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Abstract. The existence of an infinite sequence of sign-changing solutions are proved
for a class of quasilinear elliptic equations under suitable conditions on the quasilinear
coefficients and the nonlinearity

N

∑
i,j=1

(
bij(u)Diju +

1
2

Dzbij(u)DiuDju
)
+ f (u) = 0 in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN is a bounded domain with smooth boundary, and we use

Diu =
∂u
∂xi

, Diju =
∂2u

∂xi∂xj
, and Dzbij(z) =

d
dz

bij(z).

The main interest of this paper is for the case of bounded quasilinearity bij. The result
is proved by an elliptic regularization method involving truncations of both u and the
gradient of u.
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1 Introduction

In this paper, we study the existence of sign-changing solutions for the following quasi-
linear elliptic equation

N

∑
i,j=1

(
bij(u)Diju +

1
2

Dzbij(u)DiuDju
)
+ f (u) = 0 in Ω,

u = 0 on ∂Ω,

(1.1)

where Ω ⊂ RN is a bounded domain with smooth boundary, and we use the notations

Diu =
∂u
∂xi

, Diju =
∂2u

∂xi∂xj
, Dzbij(z) =

d
dz

bij(z).

We assume the following conditions on bij and f . Denote the critical exponent by 2∗ =
2N

N−2 for N ≥ 3 and 2∗ = +∞ for N = 1, 2.

(b1) Let bij = bji ∈ C1,1(R, R) for i, j = 1, · · · , N, satisfy that there exist positive con-
stants b−, b+ such that

b−|ξ|2 ≤
N

∑
i,j=1

bij(z)ξiξ j ≤ b+|ξ|2 for z ∈ R, ξ = (ξi) ∈ RN .

(b2) There exist constants q > 2, δ > 0 such that

δ|ξ|2 ≤
N

∑
i,j=1

(
bij(z) +

1
2

zDzbij(z)
)

ξiξ j

≤ q
2

( N

∑
i,j=1

bij(z)ξiξ j − δ|ξ|2
)

for z ∈ R, ξ ∈ RN .

(b3) There exists a positive constant c such that

|Dzbij(z)− Dzbij(w)| ≤ c|z− w| for z, w ∈ R.

(b4) bij(z) is even in z.

( f1) Let f ∈ C(R, R) satisfy that there exist constants c > 0 and r ∈ (2, 2∗) such that

| f (z)| ≤ c(1 + |z|r−1) for z ∈ R.
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( f2) There exists a positive constant c such that

1
q

z f (z)− F(z) ≥ −c for z ∈ R,

where F(z) =
∫ z

0 f (τ)dτ.

( f3) lim
z→0

f (z)
z

= 0, lim
|z|→+∞

f (z)
z

= +∞.

( f4) f (z) is odd in z.

For simplicity of notations we use the same c to denote some constants in the above
conditions.

We are looking for weak solutions for Eq. (1.1), namely a function u ∈ H1
0(Ω)∩ L∞(Ω)

satisfying

∫
Ω

( N

∑
i,j=1

bij(u)DiuDj ϕ +
1
2

Dzbij(u)DiuDjuϕ
)

dx

=
∫

Ω
f (u)ϕdx for ϕ ∈ C∞

0 (Ω). (1.2)

For semilinear case, this is in the setting of the classical superlinear problems that goes
back to the celebrated paper of Ambrosetti and Rabinowitz [1] (see also the book [24])
in which infinitely many solutions were obtained using the symmetric mountain pass
theorem. Later a sequence of sign-changing solutions were assured to exist in the set-
ting [4, 13].

The following is the main result of this paper which establish the above mentioned
results for the case of bounded quasilinearity.

Theorem 1.1. Assume (b1)-(b4), ( f1)-( f4). Then Eq. (1.1) has infinitely many sign-changing
solutions.

Formally the problem has a variational structure, given by the functional

I(u) =
1
2

∫
Ω

N

∑
i,j=1

bij(u)DiuDju dx−
∫

Ω
F(u) dx for u ∈ H1

0(Ω).

