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2 Dipartimento di Matematica, Università degli studi di Bari “Aldo Moro”, via Edoardo
Orabona 4,70125 Bari, Italy

Received 19 October 2020; Accepted (in revised version) 4 January 2021

Abstract. We show that the classical Brezis-Nirenberg problem

− ∆u = u|u|+ λu in Ω,
u = 0 on ∂Ω,

when Ω is a bounded domain in R6 has a sign-changing solution which blows-up at a
point in Ω as λ approaches a suitable value λ0 > 0.
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1 Introduction

Brezis and Nirenberg in their famous paper [6] introduced the problem

− ∆u = |u| 4
n−2 u + λu in Ω, (1.1a)

u = 0 on ∂Ω, (1.1b)

where Ω is a smooth bounded domain in Rn and n ≥ 3. A huge number of results con-
cerning (1.1) has been obtained since then. Let us summarize the most relevant results
which are also connected with the topic of the present paper.

First of all, the classical Pohozaev’s identity ensures that (1.1) does not have any so-
lutions if λ ≤ 0 and Ω is a star-shaped domain. A simple argument shows that problem
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(1.1) does not have any positive solutions if λ ≥ λ1(Ω), where λ1(Ω) is the first eigen-
value of −∆ with Dirichlet boundary condition. The existence of a least energy positive
solution uλ to (1.1), i.e., a solution which achieves the infimum

mλ := inf
u∈H1

0 (Ω)\{0}

∫
Ωθ

(
|∇u|2 − λu2) dx

(
∫

Ω |u|p+1dx)
2

p+1

has been proved by Brezis and Nirenberg in [6] when λ ∈ (0, λ1(Ω)) in dimension n ≥ 4
and when λ ∈ (λ∗(Ω), λ1(Ω)) in dimension n = 3, where λ∗(Ω) > 0 depends on the
domain Ω. If Ω is the ball then λ∗(Ω) = 1

4 λ1(Ω) (see [6]), while the general case has
been treated by Druet in [12]. The existence of a sign-changing solution has been proved
by Cerami, Solimini and Struwe in [9] when λ ∈ (0, λ1(Ω)) and n ≥ 6 and by Capozzi,
Fortunato and Palmieri in [8] when λ ≥ λ1(Ω) and n ≥ 4.

There is a wide literature about the study of the asymptotic profile of the solutions
when the parameter λ approaches either zero or some strictly positive values depending
on the dimension n and the domain Ω. In the following, we will focus on the existence
of solutions which exhibit a positive or negative blow-up phenomenon as λ approaches
some particular values.

When the parameter λ approaches zero, positive and sign-changing solutions which
blow-up positively or negatively at one or more points in Ω do exist provided the dimen-
sion n ≥ 4. Rey in [24], Musso and Pistoia in [19] and Esposito, Pistoia and Vétois in [13]
built solutions to (1.1) with simple positive or negative blow-up points, i.e., around each
point the solution looks like a positive or a negative standard bubble. Here the standard
bubbles are the functions

Uδ,ξ(x) := αn
δ

n−2
2

(δ2 + |x− ξ|2)
n−2

2
with δ > 0, ξ ∈ Rn, (1.2a)

αn := (n(n− 2))
n−2

4 , (1.2b)

which are the only positive solutions of the equation

−∆U = U
n+2
n−2

in Rn (see [4,7,28]) More precisely, if λ is small enough problem (1.1) has a positive solu-
tion which blows-up at one point (see [24] if n ≥ 5 and [13] if n = 4) and a sign-changing
solution which blows-up positively and negatively at two different points (see [19] if
n ≥ 5). As far as we know the existence of multiple concentration in the case n = 4 is
still open. If n = 3 positive solutions of (1.1) blowing-up at a single point when the pa-
rameter λ approaches a strictly positive number have been found by Del Pino, Dolbeault
and Musso in [11]. Moreover, sign-changing solutions having both positive and nega-
tive blow-up points can be constructed arguing as Musso and Salazar in [20], where they
found solutions which blow-up at more points when λ is close to a suitable strictly posi-
tive number. In higher dimension n ≥ 7 Premoselli [22] found an arbitrary large number
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of sign-changing solutions to (1.1) with a towering blow-up point in Ω, i.e., around the
point the solution likes look like the superposition of bubbles of alternating sign (see
also Iacopetti and Vaira [16]). In particular, if Ω is a ball these solutions are nothing but
the radially symmetric nodal solutions. Conversely, if Ω is the ball in low dimension
n = 3, 4, 5, 6, Atkinson, Brezis and Peletier in [3] proved that problem (1.1) does not have
any sign-changing radial solutions when λ ∈ (0, λ∗) where λ∗ depends on the dimen-
sion n (see also Iacopetti and Pacella [15] and Dammak [10]). In particular, we expect that
in low dimension the blowing-up phenomenon takes places when λ approaches a posi-
tive value different from zero. In fact Iacopetti and Vaira in [17] proved that if n = 4, 5
and λ approaches the first eigenvalue λ1(Ω) the problem (1.1) has a sign-changing solu-
tion which blows-up at the origin and shares the shape of the positive first eigenfunction
associated with λ1(Ω) far away. So a natural question arises: is it possible to find a sign-
changing blowing-up solution of (1.1) in dimension n = 6 when λ approaches some strictly
positive number?

In the present paper, we give a positive answer. In order to state our result, we need
to introduce some notation and the assumptions.

Let u0 be a solution to {
−∆u0 = |u0|u0 + λ0u0 in Ω,

u0 = 0 on ∂Ω.
(1.3)

If ξ0 ∈ Ω is such that maxΩ u0 = u0(ξ0) > 0, we suppose that

λ0 = 2u0(ξ0). (1.4)

We assume that u0 is non-degenerate, i.e.,

{
−∆v = (2|u0|+ λ0)v in Ω

v = 0 on ∂Ω
⇒ v ≡ 0. (1.5)

If v0 solves {
−∆v0 − (2|u0|+ λ0)v0 = u0 in Ω,

v0 = 0 on ∂Ω,
(1.6)

we require that

2v0(ξ0) 6= 1. (1.7)

We will show that the problem{
−∆u = u|u|+ (λ0 + ε)u in Ω,
u = 0 on ∂Ω,

(1.8)
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where Ω is a bounded domain in R6 has a sign-changing solution which blows-up at ξ0
as |ε| approaches zero (note that ε is not necessarily positive) and shares the shape of u0
far away from ξ0. More precisely our existence result reads as follows.

Theorem 1.1. Assume (1.4), (1.5) and (1.7). There exists ε0 > 0 such that

1. if 1− 2v0(ξ0) > 0 and ε ∈ (0, ε0),

2. if 1− 2v0(ξ0) < 0 and ε ∈ (−ε0, 0),

then there exists a sign-changing solution uε of the problem (1.8), which blows-up at the point ξ0
as ε→ 0. More precisely

uε(x) = u0(x) + εv0(x)− PUδε,ξε
(x) + φε(x)

with as ε→ 0

δε|ε|−1 → d > 0, ξε → ξ0 and ‖φε‖H1
0 (Ω) = O

(
ε2| ln |ε|| 23

)
.

Here PUδ,ξ denotes the projection onto H1
0(Ω) of the standard bubble Uδ,ξ defined in

(1.2), i.e., −∆PUδ,ξ = U2
δ,ξ in Ω with PUδ,ξ = 0 on ∂Ω.

