical, resp. curvy , triangle is introduced according
to the de nitions of Section 6.2. Inthe case of internal inter faces, two triangles are needed.
For each new triangle, an additional interior control point is added to the set of initial
control points. If a triangle does not ful Il the internal ang le conditions or the interface
condition, this triangle is split by the software into two tr iangles. This process is repeated
until all introduced elliptical and curvy triangles are wel |-de ned and consistent with the
internal angle and interface conditions and the curved geom etry is represented properly.
After that, the algorithm lIs the remainder of the domain wit  h standard triangles by a
Delaunay triangulation [49].

The parametrization of the curved geometry is unfortunatel y not arbitrary. The de-
termination of the third point of an elliptical or a curvy tri  angle requires that the origin
(01(m,02(m) T of the curve in the form (9.1) must not lie on the segment of the curve.
In addition, there is another possibility to control the dom ain decomposition process by
de ning additional initial control points and edges that are  not necessary for the speci -
cation of the geometry. As illustrated with several example s in [49], a good choice of the
control points can reduce the number of af ne terms Qg by enforcing a domain decom-
position which results in many parametrically similar subd omains.

In the last steps, the parameter-dependent af ne mappings fo r each subdomain are
constructed and then translated into the PDE coef cients, as described in Section 6.3. Fi-
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nally, the FE system matrices and vectors have to be assemblé (in the af ne formulation
(2.5)) and stored. In addition to the geometry and the proble m to be solved, we have to
specify the parameter range D, the reference parameter mgs and the value for min the
X-norm de nition. The parameter range has important implicat ions on the performance
of the RB method, since (i) a bigger parameter range will require more basis functions;
(ii) the geometry should be well-de ned forall 2D ; (iii) also the domain decomposition
must not become singular for any m2D . Here is a short overview of the subsequent steps
performed by the software in the of ine and online phase:

1. In the of ine stage the greedy “train” sample  Xiain,scm is built and the SCM algo-
rithm is performed to compute the lower bounds for the coerci vity constants for
all members m2 Xyain scm. After that, the reduced basis space is generated by the
greedy algorithm and stored for the online stage.

2. In the online stage, the solution and output for a particul ar parameter value mare
computed. For the computation of the solution, we can either prescribe a value for
the desired accuracy or the number of basis functions. Then the lower bound for the
coercivity constant aEé(mCJ,M) is computed in order to calculate the a posteriori
error bound (4.8) for the eld variable. Finally, the eld vari able is used to compute
the output (or outputs).

The computations, provided in this work as examples, have be en done for three geomet-
ric con gurations dealing with different problems: a Ventur i channel, a curved bend and
a basin. The following sections are devoted to the descripti on of these problems.

10 A Venturi channel

Flows in ducts, channels, and pipelines are of great interest in uid mechanics applica-
tions especially when ows can be studied in a parametrized g eometrical con guration.
This rst example considers a 2D potential ow into a Venturi ¢ hannel and it can be
seen as an example for the design of a parametrized uidic dev ice (which can be con-
sidered also as an element of a more complex modular uidic sy stem and by adopting a
more complex uid model). We illustrate the calculation of p ressure and velocity by the
Bernoulli Theorem and the curvy geometry parametrization. Velocity and pressure are
in uenced by the channel/constriction con guration (i.e. h  eight and length of the throat
and radius of curvature of the connection). The uid velocit y mustincrease through the
constriction to satisfy the equation of continuity, while i ts pressure must decrease due to
conservation of energy. The gain in kinetic energy is suppli ed by a drop in pressure or a
pressure gradient force. Gravitational effects or other fo rce elds could be applied.

The limiting case of the Venturi effect is choked ow, in whic h a constriction in a pipe
or channel limits the total ow rate through the channel beca use the pressure cannot drop
below zero in the constriction. Choked ow is used to control the delivery rate of water
and other uids through valves. Examples of the Venturi effe ct are everywhere: in the
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capillaries of the human circulatory system; in large citie s where wind is forced between
buildings; in inspirators that mix air and ammable gas in bu rners; in atomizers and
nozzles.