The functional I is continuous, but not differentiable on H1
0(Ω). Historically there have

been several approaches developed for handling this type of non-smooth variational
problems. The critical point theory for nonsmooth functionals has been established,
see [2, 3, 8, 10, 11, 15]. The authors of the present paper developed a new approach in [16,
17, 20, 21], by introducing a p-Laplacian perturbation. The theory in the above papers
were used in [16] to treat the existence of an infinite sequence of sign-changing solutions
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for a problem similar to Eq. (1.1) but having a quasilinear term bij of power growth in
u. For some technical reasons, the p- Laplacian perturbation approach does not work
well for the case we consider here, namely the quasilinear term bij is bounded. The exis-
tence of a nontrivial solution for (1.1) was given in [2, 8]. The question on the existence
of sign-changing solutions in particular on whether there exist an infinite sequence of
sign-changing solutions in this case was left open in [8, 16].

In this paper we will use a different approach which was used in [22] where localized
solutions for semiclasscial Schrödinger type equations were considered. We outline the
approach here first. Instead of introducing a p-Laplacian perturbation, we truncate the
quadratic form ∑N

i,j=1 bij(u)DiuDju. Under suitable truncations, up to some level sets
controlled by the truncation, the resulting problem share critical points with the original
problem. More precisely, let µ > 0 be a parameter and define a family of functionals

Iµ(u) =
1
2

σ
∫

Ω
|∇u|2 dx +

1
2

∫
Ω

hµ

( N

∑
i,j=1

βij(u)DiuDju
)

dx

−
∫

Ω
F(u)dx, u ∈ H1

0(Ω), (1.3)

where σ > 0 is fixed satisfying

0 < σ < min
{

2
q

δ,
1
2

b−

}
, (1.4)

hµ is a smooth function such that hµ(t) = t for t < 1
µ and h′µ(t) = 0 for t ≥ T

µ , with

T > 1 being set as T = 2e
6b+

σ + 1 (see Section 2 for details), and βij(z) = bij(z) − σδij,
i, j = 1, · · · , N.

We will verify that Iµ is a C1-functional on H1
0(Ω) and satisfies the Palais-Smale con-

dition. The corresponding Euler-Lagrange equation for Iµ is

σ
∫

Ω
∇u∇ϕ dx +

∫
Ω

h′µ
( N

∑
i,j=1

βij(u)DiuDju
) N

∑
i,j=1

(
βij(u)DiuDj ϕ

+
1
2

Dzbij(z)DiuDju ϕ
)

dx

=
∫

Ω
f (u)ϕ dx (1.5)

for ϕ ∈ H1
0(Ω). Now assume u is a solution of (1.5) (that is a critical point of (1.3)). Since

the modification of the functional involves point-wisely the first order partial derivatives
we will need some C1-apriori estimates on the critical points of Iµ under energy bounds.
If u ∈ C1(Ω) and satisfies

N

∑
i,j=1

βij(u)DiuDju <
1
µ

for x ∈ Ω, (1.6)

OPEN ACCESS

DOI https://doi.org/10.4208/ata.2021.pr80.02 | Generated on 2024-12-22 14:03:07



J. Q. Liu, X. Q. Liu and Q. Z. Wang / Anal. Theory Appl., 37 (2021), pp. 209-229 213

then u will be a solution of the original equation (1.1). Note that no limit process µ → 0
is needed for the existence of critical point of the original problem. By taking smaller µ
we obtain more solutions of the original problem. This is the main idea of the approach.
In order to obtain sign-changing critical points of the functional Iµ we shall apply the
method of invariant sets for descending flow, as developed in [6, 18, 19]. The idea of
using invariant sets for descending flow for studying sign-changing solutions goes back
to some earlier work for semilinear elliptic boundary value problems, such as in [5,7,9,23]
for the existence of sign-changing solutions and [4, 13] for an infinite sequence of sign-
changing solutions.