It is natural to ask for which domains Ω the assumptions (1.4), (1.5) and (1.7) hold
true. If Ω is the ball and u0 is the positive solution they are all satisfied (see [27] for
(1.5), [1] for (1.4) and (1.7)). More in general, we can only prove that assumptions (1.4)
and (1.5) are satisfied for most domains Ω (see Theorem 1.2) when u0 is the least energy
positive solution to (1.3). It would be interesting to prove that (1.7) also holds for generic
domains.

Let us state our generic result. Let Ω0 be a bounded and smooth domain in R6 and let
D be an open neighbourhood of Ω0. Set Ωθ := Θ(Ω0) where Θ = I + θ, θ ∈ C3,α(D, R6)
with ‖θ‖2,α ≤ ρ, with α ∈ (0, 1) and ρ small enough. Let us consider the problem on the
perturbed domain Ωθ

∆u + λu + |u|u = 0 in Ωθ , (1.9a)
u = 0 on ∂Ωθ . (1.9b)

Theorem 1.2. The set

Ξ :=
{

θ ∈ C3,α(D, R6) : if λ > 0 and u ∈ H1
0(Ωθ) solves (1.9)

then u is non-degenerate
}

is a residual subset in C3,α(D, R6), i.e., C3,α(D, R6) \ Ξ is a countable union of close subsets
without interior points.

Moreover, if λ ∈ (0, λ1(Ωθ)) and uλ denotes the least energy positive solution of (1.9), for
any θ ∈ Ξ there exists λθ ∈ (0, λ1(Ωθ)) such that

λθ = 2 max
Ωθ

uλθ
.
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The proof of Theorem 1.1 is based upon the well-known Ljapunov-Schmidt reduction.
In Section 2 we describe the main steps of the proof by omitting many details which can
be found up to minor changes in the quoted papers. We only prove what cannot be im-
mediately deduced by known results. In particular, we point out the careful construction
of the ansatz (2.3) which has to be refined up to a second order and the delicate estimate
of the reduced energy (2.7) given in Proposition 2.2 whose leading term (2.8) arises from
the interaction between the bubble and the second order term in the ansatz.

The proof of Theorem 1.2 relies on a classical transversality argument and it is carried
out in Section 3.

2 The existence of a sign-changing solution

2.1 Setting of the problem and the choice of the ansatz

In what follows we denote by

(u, v) :=
∫

Ω
∇u∇vdx, ‖u‖ :=

(∫
Ω
|∇u|2 dx

) 1
2

and |u|r :=
(∫

Ω
|u|r dx

) 1
r

,

the inner product and its correspond norm in H1
0(Ω) and the standard norm in Lr(Ω),

respectively. When A 6= Ω is any Lebesgue measurable set we specify the domain of
integration by using ‖u‖A, |u|r,A.

Let (−∆)−1 : L
3
2 (Ω) → H1

0(Ω) be the operator defined as the unique solution of the
equation

− ∆u = v in Ω,
u = 0 on ∂Ω.

By the Holder inequality it follows that

‖(−∆)−1(v)‖ ≤ C|v| 3
2
, ∀v ∈ L

3
2 (Ω),

for some positive constant C, which does not depend on v. Hence we can rewrite problem
(1.8) as

u = (−∆)−1[ f (u) + (λ0 + ε)u], u ∈ H1
0(Ω), (2.1)

with f (u) = |u|u.
Next we remind the expansion of the projection of the bubble. We denote by G(x, y)

the Green’s function of the Laplace operator given by

G(x, y) =
1

4ω6

(
1

|x− y|4 − H(x, y)
)

,
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where ω6 denotes the surface area of the unit sphere in R6 and H is the regular part of
the Green’s function, namely for all y ∈ Ω, H(x, y) satisfies

∆H(x, y) = 0 in Ω,

H(x, y) =
1

|x− y|4 , x ∈ ∂Ω.

It is known that the following expansion holds (see [24])

PUδ,ξ(x) = Uδ,ξ(x)− α6δ2H(x, ξ) +O
(
δ4) as δ→ 0 (2.2)

uniformly with respect to ξ in compact sets of Ω.
Moreover we recall (see [5]) that every solution to the linear equation

−∆ψ = 2Uδ,ξψ in R6

is a linear combination of the functions Zj
δ,ξ , j = 0, · · · , 6 given by

Z0
δ,ξ(x) = ∂δUδ,ξ(x) = 2α6δ

|x− ξ|2 − δ2

(δ2 + |x− ξ|2)3 ,

Zj
δ,ξ(x) = ∂ξ jUδ,ξ(x) = 4α6δ2 xj − ξ j

(δ2 + |x− ξ|2)3 , j = 1, · · · , 6.

If we denote by PZj
δ,ξ the projection of Zj

δ,ξ onto H1
0(Ω), i.e.,

− ∆PZj
δ,ξ = 2Uδ,ξ Zj

δ,ξ in Ω,

PZj
δ,ξ = 0 on ∂Ω,

elliptic estimates give

PZ0
δ,ξ(x) = Z0

δ,ξ − 2δα6H(x, ξ) +O
(
δ3) as δ→ 0,

PZj
δ,ξ(x) = Zj

δ,ξ − δ2α6∂ξ j H(x, ξ) +O
(
δ4), j = 1, · · · , 6 as δ→ 0,

uniformly with respect to ξ in compact sets of Ω.
We look for a solution of (1.8) of the form

uε(x) = u0(x) + εv0 − PUδ,ξ(x)︸ ︷︷ ︸
:=Wδ,ξ

+φε(x), (2.3)

where δ, ξ are chosen so that

δ = |ε|d with d ∈
(

σ,
1
σ

)
and ξ = ξ0 +

√
δη with |η| ≤ 1

σ
, where σ > 0 is small, (2.4)
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and φε is a remainder term, which is small as ε → 0 which belongs to the space K⊥δ,ξ
defined as follows.

Now let us define

Kδ,ξ := span{PZj
δ,ξ : j = 0, · · · , 6},

K⊥δ,ξ := {φ ∈ H1
0(Ω) : (φ, PZj

δ,ξ) = 0, j = 0, · · · , 6}.

Let us denote by Πδ,ξ and Π⊥δ,ξ the projection of H1
0(Ω) on Kδ,ξ and K⊥δ,ξ respectively.

Then solving problem (2.1) is equivalent to solve the system

Π⊥δ,ξ

{
uε(x)− (−∆)−1 [ f (uε) + λuε]

}
= 0, (2.5a)

Πδ,ξ

{
uε(x)− (−∆)−1 [ f (uε) + λuε]

}
= 0. (2.5b)

2.2 The remainder term: solving Eq. (2.5a)

Eq. (2.5a) can be written as

Lδ,ξ(φε) +Rδ,ξ +Nδ,ξ(φε) = 0,

where
Lδ,ξ(φε) = Π⊥δ,ξ

{
φε(x)− (−∆)−1 [ f ′(Wδ,ξ)φε + λφε

]}
is the linearized operator at the approximate solution,

Rδ,ξ = Π⊥δ,ξ

{
Wδ,ξ(x)− (−∆)−1 [ f (Wδ,ξ) + λWδ,ξ

]}
is the error term and

Nδ,ξ(φε) = Π⊥δ,ξ

{
−(−∆)−1 [ f (Wδ,ξ + φε)− f (Wδ,ξ)− f ′(Wδ,ξ)φε

]}
is a quadratic term in φε.

