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Abstract. This paper studies existence of mild solution to a sharp cut off model for
contact driven tumor growth. Analysis is based on application of the Crandall-Liggett
theorem for ω-quasi-contractive semigroups on the Banach space L1(Ω). Furthermore,
numerical computations are provided which compare the sharp cut off model with the
tumor growth model of Perthame, Quirós, and Vázquez [13].
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1 Introduction

In their paper [13], Perthame, Quirós, and Vázquez proposed the following model for
tumor growth

vt = ∇ · (v∇p) + v(1− p), v(0) = v0, (1.1)

where v is the cell density, v0 is the initial value, and p is the pressure field. In their model,
the pressure field is approximated by

p ∼= pm :=
m

1−m

( v
vc

)m−1
, (1.2)

where the coefficient vc is the maximum packing density and is set to vc = 1 for conve-
nience. In this case, Eq. (1.1) is written as

vt = ∆vm + v(1− pm). (1.3)
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The contact driven tumor growth model is taken as limit m → ∞ of (1.3). Perthame,
Quirós, and Vázquez [13] proved that, if the initial value is smooth and bounded

0 ≤ v0 ≤ 1, (1.4)

the pair (vm, pm) converges to (v∞, p∞) as m → ∞ which satisfy a Hele-Shaw type diffu-
sion model

∂tv∞ = ∆p∞ + v∞(1− p∞), v∞(0) = v0, (1.5)

in the sense of distributions. Furthermore,

v∞ ∈ C((0, ∞); L1(RN) ∩ BV(RN × (0, ∞)), 0 ≤ v∞ ≤ 1,

and
p∞ ∈ P∞(v∞), 0 ≤ p∞ ≤ 1, (1.6)

where the inclusion relation (1.6) is given by the set-valued function

P∞(v) =

{
0, 0 ≤ v < 1,
[0, ∞), v = 1.

(1.7)

Note that the diffusion term in (1.5) is present only when v∞ = 1. Indeed, the limiting
case gives an extreme scenario that the domain is divided into two parts, specifically
when (a) the diffusion does not appear at all or (b) it is concentrated at v = 1.

We note the Hele-Shaw diffusion equation, (1.5)-(1.7), cannot be used as a model for
the limiting case. First, it does not single out a solution (though to be fair the extended
version of (3.1a) that we introduce in Section 3 will also be defined by an inclusion re-
lation). The main reason is that the set-valued function P∞(v) has discontinuity at the
stable steady state of the reaction term, v = 1. Furthermore, if the initial value is not
bounded by (1.4), the solution is not defined. As an alternative system, we consider a
sharp cut off model

ut = ∆G(u) + f (u), u(0) = u0 ≥ 0, (1.8)

where

G(u) =

{
0, u < 1,
1, u ≥ 1,

(1.9a)

f (u) =

{
u, 0 ≤ u < 1,
0, u ≥ 1,

(1.9b)

which has been introduced by Kim and Pan [11]. We set G(1) = 1 in (1.9a) to connect the
model to the nonlinear diffusion in (1.3) which has the same property, i.e., vm = 1 when
v = 1. The value of the potential at the discontinuity point u = 1 makes a difference since
it is a stable steady state of the reaction function f (u).
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Kim and Pan suggested that the cut off model (1.8)-(1.9b) provides an alternative to
(1.3)-(1.4) with m� 1 large. To check their conjecture Kim and Pan performed numerical
experiments and their results are here illustrated in Fig. 1 of Section 4. We observe that
that numerical results for (1.3) with m large and (1.8)-(1.9b) are almost identical.

The apparent success of the Kim-Pan model of course raises the mathematical issue
as to existence of solutions to (1.8)-(1.9b) for appropriately given initial and boundary
conditions. To address this issue we will place the problem within the context of non-
linear semigroups of ω-quasi-contractions on the Banach space L1(Ω). The advantage of
this formulation is obvious: we will only need use of the existing mathematical theory as
provided by the classical Crandall-Liggett theorem [6].

This paper has three sections after this Introduction. Section 2 provides a review of
the theory of m-accretive operators and non-linear semigroup theory on Banach spaces.
Section 3 applies this theory to obtain the existence of mild solution to system (1.8)-(1.9b).
Section 4 gives careful comparisons of numerical solutions of (1.3) and (1.8)-(1.9b). In
particular, we observed there is nice convergence solutions of (1.3) to a solution of (1.8)-
(1.9b) when the CFL condition is satisfied. However, when the CFL condition is violated,
solutions of (1.3) blow up where as solutions of (1.8)-(1.9b) remain bounded albeit with
oscillations.