Throughout the paper, c denotes various positive constants, cµ denotes constants de-
pending on µ. The paper is organized as follows. In Lemma 2.1 we define the truncation
function hµ. In Lemma 2.2 and Lemma 2.3 we prove the functional Iµ is a C1-functional
on H1

0(Ω) and satisfies the Palais-Smale condition. Lemma 2.4 to Lemma 2.8 and Propo-
sition 2.1 are devoted to constructing critical values of the functional Iµ by the method
of invariant sets for descending flow. In Proposition 2.2 we prove the regularity result as
the gradient estimate (1.6), which completes the proof of Theorem 1.1 consequently.

2 Proof of Theorem 1.1

We start with giving the definition of the function hµ used in the truncation for the func-
tional I to get Iµ.

Lemma 2.1. Given ε > 0 there exists a smooth function h ∈ C∞([0, ∞), [0, ∞)
)

such that

(1) h(t) = t for t ≤ 1.

(2) h′(t) = 1 for t ≤ 1, h′(t) = 0 for t ≥ Tε = 2e
1
ε + 1; h′(t) ∈ [0, 1], h′(t) is decreasing in

t, hence h(t) ≥ th′(t).

(3) |h′′(t)|t ≤ ε.

Proof. Choose a smooth function ψ ∈ C∞(R, [0, 1]) such that ψ(t) = 1 for 2 ≤ t ≤ 2e
1
ε =

Tε − 1; ψ(t) = 0 for t ≤ 1 or t ≥ Tε. We have

M =
∫

R

ψ(t)
t

dt ≥
∫ Tε−1

2

dt
t
= ln

Tε − 1
2

=
1
ε

.

Now define

q(t) = 1− 1
M

∫ t

−∞

ψ(τ)

τ
dτ.

Then 0 ≤ q(t) ≤ 1, q(t) = 1 for t ≤ 1; q(t) = 0 for t ≥ Tε; q(t) is decreasing in t and

|q′(t)|t = 1
M

ψ(t) ≤ 1
M
≤ ε.

Now h(t) =
∫ t

0 q(τ)dτ is the desired function.
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In the future we choose and fix ε and T := Tε in the definition of h above such that

ε =
σ

6b+
. (2.1)

Let
hµ(t) =

1
µ

h(µt), t ∈ [0, ∞), µ ∈ (0, 1].

We have

(1) hµ(t) = t for t ≤ 1
µ , 0 ≤ hµ(t) ≤ Tε

µ .

(2) h′µ(t) = h′(µt) ∈ [0, 1], h′µ(t) = 1 for t ≤ 1
µ , h′µ(t) = 0 for t ≥ Tε

µ , h′µ is decreasing,
hence hµ(t) ≥ th′µ(t).

(3) |h′′µ(t)|t = |h′′(µt)|µt ≤ ε.

Lemma 2.2. The functional Iµ is differentiable and

〈DIµ(u), ϕ〉

=σ
∫

Ω
∇u∇ϕ dx +

∫
Ω

h′µ
( N

∑
i,j=1

βij(u)DiuDju
)

·
N

∑
i,j=1

(
βij(u)DiuDj ϕ +

1
2

Dzβij(u)DiuDjuϕ
)

dx−
∫

Ω
f (u)ϕ dx for ϕ ∈ H1

0(Ω).

Proof. Let Hµ be the truncated quadratic term in Iµ

Hµ(u) =
1
2

∫
Ω

hµ

( N

∑
i,j=1

βij(u)DiuDju
)

dx.

The other two terms in Iµ are “harmless” to the smoothness. We compute the Gateaux
derivative of Hµ. The Gateaux derivative of Hµ at u in the direction ϕ is defined as

〈DG Hµ(u), ϕ〉 = lim
t→0+

1
t
(Hµ(u + tϕ)− Hµ(u)).