First of all, we estimate the size of the error termRδ,ξ .

Lemma 2.1. For any σ > 0 there exist c > 0 and ε0 > 0 such that for any d > 0 and η ∈ R6

satisfying (2.4) and for any ε ∈ (−ε0, ε0)

‖Rδ,ξ‖ ≤ cε2| ln |ε|| 23 .

Proof. First we remark that

− ∆Wδ,ξ − |Wδ,ξ |Wδ,ξ − (λ0 + ε)Wδ,ξ

=− ∆u0 − ε∆v0 −U2
δ,ξ − |u0 + εv0 − PUδ,ξ |(u0 + εv0 − PUδ,ξ)

− λ0u0 − λ0εv0 + (λ0 + ε)PUδ,ξ − εu0 − ε2v0

=− |u0 + εv0 − PUδ,ξ |(u0 + εv0 − PUδ,ξ)−U2
δ,ξ + |u0|u0

+ ε (−∆v0 − λ0v0 − u0)︸ ︷︷ ︸
=2|u0|v0 because of (1.6)

+(λ0 + ε)PUδ,ξ − ε2v0.
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By the continuity of Π⊥δ,ξ we get that

‖Rδ,ξ‖ ≤c
∣∣−∆Wδ,ξ − f (Wδ,ξ)− λWδ,ξ

∣∣
3
2

≤c
∣∣∣−|u0 + εv0 − PUδ,ξ |(u0 + εv0 − PUδ,ξ)− PU2

δ,ξ + |u0|u0 + 2ε|u0|v0

∣∣∣
3
2︸ ︷︷ ︸

(I)

+ c
∣∣∣PU2

δ,ξ −U2
δ,ξ

∣∣∣
3
2︸ ︷︷ ︸

(I I)

+(λ0 + ε)
∣∣PUδ,ξ

∣∣
3
2
+ ε2 |v0| 3

2︸ ︷︷ ︸
:=O(ε2)

.

First of all, we point out that

|PUδ,ξ | 3
2
≤ c|Uδ,ξ | 3

2
≤ cδ2| ln δ| 23 ,

and by (2.2)

(I I) ≤ c

∫Ω
|PUδ,ξ −Uδ,ξ |

3
2︸ ︷︷ ︸

=O(δ2)

|PUδ,ξ + Uδ,ξ |
3
2︸ ︷︷ ︸

≤cUδ,ξ


2
3

≤ cδ2
(∫

Ω
|Uδ,ξ |

3
2 dx

) 2
3
= O

(
δ4| ln δ|

2
3

)
.

First let us estimate (I) in B(ξ,
√

δ) and Ω \ B(ξ,
√

δ):

(I) ≤c
(∫

B(ξ,
√

δ)

∣∣|u0 + εv0 − PUδ,ξ |(u0 + εv0 − PUδ,ξ)|+ (PUδ,ξ)
2∣∣ 3

2

) 2
3

+ c
(∫

B(ξ,
√

δ)

∣∣|u0|u0 + 2ε|u0|v0|
3
2 dx

) 2
3

︸ ︷︷ ︸
=O(δ2)

+ c
(∫

Ω\B(ξ,
√

δ)

∣∣|u0 + εv0 − PUδ,ξ |(u0 + εv0 − PUδ,ξ)− |u0|u0 − 2|u0|(εv0 − PUδ,ξ)
∣∣ 3

2

) 2
3

+ c
(∫

Ω\B(ξ,
√

δ)

∣∣(PUδ,ξ)
2 + 2|u0|PUδ,ξ

∣∣ 3
2 dx

) 2
3

=O
(

δ2| ln δ|
2
3

)
,

since by mean value Theorem (here θ ∈ [0, 1])∫
B(ξ,
√

δ)

∣∣|u0 + εv0 − PUδ,ξ |(u0 + εv0 − PUδ,ξ) + (PUδ,ξ)
2∣∣ 3

2

=2
∫

B(ξ,
√

δ)
|(θ(u0 + εv0)− PUδ,ξ)(u0 + εv0)|

3
2 dx

≤c
∫

B(ξ,
√

δ)
|PUδ,ξ |

3
2 dx︸ ︷︷ ︸

=O(δ3| log δ|)

+c
∫

B(ξ,
√

δ)
|u0 + εv0|3 dx︸ ︷︷ ︸
=O(δ3)

,
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and by the inequality∣∣|a + b|(a + b)− |a|a− 2|a|b
∣∣ ≤ 7b2 for any a, b ∈ R, (2.6)

and∫
Ω\B(ξ,

√
δ)

∣∣∣|u0 + εv0 − PUδ,ξ |(u0 + εv0 − PUδ,ξ)− |u0|u0 − 2|u0|(εv0 − PUδ,ξ)
∣∣∣ 3

2

≤ c
∫

Ω\B(ξ,
√

δ)
|εv0 − PUδ,ξ |3dx

≤ c
∫

Ω\B(ξ,
√

δ)
|εv0|3dx︸ ︷︷ ︸

=O(ε3)

+c
∫

Ω\B(ξ,
√

δ)
|Uδ,ξ |3dx︸ ︷︷ ︸

=O(δ3)

,

(∫
Ω\B(ξ,

√
δ)

∣∣∣|u0 + εv0 − PUδ,ξ |(u0 + εv0 − PUδ,ξ)− |u0|u0 − 2|u0|(εv0 − PUδ,ξ)
∣∣∣ 3

2
) 2

3

= O(ε2),∫
Ω\B(ξ,

√
δ)

∣∣∣|PUδ,ξ |(PUδ,ξ) + 2|u0|PUδ,ξ

∣∣∣ 3
2

≤ c
∫

Ω\B(ξ,
√

δ)
|Uδ,ξ |3 dx︸ ︷︷ ︸

=O(δ3)

+
∫

Ω\B(ξ,
√

δ)
|Uδ,ξ |

3
2 dx︸ ︷︷ ︸

=O(δ3| log δ|)

,

which ends the proof.

Next we analyze the invertibility of the linear operator Lδ,ξ (see for example [30],
Lemma 2.4 or [25], Lemma 4.2).

Lemma 2.2. For any σ > 0 there exist c > 0 and ε0 > 0 such that for any d > 0 and η ∈ R6

satisfying (2.4) and for any ε ∈ (−ε0, ε0)

‖Lδ,ξ(φ)‖ ≥ c‖φ‖ for any φ ∈ K⊥δ,ξ .

Moreover, Lδ,ξ is invertible and ‖L−1
δ,ξ ‖ ≤

1
c .