10.1 Problem description

We consider the physical domain Wy(m) shown in Fig. 5. Here x=( x1,X2) denotes a point
in Wo(m), non-dimensionalized with respect to height of the inlet €. Note that a tilde
~ denotes dimensional quantities, and the absence of a tilde signals a non-dimensional
quantity. We identify in Fig. 5 the domain W;, representing the Venturi channel (inlet,
connection, throat, connection, outlet).

©9m 9 . ‘D (€8t 12,0 r J L r
‘ U 1,0 ) 5 7
41— z) “40) @A pem (¢ pp, 11— 1z) — I —~L‘x 1 A»—Flo—l_‘{\\
@+ p2) (@A pzgin+ i) e Ty e e
@A i, gom) @tz — ) ri °

Figure 5: Parametrized geometry (left) and domain boundariesight).

In this example the boundary segments G, G, G;, & are curved (all other bound-
ary segments and internal interfaces are straight lines). The segmentG is given by the
parametrization

Xt _ 4 m 10 m 0 cos(pt)
Xo 1 m 01 0 m . sin(pt)
| —{z—} |H{z—}—{z—}
oXm QYm SH(m
where t2 [0,1/2]. The segmentG; is given by the parametrization
X1 _ 4+mp 10 m 0 cos(pt)
Xo . m+m 01 0 m sin(pt)
| —{z—} |H{z—-}|—z—}
02(m Q*(m $(m
where t2[1,3/2]. The segmentG; is given by the parametrization
X1 _ 4+tm m + 10 m O cos(pt)
X2 m+ 01 0 m sin(pt)
I {z—} |z} —z—}
03%(m Q3(m S3(m
where t2 [3/2,2]. The segment& is given by the parametrization
X1 _ 4tmtmy 10 m 0 cos(pt)
X2 1 my sin(pt)

01 0 m
{Z—1} |z} —z—1}
0%(m Q(m SHm
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where t2[1/2,1]. The Venturi element could be integrated into a more complex modular
system. We consider here P= 3 parameters. Here m, np, my are geometry parameters
de nedin Fig. 5; m is the height of the throat (i.e., the central narrow part of t he Venturi
channel), m is the length of the narrow part of the channel, and m is the radius used to
smooth the connections between the inlet (and the outlet) wi th the central throat. The
parameter domain is given by

D=[0.25,0.3 [2,4 [0.1,0.3.

We show in Fig. 5 the boundaries of the domain, on which we impo se the following
boundary conditions:

homogeneous Dirichlet condition f (m)= 0 on boundary Gy;;

non-homogeneous Neumann condition {f/ n= 1 on boundary G, (i.e., imposition
of the velocity at the inlet);

homogeneous Neumann conditions {f/ n = 0 (i.e., zero normal velocity) on the
other boundaries.

For this problem the output of interest is provided by the vis ualization of velocity
eld (by streamlines) and/or pressure contour eld. The error  bounds are computed on
the pressure and on the velocity.

This problem is then modeled by the P; nite element (FE) discretization over the tri-
angulation (represented in red) shown in Fig. 6; the FE space contains N; = 3137 degrees
of freedom. FE approximation is typically too slow for man qu ery and/or real time ap-
plications, and we hence approximate the FE prediction for t he output and eld variable
by the reduced basis (RB) method.

Figs. 7 and 8 report some representative solutions for seleded values of parameters
and also an indication of the computed error bounds on veloci ty and recovered pressure.