Denote ut = u + tϕ, t ∈ [0, 1]. Then

1
t
(

Hµ(u + tϕ)− H(u)
)

=
∫

Ω
dx

1
t

∫ t

0

d
dt

1
2

hµ

( N

∑
i,j=1

βij(ut)DiutDjut

)
dt

=
∫

Ω
dx

1
t

∫ t

0
h′µ
( N

∑
i,j=1

βij(ut)DiutDjut

) N

∑
i,j=1

(
βij(ut)DiutDj ϕ +

1
2

Dzβij(ut)DiutDjut ϕ
)

dt.
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Since
N

∑
i,j=1

βij(ut)DiutDjut ≥ (b− − σ)|∇ut|2 ≥
1
2

b−|∇ut|2,

we have

h′µ
( N

∑
i,j=1

βij(ut)DiutDjut

)
= 0 for

1
2

b−|∇ut|2 ≥
Tε

µ
.

Hence∣∣∣∣∣1t
∫ t

0
h′µ
( N

∑
i,j=1

βij(ut)DiutDjut

) N

∑
i,j=1

(
βij(ut)DiutDj ϕ +

1
2

Dzβij(ut)DiutDjut ϕ
)

dt

∣∣∣∣∣
≤cµ(|∇ϕ|+ |ϕ|).

By Lebesgue’s dominated convergence theorem we have

〈DG Hµ(u), ϕ〉 = lim
t→0+

1
t
(

Hµ(u + tϕ)− Hµ(u)
)

=
∫

Ω
h′µ
( N

∑
i,j=1

βij(u)DiuDju
) N

∑
i,j=1

(
βij(u)DiuDj ϕ +

1
2

Dzβij(u)DiuDjuϕ
)

dx,

〈DG Hµ(u), ϕ〉 ≤ cµ

∫
Ω
(|∇ϕ|+ |ϕ|) dx ≤ cµ‖ϕ‖, ϕ ∈ H1

0(Ω).

The Gateaux derivative DG Hµ(u) is a bounded linear functional on H1
0(Ω). Moreover

DG Hµ(u) continuously depends on u and there exists a positive constant cµ such that

‖DG Hµ(u)− DG Hµ(v)‖ ≤ cµ‖u− v‖ for u, v ∈ H1
0(Ω). (2.2)

In fact denoting wt = tu + (1− t)v, t ∈ [0, 1] for ϕ ∈ H1
0(Ω), we have

〈DG Hµ(u)− DG Hµ(v), ϕ〉

=
∫

Ω
h′µ
( N

∑
i,j=1

βij(u)DiuDju
)(

∑
i,j=1

βij(u)DiuDj ϕ +
1
2

Dzβij(u)DiuDjuϕ
)

dx

−
∫

Ω
h′µ
( N

∑
i,j=1

βij(v)DivDjv
)( N

∑
i,j=1

βij(v)DivDj ϕ +
1
2

Dzβij(v)DivDjvϕ
)

dx

=
∫

Ω
dx
∫ 1

0
dt

{
h′µ
( N

∑
i,j=1

βij(wt)DiwtDjwt

)( N

∑
i,j=1

βij(wt)DiwtDj ϕ +
1
2

Dzβij(wt)DiwtDjwt ϕ
)}
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=
∫

Ω
dx
∫ 1

0
h′µ
( N

∑
i,j=1

βij(wt)DiwtDjwt

) N

∑
i,j=1

(
βij(wt)Di(u− v)Dj ϕ

+ Dzβij(wt)(u− v)DiwtDj ϕ + Dzβij(wt)Di(u− v)Djwt ϕ
)

dt

+
∫

Ω
dx
∫ 1

0
h′µ
( N

∑
i,j=1

βij(wt)DiwtDjwt

) N

∑
i,j=1

1
2

DiwtDjwt ϕdtDzβij(wt)

+
∫

Ω
dx
∫ 1

0
h′′µ
( N

∑
i,j=1

βij(wt)DiwtDjwt

)( N

∑
i,j=1

2βij(wt)Di(u− v)Djwt

+ Dzβij(wt)(u− v)DiwtDjwt

)
·
( N

∑
i,j=1

βij(wt)DiwtDj ϕ +
1
2

Dzβij(wt)DiwtDjwt ϕ
)

dt

≤cµ

∫
Ω

(
|∇(u− v)|+ |u− v|

)(
|∇ϕ|+ |ϕ|

)
dx

≤cµ‖u− v‖ ‖ϕ‖.