We are in position now to find a solution of Eq. (2.5a) whose proof relies on a standard
contraction mapping argument (see for example [19, Proposition 1.8] and [18, Proposition
2.1])

Proposition 2.1. For any σ > 0 there exist c > 0 and ε0 > 0 such that for any d > 0 and
η ∈ R6 satisfying (2.4) and for any ε ∈ (−ε0, ε0), there exists a unique φε = φε(d, η) ∈ K⊥δ,ξ
solution to (2.5a) which is continuously differentiable with respect to d and η and such that

‖φε‖ ≤ cε2| ln |ε|| 23 .
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2.3 The reduced problem: solving Eq. (2.5b)

To solve Eq. (2.5b), we shall find the parameter δ and the point ξ ∈ Ω as in (2.4), i.e., d > 0
and η ∈ R6, so that (2.5b) is satisfied. It is well known that this problem has a variational
structure, in the sense that solutions of (2.5b) reduces to find critical points to some given
explicit finite dimensional functional. Indeed, let Jε : H1

0(Ω)→ R defined by

Jε(u) :=
1
2

∫
Ω
|∇u|2dx− λ

2

∫
Ω

u2dx− 1
3

∫
Ω
|u|3dx

and let J̃ε : R+ ×R6 → R be the reduced energy which is defined by

J̃ε(d, η) = Jε(Wδ,ξ + φε).

Proposition 2.2. For any σ > 0 there exists ε0 > 0 such that for any ε ∈ (−ε0, ε0)

J̃ε(d, η) = c0(ε) + |ε|3Υ(d, η) + o
(
|ε|3
)

(2.7)

with
Υ(d, η) := sgn(ε) (1− 2v0(ξ0)) d2a1 + d3 (a2〈D2u0(ξ0)η, η〉 − a3

)
, (2.8)

uniformly with respect to (d, η) which satisfies (2.4), where the c0(ε) depends only on ε and the
ai’s are positive constants. Moreover, if (d, η) is a critical point of J̃ε, then Wδ,ξ + φε is a solution
of (1.8).

Proof. It is quite standard to prove that if (d, η) satisfies (2.4) and is a critical point of J̃ε,
then Wδ,ξ + φε is a solution of (1.8) (see for example [18, Proposition 2.2]). Moreover, it is
not difficult to check that

J̃ε(d, η) = Jε(Wδ,ξ) + o
(
|ε|3
)

uniformly with respect to (d, η) which satisfies (2.4) (see for example [18, Proposition
2.2]).

We need only to estimate the main term of the reduced energy Jε(Wδ,ξ), i.e.,

Jε(u0 + εv0 − PUδ,ξ)

=
1
2

∫
Ω
|∇(u0 + εv0 − PUδ,ξ)|2 −

λ0 + ε

2

∫
Ω
(u0 + εv0 − PUδ,ξ)

2 − 1
3

∫
Ω
|u0 + εv0 − PUδ,ξ |3

=
1
2

∫
Ω
|∇(u0 + εv0)|2 +

1
2

∫
Ω
|∇PUδ,ξ |2 −

λ0 + ε

2

∫
Ω
(u0 + εv0)

2 − λ0 + ε

2

∫
Ω
(PUδ,ξ)

2

−
(∫

Ω
∇u0∇PUδ,ξ − λ0

∫
Ω

u0PUδ,ξ

)
︸ ︷︷ ︸

=
∫

Ω |u0|u0PUδ,ξ

−ε

(∫
Ω
∇v0∇PUδ,ξ − λ0

∫
Ω

v0PUδ,ξ −
∫

Ω
u0PUδ,ξ

)
︸ ︷︷ ︸

=
∫

Ω 2|u0|v0PUδ,ξ

+ ε2
∫

Ω
v0PUδ,ξ −

1
3

∫
Ω
|u0 + εv0 − PUδ,ξ |3
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=
1
2

∫
Ω
|∇(u0 + εv0)|2 −

λ0 + ε

2

∫
Ω
(u0 + εv0)

2 − 1
3

∫
Ω
|u0 + εv0|3︸ ︷︷ ︸

=:I1

+
1
2

∫
Ω
|∇PUδ,ξ |2 −

1
3

∫
Ω

PU3
δ,ξ︸ ︷︷ ︸

=:I2

−λ0
2

∫
Ω

PU2
δ,ξ +

∫
Ω

u0PU2
δ,ξ︸ ︷︷ ︸

=:I3

− ε

2

∫
Ω

PU2
δ,ξ + ε

∫
v0PU2

δ,ξ︸ ︷︷ ︸
=:I4

−1
3

∫
Ω

(
|u0 + εv0 − PUδ,ξ |3 − |u0 + εv0|3 − PU3

δ,ξ + 3(u0 + εv0)PU2
δ,ξ + 3|u0 + εu0|(u0 + εv0)PUδ,ξ

)
︸ ︷︷ ︸

=:I5

+
∫

Ω

[
|u0 + εv0|(u0 + εv0)− (|u0|u0 + 2ε|u0|v0)

]
PUδ,ξ︸ ︷︷ ︸

=:I6

+ ε2
∫

Ω
v0PUδ,ξ︸ ︷︷ ︸
=:I7

.

It is clear that

I7 = O
(

ε2
∫

Ω

δ2

|x− ξ|4 dx
)
= O

(
ε2δ2) = O(ε4).

To estimate I6 by (2.6) it follows that

I6 = O
(

ε2
∫

Ω
PUδ,ξ

)
= O

(
ε2δ2) = O(ε4).

Now, I1 does not depend neither on d nor on η and it will be included in the constant c0
in (2.7). By (2.2)

I2 =
1
2

∫
Ω

U3
δ,ξ −

1
3

∫
Ω

PU3
δ,ξ

=
1
2

∫
Ω

U3
δ,ξ −

1
3

∫
Ω

(
Uδ,ξ(x)− α6δ2H(x, ξ) +O

(
δ4))3

=
1
6

∫
R6

U3 +O
(

δ2
∫

Ω
U2

δ,ξ

)
+ O

(
δ4)

=
1
6

∫
R6

U3
δ,ξ + O

(
δ4).

Now, setting
ϕδ,ξ := PUδ,ξ −Uδ,ξ = O(δ2),

by (2.2) and (2.4)

I3 =
∫

Ω

(
u0(x)− λ0

2

)
(Uδ,ξ + ϕδ,ξ)

2

=
∫

Ω
(u0(x)− u0(ξ0))U2

δ,ξ +O(δ4)

=
∫

Ω

[
1
2
〈D2u0(ξ0)(x− ξ0), (x− ξ0)〉+O(|x− ξ0|3)

]
α2

6
δ4

(δ2 + |x− ξ|2)4 dx +O(δ4)

=α2
6

∫
Ω

1
2
〈D2u0(ξ0)(x− ξ0), (x− ξ0)〉

δ4

(δ2 + |x− ξ|2)4 dx +O(δ4)
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=α2
6δ2

∫
Ω−ξ

δ

1
2
〈D2u0(ξ0)(δy +

√
δη), (δy +

√
δη)〉 1

(1 + |y|2)4 dy +O(δ4)

=
α2

6
2 δ3

(∫
R6

1
(1 + |y|2)4 dy

)
〈D2u0(ξ0)η, η〉+O(δ4| ln δ|)

=
α2

6
2

d3|ε|3
(∫

R6

1
(1 + |y|2)4 dy

)
〈D2u0(ξ0)η, η〉+O(ε4| ln |ε||),

and analogously

I4 =ε
∫

Ω

(
v0(x)− 1

2

)
PU2

δ,ξ

=ε

[
α2

6δ2
(∫

R6

1
(1 + |y|2)4 dy

)(
v0(ξ0)−

1
2

)
+ o(1)

]
=ε3d2

[
α2

6

(∫
R6

1
(1 + |y|2)4 dy

)(
v0(ξ0)−

1
2

)
+ o(1)

]
.