10.2 Numerical results

For this problem, with P = 3 parameters, we can visualize in Fig. 9 the sample Sy,
obtained by application of the (energy version of the) greed y algorithm of Section 3.5 for
Xirain @ log-uniform random sample of size nyain = 3000. Clearly, the point distribution
is very far from tensor-product in form: there is some cluste ring near the boundaries of
the parameter domain, however the interior of the domain is v ery sparsely populated.
We also note that the sample Sy, re ects the particular problem of interest, as would
be expected from the “adaptive” greedy procedure: the dense st clustering of points is
near regions of D in which the parametric sensitivity is largest. We also plot in Fig. 9 the
SCM lower and upper bounds for the coercivity constant, whil e in Fig. 10 the quantity
MaXpe x,., DN'(M/ jjf m‘(m)jj m for the Lagrange RB approximations associated with the
sample of Fig. 9. We observe very rapid, exponential convergence.
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Figure 6: Finite element mesh.

Velocity error = 0.0011462
Velocity error = 0.00086241

I o A 5 CE ig”

Figure 7: Representative solutions for potential and velibe (with error bounds) for m=[0.25,2,0.] and m=
[0.5,4,0.2.

Pressure error = 0.00057309
Pressure error = 000043121
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Figure 8: Representative solutions for pressure (with errbounds) for m=[0.25,2,0.]1 and m=[0.5,4,0.2.
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Figure 9: Venturi channel example. Left: greedy sampBy,; note the value ofmy (0.1 g 0.2 is
proportional to the radius of the circle. Right: upper and lwer bounds for the coercivity constant, her&Xain

is a log-uniform random sample of siz@ain = 300Q a{]‘é(m) (upper curve, solid) anda,’_\‘é(m) (lower curve,
dotted) as a function of nf2 Xirain,scm after Jnax = 14 iterations of the SCM greedy algorithm; here the abscissa
represents the index of the point‘rfrain sem N Xirain,scM -

Figure 10: Venturi channel examplemaxpp xirain D' (M) jjf “‘(m)jjm as a function of N for the Lagrange

RB approximations associated with the sample of Fig. 9; hebg,n is a log-uniform random sample of size
Nirain = 300Q
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11 Circular bend

In this second example we look at a potential ow into a bend wi th a parametrization
on the internal and the external radius. Velocity and pressu re are in uenced by the
bend con guration (i.e., angle and radius of curvature). The major points are the curved
streamlines, the pressure gradient induced by the curvatur e, and the classical irrotational
ow eld associated with zero vorticity. Also gravitational effects or other force elds
could be applied.

11.1 Problem description

We consider the physical domain W,(m) shown in Fig. 11. Here x =( x1,X2) denotes a
point in W(m), non-dimensionalized with respect to a unit radius R (note that a tilde~
denotes dimensional quantities). We identify in Fig. 11 the subdomains W;,W,, W5,
describing a bend for a given internal and external radius an d an angle. The geometrical
con guration studied in this problem is quite complex to be pa rametrized dealing with
two curved walls at a small distance. In this problem the boun dary segments G, G, G,
G, G7, and G are curved (all other boundary segments and internal interf aces are straight
lines). The segmentsG;, Gy, and Gg are given by the parametrization

xx _ 0 10 1lm O cos(t)
Xo 0 0 1 0 1 m sin(t)
|{z-} [—{z—} {z }
oX(m) QY(m st(m

where for G, t2 [3/5,4/5 ], for G, t 2 [3/10,3/5 ], and for Gg, t 2 [0,3/10]. The segments
&, Gg, and G, are given by the parametrization

xx - 0 . 10 1+m O cos(t)
X2 0 0 1 0 1+ m sin(t) ’
|{z-} [—{z—}] {z }
o%(m Q*(m S$A(m

where for G, t2 [0,3/10], for G, t 2 [3/10,3/5 ], and for G, t 2 [3/5,4/5 ]. These curvy
boundaries describe the walls of the bend, straight lines ar e representing the inlet and
the outlet. The bend element could be integrated into a more c omplex modular system.