In the above we have used the fact that

|dtDzβij(wt)| ≤ c|dwt| ≤ c|u− v| |dt|,

h′µ
( N

∑
i,j=1

βij(wt)DiwtDjwt

)
= h′′µ

( N

∑
i,j=1

βij(wt)DiwtDjwt

)
= 0 for

1
2

b−|∇wt|2 ≥
Tε

µ
.

Since the Gateaux derivative DG Hµ(u) is a bounded linear functional on H1
0(Ω) and

continuously depends on u, Hµ(u) is Frechet differentiable and the Frechet derivative
DHµ(u) = DG Hµ(u). Finally

〈DIµ(u), ϕ〉

=σ
∫

Ω
∇u∇ϕ dx + 〈DHµ(u), ϕ〉 −

∫
Ω

f (u)ϕ dx

=σ
∫

Ω
∇u∇ϕ dx +

∫
Ω

h′µ
( N

∑
i,j=1

βij(u)DiuDju
)

·
N

∑
i,j=1

(
βij(u)DiuDj ϕ +

1
2

Dzβij(u)DiuDjuϕ
)

dx−
∫

Ω
f (u)ϕ dx

for ϕ ∈ H1
0(Ω).

Lemma 2.3. Iµ satisfies the Palais-Smale condition.
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Proof. We have

Iµ(u)−
1
q
〈DIµ(u), u〉

=
(1

2
− 1

q

)
σ
∫

Ω
|∇u|2 dx +

∫
Ω

{1
2

hµ

( N

∑
i,j=1

βij(u)DiuDju
)
− 1

q
h′µ
( N

∑
i,j=1

βij(u)DiuDju
)

·
N

∑
i,j=1

(
βij(u) +

1
2

uDzβij(u)
)

DiuDju
}

dx +
∫

Ω

(1
q

u f (u)− F(u)
)

dx

≥
(1

2
− 1

q

)
σ
∫

Ω
|∇u|2 dx +

∫
Ω

{1
2

hµ

( N

∑
i,j=1

βij(u)DiuDju
)
− 1

q
h′µ
( N

∑
i,j=1

βij(u)DiuDju
)

·
( q

2

N

∑
i,j=1

βij(u)DiuDju +
( q

2
(σ− δ)− σ

)
|∇u|2

)}
dx +

∫
Ω

(1
q

u f (u)− F(u)
)

dx

≥
(1

2
− 1

q

)
σ
∫

Ω
|∇u|2 dx +

1
2

∫
Ω

{
hµ

( N

∑
i,j=1

βij(u)DiuDju
)
− h′µ

( N

∑
i,j=1

βij(u)DiuDju
)

·
N

∑
i,j=1

βij(u)DiuDju
}

dx− c

≥
(1

2
− 1

q

)
σ
∫

Ω
|∇u|2 dx− c. (2.3)

In the above we have used the fact that

σ <
2
q

δ, h′(t) ≥ 0,
1
q

z f (z)− F(z) ≥ −c and hµ(t) ≥ th′µ(t).

Let {un} ⊂ H1
0(Ω) be a Palais-Smale sequence of Iµ. By (2.3), un is bounded in H1

0(Ω).
Assume un ⇀ u in H1

0(Ω), un → u in Ls(Ω)(1 ≤ s < 2∗), un(x) → u(x) a.e. x ∈ Ω. We
have

o(1) =〈DIµ(un)− DIµ(um), un − um〉

=σ
∫

Ω
|∇(un − um)|2 dx + 〈DHµ(un)− DHµ(um), un − um〉

−
∫

Ω

(
f (un)− f (um)

)
(un − um) dx

=σ
∫

Ω
|∇(un − um)|2 dx + 〈DHµ(un)− DHµ(um), un − um〉+ o(1). (2.4)

We estimate the term 〈DHµ(un) − DHµ(um), un − um〉. Assume u, v ∈ H1
0(Ω). Denote
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wt = tu + (1− t)v, t ∈ [0, 1]. We have