Finally, we have to estimate I5.
We point out that

|u0 + εv0 − PUδ,ξ |3 − |u0 + εv0|3 − PU3
δ,ξ

+ 3(u0 + εv0)PU2
δ,ξ + 3|u0 + εu0|(u0 + εv0)PUδ,ξ = 0 if u0 + εv0 ≤ 0,

and so

I5 =− 1
3

∫
{u0+εv0≥0}

(
|u0 + εv0 − PUδ,ξ |3 − (u0 + εv0)

3 − PU3
δ,ξ

+3(u0 + εv0)PU2
δ,ξ + 3(u0 + εv0)

2PUδ,ξ

)
dx

=− 1
3

∫
{u0+εv0≥PUδ,ξ}

(
−2PU3

δ,ξ + 6(u0 + εv0)PU2
δ,ξ

)
− 1

3

∫
{0<u0+εv0<PUδ,ξ}

(
−2(u0 + εv0)

3 + 6(u0 + εv0)
2PUδ,ξ

)
.

First of all we claim that for any σ > 0 there exists ε0 > 0 such that for any ε ∈
(−ε0, ε0) and (d, ξ) satisfying (2.4)

B
(

ξ, R1
δ

√
δ
)
⊂ {x ∈ Ω : 0 < u0(x) + εv0(x) < PUδ,ξ(x)} ∩ B

(
ξ, δ

1
4
)
⊂ B

(
ξ, R2

δ

√
δ
)

, (2.9)

where

R1
δ, R2

δ = R0 + o(1) with R0 :=
(

α6

u0(ξ0)

) 1
4

. (2.10)

We remind that δ = O(ε) and also that

PUδ,ξ(x) = α6
δ2

(δ2 + |x− ξ|2)2 +O(ε2)
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uniformly in Ω. If |x− ξ| < R1
δ

√
δ is small enough then by mean value theorem u0(x) +

εv0(x) = u0(ξ0) +O1(ε) and

u0(x) + εv0(x) < PUδ,ξ(x)⇔ u0(ξ0)

α6
+O1(ε) <

δ2

(δ2 + |x− ξ|2)2

⇔ |x− ξ| ≤
√

δ

 1( u0(ξ0)
α6

+O1(ε)
) 1

2
− δ

 1
2

︸ ︷︷ ︸
R1

δ

,

and the first inclusion in (2.9) together with (2.10) follow. On the other hand, again by
mean value theorem we have

u0(x) + εv0(x) = u0(ξ0) +O2(
√

δ)

for any x ∈ B(ξ, δ
1
4 ) and arguing as above we get the second inclusion in (2.9) and (2.10).

It is useful to point out that by (2.9) we immediately get

Bc
(

ξ, R1
δ

√
δ
)
⊃ {x ∈ Ω : u0(x) + εv0(x) ≥ PUδ,ξ(x)} ∪ Bc(ξ, δ

1
4
)
⊃ Bc

(
ξ, R2

δ

√
δ
)

. (2.11)

Now by (2.9) and (2.11) we deduce

I5 =− 1
3

∫
{u0+εv0≥PUδ,ξ}

(
−2PU3

δ,ξ + 6(u0 + εv0)PU2
δ,ξ

)
− 1

3

∫
{0<u0+εv0<PUδ,ξ}

(
−2(u0 + εv0)

3 + 6(u0 + εv0)
2PUδ,ξ

)
=− 1

3

∫
{u0+εv0≥PUδ,ξ}∪Bc

(
ξ,δ

1
4
) (−2PU3

δ,ξ + 6(u0 + εv0)PU2
δ,ξ

)
+

1
3

∫
Bc
(

ξ,δ
1
4
)
\{u0+εv0≥PUδ,ξ}∩Bc

(
ξ,δ

1
4
) (−2PU3

δ,ξ + 6(u0 + εv0)PU2
δ,ξ

)
− 1

3

∫
{0<u0+εv0<PUδ,ξ}∩B

(
ξ,δ

1
4
) (−2(u0 + εv0)

3 + 6(u0 + εv0)
2PUδ,ξ

)
− 1

3

∫
{0<u0+εv0<PUδ,ξ}∩Bc

(
ξ,δ

1
4
) (−2(u0 + εv0)

3 + 6(u0 + εv0)
2PUδ,ξ

)
=− 1

3

∫
{u0+εv0≥PUδ,ξ}∪Bc

(
ξ,δ

1
4
) (−2PU3

δ,ξ + 6(u0 + εv0)PU2
δ,ξ

)
− 1

3

∫
{0<u0+εv0<PUδ,ξ}∩B

(
ξ,δ

1
4
) (−2(u0 + εv0)

3 + 6(u0 + εv0)
2PUδ,ξ

)
+ o(δ3),
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because ∫
Bc
(

ξ,δ
1
4
)
\{u0+εv0≥PUδ,ξ}∩Bc

(
ξ,δ

1
4
) (−2PU3

δ,ξ + 6(u0 + εv0)PU2
δ,ξ

)
= O

(∫
Bc
(

ξ,δ
1
4
) (U3

δ,ξ + U2
δ,ξ

))
= O

(
δ

7
2
)
,∫

{0<u0+εv0<PUδ,ξ}∩Bc
(

ξ,δ
1
4
) (−2(u0 + εv0)

3 + 6(u0 + εv0)
2PUδ,ξ

)
= O

(
δ3meas{0 < u0(x) < 2δ}

)
= o(δ3),

since

PUδ,ξ(x) = O(δ) if |x− ξ| ≥ δ
1
4 ,

{0 < u0 + εv0 < PUδ,ξ} ∩ Bc(ξ, δ
1
4
)
⊂ {0 < u0(x) < 2δ} if δ is small enough.

Next we claim that

− 1
3

∫
{u0+εv0≥PUδ,ξ}∪Bc

(
ξ,δ

1
4
) (−2PU3

δ,ξ + 6(u0 + εv0)PU2
δ,ξ

)
− 1

3

∫
{0<u0+εv0<PUδ,ξ}∩B

(
ξ,δ

1
4
) (−2(u0 + εv0)

3 + 6(u0 + εv0)
2PUδ,ξ

)
+ o(δ3)

=− 1
3

∫
{u0+εv0≥PUδ,ξ}∪Bc

(
ξ,δ

1
4
) (−2PU3

δ,ξ + 6u0PU2
δ,ξ

)
− 1

3

∫
{0<u0+εv0<PUδ,ξ}∩B

(
ξ,δ

1
4
) (−2u3

0 + 6u2
0PUδ,ξ

)
+ o(δ3).

Indeed using (2.11) and (2.9) we get

∫
{u0+εv0≥PUδ,ξ}∪Bc

(
ξ,δ

1
4
) PU2

δ,ξ = O

∫
Bc
(

ξ,δ
1
2

) U2
δ,ξ

 = O
(
δ3) ,

measB
(

ξ, δ
1
2

)
= O(δ3) and

∫
{u0+εv0<PUδ,ξ}∩B

(
ξ,δ

1
4
) PUδ,ξ = O

∫
B
(

ξ,δ
1
2

) Uδ,ξ

 = O
(
δ3) .