2 Review of m-accretive operators and non-linear semigroups

We follow the presentations of Evans [9] and Barbu [1] though the definitions are stan-
dard (also see [2,12]). Let X be a Banach space with norm ‖ · ‖. An operator A : D(A)→
X with its domain D(A) ⊂ X is called accretive if

‖u− v‖ ≤ ‖u− v + λ(A(u)− A(v))‖ (2.1)

for all u, v ∈ D(A) and λ ∈ R+. If, in addition, Range(I + λA) = X for some (equiva-
lently for all) λ > 0, then A is called m-accretive. A simple way to check accretiveness in
examples is to define

[u, v]+ = inf
λ>0

‖u + λv‖ − ‖u‖
λ

.

Then the operator A is accretive if and only if

0 ≤ [u− v, A(u)− A(v)]+ for all u, v ∈ D(A). (2.2)

When X = L1(Ω) for a bounded domain Ω ⊂ Rn, we may use the result of Sato [14]:

[u, v]+ =
∫

u>0
vdx−

∫
u<0

vdx +
∫

u=0
|v|dx. (2.3)
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We are interested in resolving the initial value problem

ut + Au 3 0, 0 < t < ∞, (2.4a)
u(0) = u0 ∈ D(A), (2.4b)

where A is an m-accretive set-valued operator.
In their classic paper, Crandall and Liggett [6] provided a mild solution to (2.4a),

(2.4b) via a sequence of discrete problems where the time derivative in (2.4a) is replaced
by a difference quotient:

u(t)− u(t− ε)

ε
+ Au(t) 3 0 (2.5)

for ε > 0 small so that (2.4b),(2.5) can be solved recursively. We summarize their results
as follows.

If C ⊂ X, a semigroup on C is a function S on [0, ∞) such that S(t) maps C into C for
each t ≥ 0 and satisfies

S(t + τ) = S(t)S(τ) for t, τ ≥ 0,
lim

t→0+
S(t)u = S(0)u = u for u ∈ C.

If S is a semigroup on C and there is a real number ω so that

‖S(t)u− S(t)v‖ ≤ eωt‖u− v‖

for t ≥ 0 and u, v ∈ C, we say the semigroup is ω-quasi-contractive.

Theorem 2.1 (Crandall-Liggett [6]). Let A be a possibly set-valued operator A : D(A) → X

such that there is a real number ω with A + ωI being accretive. If D(A) ⊂ R(I + λA) for all
sufficiently small λ > 0, then

lim
n→∞

(
I +

t
n

A
)n

u0

exists for all u0 ∈ D(A) and t > 0. Moreover, if S(t)u0 is defined as this limit in C, then S is a
ω-quasi-contractive semigroup on D(A).

We call u(t) := S(t)u0 a mild solution of (2.4a), (2.4b).
In general, we do not know that D(A) is invariant under the map S(t) (unlike the

case of linear semigroups where u(t) = S(t)u0, u0 ∈ D(A), provides a strong solution
of (2.4a), (2.4b), see e.g., [10]). However, there is a generalized domain D̂(A) defined
by Crandall [7], which is invariant under S(t). In particular, S(t)u0 is locally Lipschitz
continuous in t, u0 ∈ D̂(A).

In the initial-boundary value problem of Section 3, we will be interested in the case
of X = L1(Ω) and thus the nonlinear semigroup theory for reflexive Banach spaces does
not apply (see for example Barbu [1], Evans [8, 9], and Zeidler [15]).
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3 Existence

We consider the initial-boundary value problem

ut = ∆G(u) + f (u) in Ω ⊂ RN , t > 0, (3.1a)
u = 0 on ∂Ω, (3.1b)

u = u0 ∈ L1(Ω) at t = 0, (3.1c)

where Ω is a bounded open set in RN with a smooth boundary. Here,

G(u) =

{
0, u < 1,
1, u ≥ 1,

f (u) =


0, u < 0,
u, 0 ≤ u < 1,
0, u ≥ 1.

Note

q(u) := f (u)− u =


−u, u < 0,
0, 0 ≤ u < 1,
−u, u ≥ 1,

and hence −g(u) = u− f (u) has a monotone increasing graph. Next, note

g(u) := q(u) + G(u) =


−u, u < 0,
0, 0 ≤ u < 1,
−u + 1, u ≥ 1,

and hence −g(u) is continuous on R with a monotone graph. Thus

− g(u) = −q(u)− G(u) = − f (u) + u− G(u),
f (u) = g(u) + u− G(u),

and we can rewrite (2.1), (2.2) as

ut = (∆− I)G(u) + g(u) + u in Ω ⊂ RN , t > 0,

u = u0 ∈ L1(Ω) at t = 0.