〈DHµ(u)− DHµ(v), u− v〉

=
∫

Ω
h′µ
( N

∑
i,j=1

βij(u)DiuDju
) N

∑
i,j=1

(
βij(u)DiuDj(u− v) +

1
2

Dzβij(u)DiuDju(u− v)
)

dx

−
∫

Ω
h′µ
( N

∑
i,j=1

βij(v)DivDjv
) N

∑
i,j=1

(
βij(v)DivDj(u− v) +

1
2

Dzβij(v)DivDjv(u− v)
)

dx

=
∫

Ω
dx
∫ 1

0
dt

{
h′µ
( N

∑
i,j=1

βij(wt)DiwtDjwt

) N

∑
i,j=1

(
βij(wt)DiwtDj(u− v)

+
1
2

Dzβij(wt)DiwtDjwt(u− v)
)}

=
∫

Ω
dx
∫ 1

0
h′µ
( N

∑
i,j=1

βij(wt)DiwtDjwt

) N

∑
i,j=1

(
βij(wt)Di(u− v)Dj(u− v)

+ 2Dzβij(wt)Diwt(u− v)Dj(u− v)
)

dt

+
∫

Ω
dx
∫ 1

0
h′µ
( N

∑
i,j=1

βij(wt)DiwtDjwt

) N

∑
i,j=1

1
2

DiwtDjwt(u− v)dtDzβij(wt)

+
∫

Ω
dx
∫ 1

0
2h′′µ
( N

∑
i,j=1

βij(wt)DiwtDjwt

)( N

∑
i,j=1

(
βij(wt)DiwtDj(u− v)

+
1
2

Dzβij(wt)DiwtDjwt(u− v)
))2

dt

≥− cµ

∫
Ω

(
|∇(u− v) + |u− v|

)
|u− v|dx +

∫
Ω

dx
∫ 1

0
2h′′µ
( N

∑
i,j=1

βij(wt)DiwtDjwt

)
·

N

∑
i,j=1

βij(wt)DiwtDjwt ·
N

∑
i,j=1

βij(wt)Di(u− v)Dj(u− v)dt

≥− cµ

∫
Ω

(
|∇(u− v) + |u− v|

)
|u− v|dx− 2εb+

∫
Ω
|∇(u− v)|2 dx

≥− c∗µ
∫

Ω
(u− v)2 dx− 3εb+

∫
Ω
|∇(u− v)|2 dx. (2.5)

Here ε is from (2.1) so that εb+ = σ
6 . It follows (2.4), (2.5) that

o(1) ≥σ‖un − um‖2 − 3εb+‖un − um‖2 − c∗µ|un − um|2L2(Ω) + o(1)

≥1
2

σ‖un − um‖2 + o(1),

un is a Cauchy sequence, hence a convergent sequence in H1
0(Ω).
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From the proof of Lemma 2.2 and Lemma 2.3 (see (2.2), (2.5)), we have the following
lemma, which is useful in our proofs later.

Lemma 2.4. There exist positive constants cµ and c∗µ such that

(1) ‖DHµ(u)− DHµ(v)‖ ≤ cµ‖u− v‖.

(2) 〈DHµ(u)− DHµ(v), u− v〉 ≥ −σ

2
‖u− v‖2 − c∗µ|u− v|2L2(Ω)

.

We construct multiple solutions of the approximate problem (1.5), in particular mul-
tiple sign-changing solutions by the method of invariant sets for descending flow. The
abstract framework is established in [16, 18, 19, 23] generalizing the classical mountain
pass theorems without the setting of invariant sets [1, 24].

Proposition 2.1. Let X be a Banach space, f be an even C1-functional on X and satisfy the
Palais-Smale condition. Let P, Q be open convex subsets of X, Q = −P, W = P ∪ Q, W 6= ∅.
Assume there exists an odd map A : X → X satisfying

(A1) Given c0, b0 > 0 there exists b = b(c0, b0) such that if ‖D f (x)‖ ≥ b0, | f (x)| ≤ c0 then

〈D f (x), x− Ax〉 ≥ b‖x− Ax‖ > 0.