We estimate the last two terms in the expansion of I5. By (2.11)

Bc
(

ξ, R2
δ

√
δ
)
⊂ {x ∈ Ω : u0(x) + εv0(x) ≥ PUδ,ξ} ∪ Bc(ξ, δ

1
4
)
⊂ Bc

(
ξ, R1

δ

√
δ
)

.
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Hence ∫
|x−ξ|>R2

δ

√
δ

(
−2PU3

δ,ξ + 6u0PU2
δ,ξ

)
≤
∫
{u0+εv0≥PUδ,ξ}∪B

(
ξ,δ

1
4
) (−2PU3

δ,ξ + 6u0PU2
δ,ξ

)
≤
∫
|x−ξ|>R1

δ

√
δ

(
−2PU3

δ,ξ + 6u0PU2
δ,ξ

)
.

Now if Rδ denotes either R1
δ or R2

δ we get∫
|x−ξ|>Rδ

√
δ

(
−2PU3

δ,ξ + 6u0PU2
δ,ξ

)
=− 2

∫
|x−ξ|>Rδ

√
δ

U3
δ,ξ + 6

∫
|x−ξ|>Rδ

√
δ

u0U2
δ,ξ +O

(
δ4)

=− 2
∫
|y|> Rδ√

δ

α3
6

(1 + |y|2)6 + 6δ2
∫
|y|> Rδ√

δ

u0(δy + ξ)
α2

6
(1 + |y|2)4 +O

(
δ4)

=− 2ω6α3
6

∫ +∞

Rδ√
δ

r5

(1 + r2)6 + 6δ2ω6α2
6u0(ξ0)

∫ +∞

Rδ√
δ

r5

(1 + r2)4

+O
(

δ4
∫ +∞

Rδ√
δ

r7

(1 + r2)4

)
+O

(
δ4)

=− 1
3

ω6α3
6R−6

δ δ3 + 3δ3ω6α2
6R−2

δ u0(ξ0) +O
(

δ4| log δ|
)

=− 1
3

ω6α3
6R−6

0 δ3 + 3δ3ω6α2
6R−2

0 u0(ξ0) + o
(
δ3) because of (2.10)

and by comparison ∫
{u0+εv0≥PUδ,ξ}∪Bc

(
ξ,δ

1
4
) (−2PU3

δ,ξ + 6u0PU2
δ,ξ

)
=− 1

3
ω6α3

6(R0)
−6δ3 + 3δ3ω6α2

6(R0)
−2u0(ξ0) + o

(
δ3). (2.12)

In a similar way, by (2.9)∫
|x−ξ|<R1

δ

√
δ

(
−2u3

0 + 6u2
0PUδ,ξ

)
≤
∫
{0<u0+εv0<PUδ,ξ}∩B

(
ξ,δ

1
4
) (−2u3

0 + 6u2
0PUδ,ξ

)
≤
∫
|x−ξ|<R2

δ

√
δ

(
−2u3

0 + 6u2
0PUδ,ξ

)
,
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and if Rδ denotes either R1
δ or R2

δ we get∫
|x−ξ|<Rδ

√
δ

(
−2u3

0 + 6u2
0PUδ,ξ

)
=− 2δ6

∫
|y|< Rδ√

δ

u3
0(δy + ξ) + 6δ4

∫
|y|< Rδ√

δ

u2
0(δy + ξ)

α6

(1 + |y|2)2 +O
(
δ5)

=
(
−2u3

0(ξ0) +O
(√

δ
))

δ6ω6

∫ Rδ√
δ

0
r5

+ 6α6

(
u2

0(ξ0) +O
(√

δ
))

δ4ω6

∫ Rδ√
δ

0

r5

(1 + r2)2 +O
(
δ5)

=− 2δ3u3
0(ξ0)ω6R6

δ + 3α6δ3u2
0(ξ0)ω6R2

δ +O
(
δ

7
2
)

=− 2δ3u3
0(ξ0)ω6R6

0 + 3α6δ3u2
0(ξ0)ω6R2

0 + o
(
δ3) because of (2.10),

and by comparison ∫
{u0+εv0<PUδ,ξ}∩B

(
ξ,δ

1
4
) (−2u3

0 + 6u2
0PUδ,ξ

)
=− 2δ3u3

0(ξ0)ω6R6
0 + 3α6δ3u2

0(ξ0)ω6R2
0 + o

(
δ3). (2.13)

Finally, by (2.13) and (2.12)

I5 = |ε|3d3
(
−11

9
ω6α

3
2
6 (u0(ξ0))

3
2 + o(1)

)
.

Collecting all the previous estimates we get

J̃ε(d, η) = c0(ε) + |ε|3
{
sgn(ε) (1− 2v0(ξ0)) d2a1 + d3 (a2〈D2u0(ξ0)η, η〉 − a3

)}︸ ︷︷ ︸
=:Υ(d,η)

+o
(
|ε|3
)

with

a1 = α2
6

(∫
R6

1
(1 + |y|2)4 dy

)
= 96ω6,

a2 =
α2

6
2

∫
R6

dy
(1 + |y|2)4 ,

a3 =
11
9

ω6α
3
2
6 (u0(ξ0))

3
2 ,

and that concludes the proof.

We are now in position to prove Theorem 1.1.
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Proof of Theorem 1.1. The claim follows by Proposition 2.2 taking into account that if

sgn(ε) (1− 2v0(ξ0)) > 0

the function Υ has always an isolated maximum point (d0, 0), with

d0 :=
2a1

3a3
sgn(ε) (1− 2v0(ξ0)) ,

which is stable under uniform perturbations.

3 A generic result

Let Ω0 be a bounded and smooth domain in Rn, we let D be and open neighbourhood
of Ω0 and α ∈ (0, 1). There exists ε > 0 such that if θ ∈ C3,α(D, Rn) with ‖θ‖2,α ≤ ε
then Θ = I + θ maps Ω0 in a one-to-one way onto the smooth domain Ωθ := Θ(Ω0)
with boundary ∂Ωθ = Θ(∂Ω0). If x ∈ Ω0 we agree that x̂ = Θx = (I + θ)x ∈ Ωθ . If
û ∈ H1

0(Ωθ) ∩ H2(Ωθ) then it is clear that u = û ◦Θ ∈ H1
0(Ω0) ∩ H2(Ω0).

Our result reads as follows.

Theorem 3.1. The set

Ξ :=
{

θ ∈ C3,α(D, Rn) : if λ > 0 and u ∈ H1
0(Ωθ) solve

∆u + λu + |u| 4
n−2 u = 0 in Ωθ , u = 0 on ∂Ωθ ,

then u is non-degenerate
}

(3.1)

is a residual subset in C3,α(D, Rn), i.e., C3,α(D, Rn) \ Ξ is a countable union of close subsets
without interior points.

The proof relies on the following abstract transversality theorem (see [23, 26, 29]).

Theorem 3.2. Let X, Y, Z be three Banach spaces and U ⊂ X, V ⊂ Y open subsets. Let
F : U ×V → Z be a Cα−map with α ≥ 1. Assume that

i) for any y ∈ V, F(·, y) : U → Z is a Fredholm map of index l with l ≤ α;

ii) 0 is a regular value of F, i.e., the operator F′(x0, y0) : X × Y → Z is onto at any point
(x0, y0) such that F(x0, y0) = 0;

iii) the map π ◦ i : F−1(0) → Y is σ−proper, i.e., F−1(0) = ∪+∞
s=1Cs where Cs is a closed

set and the restriction π ◦ i|Cs
is proper for any s; here i : F−1(0) → Y is the canonical

embedding and π : X×Y → Y is the projection.