We consider here only P= 1 parameter. here m is the semi-width of the bend, so
that internal radiusis 1  m, and the external one is 1+ my (considering a unit radius as
reference length R); the angle (measured in radiant) between the inlet and the o utlet is
given, and its vertex is the origin of the concentric circles whose portions describes the
curvy walls. The out ow/in ow straight zone is parametrize  d considering a length of
4max(m). The parameter domain is given by D =[0.05,0.2.

We have also to impose interface and boundary conditions. We show in Fig. 11 the
boundaries of the domain. On boundary Gs we impose homogeneous Dirichlet con-

ditions f (m = 0, while on boundaries G, G, G, G, G, G, G1, Gz, G, and G we
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Figure 11: Parametrized geometry (left) and domain boundarigsght).

Figure 12: Representative solutions for potential and velity (with error bounds) for m=[0.0§ and m=[0.2].

Figure 13: Representative solutions for pressure (with errbounds) for m=[0.05 and m=[0.2].
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impose homogeneous Neumann conditions, ff/ {n = 0. In addition we impose non-
homogeneous Neumann condition, f/ fn= 1 atthe inow G, (i.e., imposed in ow ve-
locity). Also for this problem the output of interest is prov ided by the visualization of
velocity eld (by streamlines) and/or pressure contour eld. The error bound is com-
puted on the pressure.

This problem is then modeled by a P; nite element (FE) discretization whose space
contains N{= 7765 degrees of freedom. FE approximation may be typically too slow for
many query and real time applications, and we hence approxim ate the FE prediction for
the output and eld variable by the reduced basis (RB) method.

11.2 Numerical results

For this problem, considering one parameter (P = 1), we can now build the sample

SN =1 0.12,0.06,0.1J7obtained by application of the (energy norm version of the) g reedy
algorithm of Section 3.5 for Xyain @ log-uniform random sample of size ngyain = 1000. We
plot in Fig. 14 max npxwain DY'(M/ jif ,'QI"(m)jjm for the Lagrange RB approximations as-
sociated with the sample Sy,,: we observe very rapid, exponential convergence and just
3 basis functions have been selected and used (this explainsthe linear plot).

Figure 14: Circular bend examplemaxpp xgrain DR (M)/ jjf “t(m)jjm as a function of N for the Lagrange RB
approximations associated with the sampl8y,. =[0.12,0.06,0.1]] here Xyin is a log-uniform random sample
of size Nyin = 1000

12 Added mass

In this last example we provide a simple model to compute the a dded mass of a para-
metrized rectangular body in order to get added mass calcula tions not yet available in
the literature. This is a simple hydrodynamics problem. Its applications are well known
and important not only in marine hydrodynamics and relatedl vy in naval architecture
and ocean engineering (including oil drilling platforms), but also in more general elds
studying oating and buoyancy effects. We consider here a si mpli ed body oating into
inviscid and incompressible ows using a potential ow mode |
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In uid mechanics, added mass is the inertia added to a system because an acceler-
ating or decelerating body must move some volume of surround ing uid as it moves
through it, since the object and uid cannot occupy the same p hysical space simulta-
neously. For simplicity this can be modeled as some volume of uid moving with the
object, though in reality “all” the uid will be accelerated , to various degrees. All bodies
accelerating in a uid will be affected by added mass, but sin ce the added mass is depen-
dent on the density of the uid, the effect is often neglected for dense bodies falling in
much less dense uids. For situations where the uid density is comparable to, or even
greater than, the density of the body, the added mass can often be greater than the mass
of the body and neglecting it can introduce signi cant errors into a calculation. See for
example [25].

12.1 Problem description

We consider the physical domain Wy(n) shown in Fig. 15. We identify in Fig. 15 the
subdomains W; and W5, which will serve to de ne the geometry or introduce inhomoge -
neous physical properties. The domain represents an outer box containing a rectangular
body.