Next, we recall two results given by Brézis-Strauss [3] and Barbu [1].

Proposition 3.1. Let X be a real Banach space, A an m-accretive operator, and B a continuous
m-accretive operator with D(B) = X. Then, A + B is m-accretive.
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Proposition 3.2 (Barbu [1], p. 114). Let X = L1(Ω). Define the operator

Au := −∆β(u) for u ∈ D(A),

D(A) = {u ∈ L1(Ω); β(u) ∈W1,1
0 (Ω), ∆β(u) ∈ L1(Ω)},

where β is a maximum monotone graph in R×R with 0 ∈ β(0) and Ω is an open bounded
subset of RN with smooth boundary. Then, the operator A is m-accretive in L1(Ω)× L1(Ω).

We note Remark 3.1 (Barbu [1, p. 114]) that ∆ can be replaced by any second order
elliptic linear operator on Ω. In other words, Proposition 3.2 applies to the operator
(−∆ + I)G(u) since (a) (−∆ + I) is a second order linear elliptic operator and (b) G has
a maximal monotone graph where

G =


0, u < 1,
[0, 1], u = 1,
1, u > 1.

Lemma 3.1. The map −g : R→ R is continuous and m-accretive on L1(Ω).

Proof. The map −g : R → R is globally Lipschitz continuous: |g(u)− g(v)| ≤ L|u− v|.
This implies

‖g(u)− g(v)‖L1(Ω) ≤ L‖u− v‖L1(Ω).

Furthermore, Sato’s lemma of Section 2 implies−g : L1(Ω)→ L1(Ω) is accretive. Finally,
the range condition u + λg(u) = f , f ∈ L1(Ω) is satisfied by solving this equation for
each u:

u =


(1 + λ)−1 f , f < 0,
f , 0 ≤ f ≤ 1,
(1 + λ)−1 f + 1, f > 1.

Clearly, f ∈ L1(Ω) implies u ∈ L1(Ω).

Lemma 3.2. The operator A1 defined by

A1u := (−∆ + I)G(u)− g(u)

is m-accretive on L1(Ω) where

D(A1) = {u ∈ L1(Ω); G ∈W1,1
0 (Ω), ∆G(u) ∈ L1(Ω)}.

Proof. Use Proposition 3.1, Proposition 3.2, and Lemma 3.1.

Lemma 3.3. The operator A2 := A1 − I, D(A2) = D(A1), satisfies the range condition R(I +
λA2) = L1(Ω) for λ > 0, sufficiently small.
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Proof. For f ∈ L1(Ω) we wish to solve, u + λA2u 3 f , i.e., (1− λ)u + λA1u = f , or

u +
( λ

1− λ

)
A1u 3 f

1− λ
. (3.2)

Since A1 is m-accretive, (3.2) possesses a solution u ∈ D(A1) for all f ∈ L1(Ω).

Finally, the Crandall-Liggett Theorem is applied to show the existence of a solution.

Theorem 3.1. −A2 is the generator of a semigroup of ω-quasi-contractions on D(A2) ⊂ L1(Ω).
For u0 ∈ D(A2), u(t) = S(t)u0, t > 0, provides a mild solution of the initial-boundary value
problem (3.1a)-(3.1c).

4 Numerical simulations

The heat and the Poisson equations are often used as canonical systems to test numerical
schemes. In the theory, uniform ellipticity and bounded diffusivity are assumed. How-
ever, the diffusion model with a discontinuous potential is an extreme case where both
assumptions fail. The behavior of numerical schemes for such discontinuous diffusion
models is not usually studied. An explicit finite difference scheme, a forward in time
and centered in space scheme (see Appendix), is considered in this section which gives
characteristic properties of related numerical schemes in this simple context.

We first test if the numerical solution of

ut = ∆G(u) + f (u) (4.1)

gives the same subsequential limit of

vt = ∆vm + v(1− pm), (4.2)

which has been obtained by Perthame et al. [13]. Here, pm, G, and f are respectively
given by (1.2), (1.9a), and (1.9b). The two model equations are solved numerically and
compared in Fig. 1. The computation is done on a domain Ω = [−10, 10] with the zero
Dirichlet boundary condition. The initial values are

u0(x) = v0(x) = 0.1 cos(x), if − π

2
≤ x ≤ π

2
,

and zero otherwise. The solution is symmetric with respect to x = 0 and hence displayed
only on the domain 0 < x < 10.