Then the set V := {y ∈ V : 0 is a regular value of F(·, y)} is a residual subset of V, i.e.,
V \ V is a countable union of close subsets without interior points.
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Indeed, in our case we choose

X = R×
(

H1
0(Ω0) ∩ H2(Ω0)

)
,

U = (0, ∞)×
(

H1
0(Ω0) ∩ H2(Ω0) \ {0}

)
,

Y = C3,α (D, Rn) ,

V = Bε :=
{

θ ∈ C3,α(D, Rn) : ‖θ‖3,α < ε
}

,

Z = R× L2(Ω0).

X and Z are Banach spaces equipped with the norms ‖(a, u)‖X := |a| + ‖u‖H1
0∩H2(Ω0)

,
and ‖(a, u)‖Z := |a|+ ‖u‖L2(Ω0), respectively. Moreover, the function F : U × V → Z is
defined by

F(λ, u, θ) :=
(

Q(λ, û, θ), ∆x̂û + |û|p−1û + λû
)

,

where
Q(λ, û, θ) :=

∫
Ωθ

(
|∇x̂û|2 − |û|p+1 − λû2

)
dx̂.

It is clear that

F(λ, u, θ) = (0, 0) ⇔ ∆x̂û + |û|p−1û + λû = 0 in Ωθ , û = 0 on ∂Ωθ .

Theorem 3.1 will follow by Theorem 3.2 as soon as we prove that F satisfies the assump-
tions and this is done below.

First of all, we rewrite F in terms of the x−variable (see [21, 26])

Lemma 3.1. We have

Q(λ, û, θ) :=
∫

Ω0

{
∇u ·

[
(det Θ′)(Θ′)−1(tΘ′)−1∇u

]
−
(
|u|p+1 + λu2

)
(det Θ′)

}
dx, (3.2a)

∆x̂û + |û|p−1û + λû = div
[
(det Θ′)(Θ′)−1(tΘ′)−1∇u

]
+
(
|u|p−1u + λu

)
(det Θ′). (3.2b)

At this point it is useful to point out the following fact.

Remark 3.1. We can choose ε > 0 small enough so that for any θ ∈ Bε( ∫
Ω0

(∣∣∣〈(det Θ′)(Θ′)−1(tΘ′)−1∇u,∇u
〉∣∣∣2 + ∣∣∣div

[
(det Θ′)(Θ′)−1(tΘ′)−1∇u

]∣∣∣2) dx
)1/2

defines on H1
0(Ω0) ∩ H2(Ω0) a norm which is equivalent to the standard one

‖u‖H1
0∩H2(Ω0)

=

( ∫
Ω0

(
|∇u|2 + |∆u|2

)
dx
)1/2

.

Next, we check the differentiability of F (see [21, 26]).
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Lemma 3.2. The function F is differentiable at any (λ0, u0, θ0) ∈ U×V such that F(λ0, u0, θ0) =
(0, 0). Moreover if Θ0 = I + θ0,

F′(λ0, u0, θ0)[λ, u] =
( ∫

Ω0

{
2∇u0 ·

[
(det Θ′0)(Θ

′
0)
−1(tΘ′0)

−1∇u
]

−
(
(p + 1)|u0|p−1u0 + 2λ0u0

)
u(det Θ′0)

}
dx− λ

∫
Ω0

u2
0(det Θ′0)dx,

div
[
(det Θ′0)(Θ

′
0)
−1(tΘ′0)

−1∇u
]

+ (p|u0|p−1 + λ0)u(det Θ′0) + λu0(det Θ′0)
)

, (3.3)

and if θ0 = 0,

F′(λ0, u0, θ0)[θ]

=

(∫
Ω0

{
∇u0 ·

[
(divθ)∇u0 − (θ′ + tθ′)∇u0

]
−
(
|u0|p+1 + λ0u2

0

)
(divθ)

}
dx ,

div
[
(divθ)∇u0 − (θ′ + tθ′)∇u0

]
+
(
|u0|p−1u0 + λ0u0

)
(divθ)

)
. (3.4)

Let us check assumption i) of Theorem 3.2.

Lemma 3.3. For any θ ∈ V the function F(·, ·, θ) is a Fredholm map from U into Z of index 0.

Proof. The partial derivative F′λ,u(λ0, u0, θ0) : X → Z is the sum of an isomorphism I and
a compact perturbation K, namely

I(λ, u) :=
(
−λ

∫
Ω0

u2
0(det Θ′0)dx, div

[
(det Θ′0)(Θ

′
0)
−1(tΘ′0)

−1∇u
])

,

K(λ, u) :=
(∫

Ω0

{
2∇u0 ·

[
(det Θ′0)(Θ

′
0)
−1(tΘ′0)

−1∇u
]

−
(
(p + 1)|u0|p−1u0 + 2λ0u0

)
u(det Θ′0)

}
dx ,(

p|u0|p−1 + λ0

)
u(det Θ′0) + λu0(det Θ′0)

)
.

Thus, we completed the proof.

Let us check assumption iii) of Theorem 3.2.

Lemma 3.4. The map π ◦ i : F−1(0)→ Y is σ−proper.

Proof. Let us write

F−1(0, 0) = ∪∞
m=1Cm, Cm = (Am × Bm × Cm) ∩ F−1(0, 0),
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where

Am :=
{

1
m
≤ λ ≤ m

}
,

Bm :=

{
u ∈ H1

0(Ω0) ∩ H2(Ω0) :
1
m
≤ ‖u‖ :=

( ∫
Ω0

(
|∇u|2 + (∆u)2

)
dx
) 1

2
≤ m

}
,

Cm :=
{

θ ∈ C3,α(Ω0) : ‖θ‖3,α ≤ ε

(
1− 1

m

)}
.

Let us fix m. We have to prove that if (θk)k≥1 ⊂ Cm with θk → θ and (λk, uk)k≥1 ⊂
Am × Bm is such that F(λk, uk, θk) = 0 then, up to a subsequence, (λk, uk) → (λ, u) ∈
Am × Bm and F(λ, u, θ) = 0. First of all, up to a subsequence, we have λk → λ ∈ Am and
uk → u weakly in H1

0(Ω0) ∩ H2(Ω0) and strongly in Lq(Ω0) for any q > 1 if n = 3, 4 and
1 < q < 2n

n−4 if n ≥ 5. If Θk = I + θk we know that Θk → Θ := I + θ in C1,α(Ω0, Rn). Now,
condition F(λk, uk, θk) = 0 reads as

div

(det Θ′k)(Θ
′
k)
−1(tΘ′k)

−1︸ ︷︷ ︸
=Ak

∇uk

+
(
|uk|p−1uk + λkuk

)
(det Θ′k)︸ ︷︷ ︸

= fk

= 0 in Ω0,

u = 0 on ∂Ω0.