We consider here P= 3 parameters. Herem, np, ny are geometry parameters de ned
in Fig. 15: m_is the semi-width (basis) of the rectangular body sitting in side a bigger
rectangular body, m is the distance between the free surface and the upper surface of
the oating rectangular body, and ny is the height of the rectangular body. The fact
that we have introduced two parameters for the rectangular b ody is motivated by the
fact that we aim at studying interesting limit cases (i.e., t he rectangular body is degen-
erating into a lateral disk or into a transverse disk). The pa rameter domain is given
by D=[0.5,3.3 [4,8 [0.1,3.3. We show in Fig. 15 the boundaries of the domain. On
boundaries G; and Gs we impose homogeneous Dirichlet conditions f (n)= 0 representing
a free surface, while on boundaries G, &, G, G, G, Gs, Gro, and G we impose homoge-
neous Neumann conditions, njk;; ﬂixjf (m= 0. In addition we impose non-homogeneous

Neumann conditions on the top and on the bottom of the rectang ular body, respectively,

mw.o_ mw,
ﬂ—n(rr)—l on G, ﬂ—n(n“)— 1 on Ga.

By applying Neumann non-homogeneous boundary conditions o n the body surface,
we obtain our output of interest, the added mass, given by
z z

s(m=_f(m f(m,
€] G
which represents the mass of the unit density uid moved arou nd the body [25]. Several
comparisons (and tests as limit case) have been carried out ketween theoretical values
proposed in [25] and the ones computed with the proposed meth odology for plates/disks:
the computational model proves to be a very good approximati on.
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Figure 15: Parametrized geometry (left) and domain boundarigsght).

Figure 16: Finite element mesh.

Figure 17: Representative solutions for the added mass pmml m=[0.5,4,0.1 and m=[ 3.5,8.0,3.2

This problem is then modeled by the P; nite element (FE) discretization over the
triangulation shown in Fig. 16; the FE space contains Ny = 404 degrees of freedom?

*The user can obtain the RB prediction for the output and eld v ariable (visualization) — as well as
a rigorous error bound for the real error between the RB and FE predictions — through the website
http://augustine.mit.edu/workedproblems/rbMIT/probn ame/F_rbMIT _probnamewebserver.htm , where
probnameis just a label to be replaced by venturi , bend or addedmassin the cases taken into account in
this review paper. Who wish to run on their own computers andwho have already downloaded our roMIT
software package may also create the RB approximation by dow nloading the speci ¢ Matlab code at the link
http://augustine.mit.edu/workedproblems/rbMIT/probn ame/rbMIT_data/rbU _probname.m
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Figure 18: Added mass. Left: greedy (energy version) sam@g,,.. Right: maxXppxirain DY(M/ jjf “t(m)jjm

as a function of N for the Lagrange RB approximations associated with the sampbé Fig. 18; hereX,in is a
log-uniform random sample of siz@ygin = 300Q

12.2 Numerical results

For this problem, with P= 3 parameter, we visualize in Fig. 18 the sample Sy, obtained
by application of the (energy version of the) greedy algorit hm of Section 3.5 for Xgain
a log-uniform random sample of size ngqin = 3000. We may conclude with the same
consideration done in Section 10.2 about the clustering of sample near the boundaries of
the parameter domain and the sparse sample population in the interior of the domain. We

also plot in Fig. 18 maxppxwain DY'(M/ jjf m‘(m)jj m for the Lagrange RB approximations
associated with the sample on the left. We observe very rapid , exponential convergence.

13 Conclusion

We have studied some applications of reduced basis methodology to potential ows in
parametrized geometries with also a special attention to do mains with curved bound-
aries of interest for internal ows. All the crucial element s concerning problem parame-
trization have been introduced and generalized. Special error bounds for velocity and
pressure have been proposed, also pointwise in the internal domain coming from the
general error bound on the potential solution. Demonstrati ve results underline the ver-
satility of the proposed methodology in the solution of ows in parametrized complex
geometries. The error bounds on velocity and pressure (recovered by Bernoulli theo-
rem) provide an example of versatility of the methodology in computing also quantities
related with the gradient of the solution.
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