An explicit numerical scheme for a partial differential equation of an advection phe-
nomenon should satisfy the CFL condition, i.e., the Courant number C should be less
than one, i.e.,

s∆t
∆x
≤ 1,
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where s > 0 is the speed of the advection phenomenon, ∆x is the space mesh size, and
∆t is the time step. The Courant number of a numerical scheme for a parabolic problem
is given by

C :=
2dn∆t
|∆x|2 , (4.3)

where d > 0 is the diffusivity and n ≥ 1 is the space dimension. In the first three numer-
ical computations, we take time and space meshes with

∆x = 10−1, ∆t = 5× 10−5. (4.4)

The diffusivity of the continuous diffusion model (4.2) is d = mvm−1. Hence, if the mesh
size is given by (4.4), the Courant number is bounded by

Cv :=
mvm−12∆t
|∆x|2 ≤ m

2∆t
|∆x|2 = m× 10−2,

where the inequality comes from the solution bound |v| ≤ 1. The Courant number for
the discontinuous diffusion model (4.1) is

Cu := G′(u)
2∆t
|∆x|2 = G′(u)× 10−2, (4.5)

where G′(u) = 0 for u 6= 1 and G′(u) = ∞ for u = 1. The CFL stability condition is
“C ≤ 1”, which is a necessary condition for the stability of a numerical scheme. Hence,
if the discretization is given by (4.4), the numerical solution of (4.2) satisfies the CFL
condition if m ≤ 100. We indeed observe that numerical solutions blow up soon after
m > 100. On the other hand, since the discontinuous diffusion model (4.1) is the limiting
case of (4.2) as m → ∞, one may expect that its numerical solution blows up as well.
However, we found that the numerical scheme is actually stable and stays bounded as
long as 2∆t

|∆x|2 < 1, which is the CFL condition for the constant diffusivity case with d = 1.
This observation is quite surprising and requires a better understanding.

In Fig. 1, snap shots of numerical solutions of the two models are given at t = 10. See
Appendix ?? for the matlab code of this computation. Solutions of (4.2) clearly converge
to the solution of the cut off model (4.1) as m → ∞. This convergence is monotone and
convinces us that the solution of the cut off model (4.1) is the limit of Perthame et al. [13]
that satisfies the Hele-Shaw diffusion equation, (1.5)-(1.7).

In Fig. 2, the cell density and the diffusion pressure for the two models are compared
when m = 100. The figure in the right shows that the diffusion pressure pm of the con-
tinuous model (4.2) connects the interface and inside cells monotonically. This profile is
consistent in time and propagates with the front without changing its shape. On the other
hand, the potential G of the discontinuous model (4.1), which also plays the role of the
pressure, oscillates as in the figure in the left. The position and size of the oscillating re-
gion varies as the solution propagates. However, the inconsistent behavior is completely
averaged out and the cell growth interfaces of the two models agree perfectly.
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Figure 1: Snap shots of (4.1) and (4.2) at t = 10. Mesh sizes are ∆x = 0.1 and ∆t = 5× 10−5.
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u
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1
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Figure 2: Snap shots of cell density and potential for (4.1) and (4.2). We took m = 100 and t = 10.

In Fig. 3, we observe numerically what happens when the CFL condition fails. The
Courant number for the numerical solution of the continuous diffusion model (4.2) is
Cv = m× 10−2 when the mesh is given by (4.4). Hence, the CFL condition fails if m >
100, which is why we did the computation for m ≤ 100 in Fig. 1. Indeed, if m = 102,
the numerical solution blows up and becomes unbounded in a finite time. In the right
of Fig. 1, the numerical solutions are magnified for values between 0.9 and 1.2. One
can see that the numerical solution of the discontinuous cut off model oscillates. This is
because of the discontinuity of the diffusion potential G and the fact that u = 1 is a stable
steady state. Note that even a small numerical error near the steady state u = 1 gives
large oscillating noise in ∆G(u) due to the discontinuity of the potential G and produces
the oscillation. We can also see that the solution of the cut off model (4.1) stays above
other solutions. To see this more clearly, the solutions are magnified near the steady
state u = 1 in Fig. 3. See the figure in the left and find that numerical solutions for the
nonlinear diffusion model (4.2) increase as m increases and stay below the solution of the
sharp cut off model (4.1). However, even the solution of the nonlinear diffusion model
oscillates when m = 101, i.e., when the CFL condition fails (see the figure in the right).
The solution of the discontinuous model (4.1) is not an upper bound of the solution of the
continuous model (4.2) anymore. If m = 102, the solution blows up entirely and becomes
unbounded.