In particular, for any ϕ ∈ H1
0(Ω0)∫

Ω0

[〈Ak∇uk,∇ϕ〉+ fk ϕ] dx = 0 (3.5)

and so passing to the limit

∫
Ω0

〈 (det Θ′)(Θ′)−1(tΘ′)−1︸ ︷︷ ︸
=A

∇u,∇ϕ
〉
−
(
|u|p−1u + λu

)
(det Θ′︸ ︷︷ ︸

= f

)ϕ

 dx = 0, (3.6)

namely
div (A∇u) + f = 0 in Ω0, u = 0 on ∂Ω0,

i.e., F(λ, u, θ) = 0.
Now, let us prove that uk → u strongly in H1

0(Ω0) ∩ H2(Ω0). By (3.5) and (3.6) we
deduce ∫

Ω0

〈A∇(uk − u),∇(uk − u)〉

=
∫

Ω0

〈A∇uk,∇uk〉+
∫

Ω0

〈A∇u,∇u〉 − 2
∫

Ω0

〈A∇u,∇uk〉

=
∫

Ω0

〈(A− Ak)∇uk,∇uk〉+
∫

Ω0

(− fkuk − f u + 2 f uk)

=o(1),
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because Ak → A in C0(Ω0) and uk → u strongly in L
2n

n−2 (Ω0). Moreover, we also have∫
Ω0

(div (A∇(uk − u)))2

=
∫

Ω0

(div ((A− Ak)∇uk)− fk + f )2

≤2
∫

Ω0

(div ((A− Ak)∇uk))
2 + 2

∫
Ω0

( fk − f )2

=o(1),

because Ak → A in C1(Ω0) and uk → u strongly in L
2(n+2)

n−2 (Ω0). Then the claim follows
directly from Remark 3.1.

Let us check assumption ii) of Theorem 3.2.

Proposition 3.1. (0, 0) is a regular value of F.

Proof. Let (λ0, u0, θ0) ∈ U × V such that F(λ0, u0, θ0) = (0, 0). We shall prove that if
(λ, u) ∈ X is such that{

F′(λ0, u0, θ0)[λ, u] = 0
〈F′(λ0, u0, θ0)[θ], (λ, u)〉Z = 0 for any θ ∈ Y

⇒ λ = 0 and u ≡ 0. (3.7)

Without loss of generality we can assume θ0 = 0. Then Θ0 = I and by (3.2a) and (3.2b)
condition F(λ0, u0, θ0) = (0, 0) reads as

∫
Ω0

(
|∇u0|2 − |u0|p+1 − λ0u2

0

)
dx = 0,

∆u0 + |u0|p−1u0 + λ0u0 = 0 in Ω0, u = 0 on ∂Ω0.
(3.8)

Moreover by (3.3) and (3.4) condition (3.7) can be rephrased as
∫

Ω0

{
2∇u0∇u−

(
(p + 1)|u0|p−1u0 + 2λ0u0

)
u− λu2

0

}
dx = 0,

∆u +
(

p|u0|p−1 + λ0
)

u + λu0 = 0 in Ω0, u = 0 on ∂Ω0,
(3.9)

and

λ
∫

Ω0

{
∇u0 ·

[
(divθ)∇u0 − (θ′ + tθ′)∇u0

]
−
(
|u0|p+1 + λ0u2

0

)
(divθ)

}
dx

+
∫

Ω0

{
div

[
(divθ)∇u0 − (θ′ + tθ′)∇u0

]
+
(
|u0|p−1u0 + λ0u0

)
(divθ)

}
udx

=0, ∀θ ∈ Y. (3.10)
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We can simplify expression (3.10). Indeed, taking into account that

∆u0 + |u0|p−1u0 + λ0u0︸ ︷︷ ︸
=g(u0)

= 0 in Ω0, u = 0 on ∂Ω0, (3.11)

we have

div
[
(divθ)∇u0 − (θ′ + tθ′)∇u0

]
=div(θ∆u0)− ∆(θ∇u0)

=− div(g(u0)θ)− ∆(θ∇u0)

=− g(u0)(divθ)− g′(u0)∇u0θ − ∆(θ∇u0).

Moreover, ∫
Ω0

∆(θ∇u0)udx = −
∫

∂Ω0

θ∇u0∂νudx +
∫

Ω0

θ∇u0∆udx.

Therefore, (3.10) reads as

0 =λ
∫

Ω0


g(u0)u0(divθ) + g′(u0)u0∇u0θ + θ∇u0 ∆u0︸︷︷︸

=−g(u0)

− (|u0|p+1 + λ0u2
0

)
︸ ︷︷ ︸

=g(u0)u0

(divθ)

 dx

− λ
∫

∂Ω0

θ∇u0∂νu0dx +
∫

Ω0


−g(u0)u(divθ)− g′(u0)u∇u0θ − θ∇u0 ∆u︸︷︷︸

=−g′(u0)u−λu0



+
(
|u0|p−1u0 + λ0u0

)
︸ ︷︷ ︸

=g(u0)

(divθ)u

 dx +
∫

∂Ω0

θ∇u0∂νudx

=λ
∫

Ω0

(
g′(u0)u0 − g(u0) + u0

)︸ ︷︷ ︸
=(p−1)|u0|p−1u0+u0

θ∇u0dx +
∫

∂Ω0

θ∇u0 (∂νu− λ∂νu0) dx. (3.12)

Now, we prove that λ = 0. Indeed by taking deformations θ which take fix the boundary
of Ω0 by (3.12) we get

λ
∫

Ω0

[
(p− 1)|u0|p−1u0 + u0

]
θ∇u0dx = 0 for any θ ∈ V, θ = 0 on ∂Ω0.

If λ 6= 0 then we necessarily have

u0

[
(p− 1)|u0|p−1 + 1

]
∇u0 = 0 a.e. in Ω0,

and so u0∇u0 = 0 a.e. in Ω. This is not possible because u0 solves (3.11) and by the unique
continuation theorem in [2] we know that meas{x ∈ Ω0 : u0(x) = 0} = meas{x ∈ Ω0 :
∇u0(x) = 0} = 0.
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Since λ = 0 by (3.12) we deduce that∫
∂Ω0

θ∇u0∂νudx = 0 for any θ ∈ Y

and arguing exactly as in [26, pp. 313–314], we deduce that u = 0. That concludes the
proof.

Proposition 3.2. For any θ ∈ Ξ as in (3.1) there exists λθ ∈ (0, λ1(Ωθ)) such that

λθ = 2 max
Ωθ

uλθ
. (3.13)

Proof. Let θ ∈ Ξ as in (3.1) and let us consider the perturbed domain Ωθ . For any
λ ∈ (0, λ1(Ωθ)) let uλ be the least energy positive solution on the domain Ωθ , which
is non-degenerate because of Theorem 3.1. Therefore, by the Implicit function Theorem
we deduce that the map λ→ uλ is continuous. Let us consider the continuous function

f (λ) := λ− 2‖uλ‖L∞(Ωθ), λ ∈ (0, λ1(Ωθ)).

Since
lim
λ→0
‖uλ‖L∞(Ωθ) = +∞ and lim

λ→λ1(Ωθ)
‖uλ‖L∞(Ωθ) = 0,

(see [14] and the classical bifurcation theory, respectively), there exists λθ such that
f (λθ) = 0 and the claim (3.13) follows.

Proof of Theorem 1.2. It follows immediately by Theorem 3.1 and Proposition 3.2.
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