(A2) A(∂P) ⊂ P, A(∂Q) ⊂ Q.

Let E be a finite-dimensional subspace of X and B be a ball in E centered at the origin. Define

c = inf
ϕ∈Γ

sup
u∈ϕ(B)\W

f (u),

Γ = {ϕ| ϕ ∈ C(B, X), ϕ is odd, ϕ|∂B = Id}.

Assume

(C) c > 0 ≥ sup
x∈∂B

f (x).

Then c is a critical value of f and

K∗c = {x|x ∈ X \W, D f (x) = 0, f (x) = c} 6= ∅.

In the following we verify that Iµ satisfies all the assumptions of Proposition 2.1 for
a suitable operator A and subsets P, Q and B. In Lemma 2.2 and Lemma 2.3 we have
proved that Iµ is a C1-functional on H1

0(Ω) and satisfies the Palais-Smale condition. Now
we define the operator A and the subsets P, Q and verify the assumptions (A1), (A2).
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Definition 2.1. Given u ∈ H1
0(Ω), define v = Au ∈ H1

0(Ω) by the following equation

〈DJµ(v), ϕ〉 =σ
∫

Ω
∇v∇ϕ dx + 〈DHµ(v), ϕ〉+ c∗µ

∫
Ω

vϕ dx

=
∫

Ω
f (u)ϕ dx + c∗µ

∫
Ω

uϕ dx for ϕ ∈ H1
0(Ω), (2.6)

where c∗µ is the positive constant which appears in Lemma 2.4 and

Jµ(v) =
1
2

σ
∫

Ω
|∇v|2 dx + Hµ(v) +

1
2

c∗µ
∫

Ω
v2 dx.

Without loss of generality we assume(
f (z) + c∗µz

)
z ≥ 0 for z ∈ R.

Lemma 2.5. The operator A is well-defined and continuous.

Proof. By Lemma 2.4 we have for v, v ∈ H1
0(Ω)

〈DJµ(v)− DJµ(v), v− v〉
=σ‖v− v‖2 + 〈DHµ(v)− DHµ(v), v− v〉+ c∗µ|v− v|2L2(Ω)

≥σ‖v− v‖2 − σ

2
‖v− v‖2 ≥ 1

2
σ‖v− v‖2. (2.7)

DJµ(v) is a strongly monotone operator, hence given u ∈ H1
0(Ω), Eq. (2.6) has a unique

solution v = Au ∈ H1
0(Ω). Moreover assume u, u ∈ H1

0(Ω), v = Au, v = Au, then

1
2

σ‖v− v‖2 ≤ 〈DJµ(v)− DJµ(v), v− v〉

=
∫

Ω

(
f (u)− f (u)

)
(v− v) dx + c∗µ

∫
Ω
(u− u)(v− v) dx

≤ | f (u)− f (u)|Lr(Ω) |v− v|Lr(Ω) + c∗µ|u− u|L2(Ω)|v− v|L2(Ω)

≤cµ

(
| f (u)− f (u)|Lr(Ω) + |u− u|L2(Ω)

)
‖v− v‖,

where 1
r +

1
r = 1. Hence

‖v− v‖ ≤ cµ

(
| f (u)− f (u)|Lr(Ω) + |u− u|L2(Ω)

)
→ 0 as u→ u in H1

0(Ω).

We complete the proof.

Lemma 2.6. There exists a constant cµ such that

‖DIµ(u)‖ ≤ cµ‖u− Au‖.

Moreover
〈DIµ(u), u− Au〉 ≥ 1

2
σ‖u− Au‖2.

Consequently the assumption (A1) holds.
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Proof. Assume u ∈ H1
0(Ω), v = Au. By the definition of the operator A,

σ
∫

Ω
∇v∇ϕ dx + 〈DHµ(v), ϕ〉+ c∗µ

∫
Ω

vϕ dx

=
∫

Ω
f (u)ϕ dx + c∗µ

∫
Ω

uϕ dx for ϕ ∈ H1
0(Ω).