In Fig. 4, three snap shots of the numerical solution of the cut off model (4.1) are given
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0 2 4 6 8

0.999

1

1.001

1.002

(4.1, cut off)

(4.2, m=100)

(4.2, m=80)

(4.2, m=60)

0 2 4 6 8

0.999

1

1.001

1.002

(4.1, cut off)

(4.2, m=101)

Figure 3: Magnified snap shots of (4.1) and (4.2) at t = 10.
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Figure 4: Snap shots of (4.1) at t = 10. We took ∆x = 0.1 fixed and ∆t = 0.005, 0.0013, and 0.00033 from left.

with different Courant numbers. The space mesh size is taken with ∆x = 0.1 and three
different time mesh sizes taken with

∆t = 0.005, 0.0013, and 0.00033.

Notice that the Courant number Cu in (4.5) is not defined since G′(u) = ∞ when u = 1.
The Courant number denoted in Fig. 4 is the one for the constant diffusivity case given
in (4.3) with d = 1 and n = 1. We observe that the solution oscillates with any Courant
number. However, the solution is numerically stable as long as the Courant number is
less than one, i.e., if the CFL condition for a constant diffusivity case is satisfied. If C > 1,
both numerical solutions of the discontinuous diffusion model (4.1) and of the constant
diffusivity one blow up together. It is unexpected that the discontinuous diffusion model
(4.1) is more stable than the continuous nonlinear diffusion model (4.2).

In Fig. 5, we observe that the blowup behavior of the continuous diffusion model (4.2)
is consistent. We take ∆x = 0.1 fixed and three cases of

∆t = 0.0013, 0.00065, and 0.00033.

In these three cases, the Courant numbers of the unit diffusivity cases are respectively
C = 4−1, 8−1, and 16−1. Numerical solutions of the cut off model (4.1) are denoted by
u in the figures. The numerical solutions of the continuous model (4.2) are given with
borderline exponents m which makes a solution about to blow up. We may observe that
these m× C & 1, i.e., Cv & 1.
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Figure 5: Snap shots of (4.1) and (4.2) at t = 10. ∆x = 0.1 and ∆t = 0.0013, 0.00065 and 0.00033 from left.

5 Conclusions

The diffusion equation (1.8) with a discontinuous diffusion potential G can be used as a
simplified model for contact driven tumor growth [13], finite time extinction [5], obstacle
problems [4], and etc. However, since most theories of parabolic and elliptic problems
are based on bounded diffusivity, such equations are rarely studied. In this paper we
demonstrated that nonlinear semigroup theory is applicable to such extreme cases and
obtained the existence of a mild solution. We also found that a numerical scheme applied
to a discontinuous diffusion model (4.1) is more stable than expected. It surprisingly
gives the correct interface of tumor growth even when the numerical solution for the
continuous diffusion model (4.2) blows up.

Appendix: Numerical computation code

The numerical computations in this paper are based on a matlab code in the below. We
have computed the solution changing the parameter m and time step size dt, and then
displayed them as in figures.

%% parameters

m=80;

L=10; % computation space domain: [-L,L]

T=10; % computation time domain: [0 T]

dx=0.1; % space mesh size

dt=dx^2/200; % time step size

%% variables

x=-L:dx:L; % space mesh

NX=size(x,2); % number of mesh points

NT=floor(T/dt); % total time steps

N1=floor(NT/10); % total time steps
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%% initial value

u0=zeros(1,NX);

for i=1:NX

if(abs(x(i))<pi/2)

u0(i)=cos(x(i))*0.1;% initial value

end

end

u=u0;

v=u0;

%% computation

for i=1:NT

Gv=v.^m; % Diffusion potential

p=v.^(m-1)*m/(m-1); % Diffusion pressure

v=v+dt*(del2(Gv,dx)*4+v.*(1-p)); % Solving PDE

v(1)=0;v(NX)=0; % Dirichlet BC

Gu=floor(u); % Diffusion potential

u=u+dt*(del2(Gu,dx)*4+u.*(1-Gu)); % Solving PDE

u(1)=0;u(NX)=0; % Dirichlet BC

end

%% display

figure(1);plot(x,u,x,v); axis([0 L 0 1.5]);

figure(2);plot(x,Gu,x,Gv);axis([0 L 0 1.5]);

Acknowledgements

This work was supported in part by National Research Foundation of Korea (NRF-
2017R1A2B2010398). The authors thank Profs. L. C. Evans and W. Strauss for their valu-
able suggestions.

References

[1] V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems, Academic Press,
(1993).

[2] P. Bénilan and M. G. Crandall, The continuous dependence on ϕ of solutions of ut−∆ϕ(u) =
0, Indiana Univ. Math. J., 30 (1981), 161–177.
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