We have

〈DIµ(u), ϕ〉 = σ
∫

Ω
∇u∇ϕ dx + 〈DHµ(u), ϕ〉 −

∫
Ω

f (u)ϕ dx

=σ
∫

Ω
∇(u− v)∇ϕ dx + 〈DHµ(u)− DHµ(v), ϕ〉+ c∗µ

∫
Ω
(u− v)ϕ dx.

By Lemma 2.4, we have

‖DIµ(u)‖ ≤ σ‖u− v‖+ ‖DHµ(u)− DHµ(v)‖+ cµ‖u− v‖ ≤ cµ‖u− v‖,
〈DIµ(u), u− v〉 = σ‖u− v‖2 + 〈DHµ(u)− DHµ(v), u− v〉+ c∗µ|u− v|2L2(Ω)

≥ σ‖u− v‖2 − 3εb+‖u− v‖2 =
1
2

σ‖u− v‖2.

Thus, we complete the proof.

We define the open convex sets P and Q, and verify the assumption (A2) of Proposi-
tion 2.1.

Definition 2.2. Define the open convex sets P and Q as

P = Pν = {u| u ∈ H1
0(Ω), σS|u−|2Lr(Ω) + c∗µ|u−|2L2(Ω) < ν2}, Q = −P,

where u± = max{±u, 0}, c∗µ is the constant in Lemma 2.4, S = Sp(Ω) is the Sobolev constant
for the embedding H1

0(Ω) ↪→ Lp(Ω), ν > 0 is a small constant.

Lemma 2.7. There exists a positive constant ν0 such that for ν < ν0, it holds that A(∂P) ⊂ P,
A(∂Q) ⊂ Q.

Proof. Assume u ∈ ∂Q, v = Au. By the definitions

σS|u+|2Lr(Ω) + c∗µ|u+|2L2(Ω) = ν2, (2.8a)

σ
∫

Ω
∇v∇ϕ dx + 〈DHµ(v), ϕ〉+ c∗µ

∫
Ω

vϕ dx

=
∫

Ω
f (u)ϕ dx + c∗µ

∫
Ω

uϕ dx for ϕ ∈ H1
0(Ω). (2.8b)

Choose ϕ = v+ as test function in (2.8b). Since

〈DHµ(v), v+〉 = 〈DHµ(v+), v+〉 ≥ 0,
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the left hand side of (2.8b)

LHS ≥σ
∫

Ω
|∇v+|2 dx + c∗µ

∫
Ω

v2
+ dx

≥σS|v+|2Lr(Ω) + c∗µ|v+|2L2(Ω). (2.9)

For any τ > 0, by the assumptions ( f1), ( f3), there exists cτ > 0 such that∣∣ f (z)∣∣ ≤ τ|z|+ cτ|z|r−1.

The right hand side of (2.8b),

RHS =
∫

Ω
f (u)v+ dx + c∗µ

∫
Ω

uv+ dx

≤
∫

Ω
f (u+)v+ dx + c∗µ

∫
Ω

u+v+ dx

≤
∫

Ω
(τu+ + cτur−1

+ )v+ dx + c∗µ
∫

Ω
u+v+ dx

≤
(

τ|Ω|1− 2
r + cτ|u+|r−2

Lr(Ω)

)
|u+|Lr(Ω)|v+|Lr(Ω) + c∗µ|u+|L2(Ω)|v+|L2(Ω)

≤
(

τ|Ω|1− 2
r + cτ

( ν2

σS

) r−2
2
)
|u+|Lr(Ω)|v+|Lr(Ω) + c∗µ|u+|L2(Ω)|v+|L2(Ω)

≤1
2

σS|u+|Lr(Ω)|v+|Lr(Ω) + c∗µ|u+|L2(Ω)|v+|L2(Ω), (2.10)

provided we choose τ and ν0 such that

τ|Ω|1− 2
r ≤ 1

4
σS and cτ

( ν2
0

σS

) r−2
2 ≤ 1

4
σS, ν ≤ ν0.

By (2.9) and (2.10), for 0 < ν ≤ ν0 we have

σS|v+|2Lr(Ω) + c∗µ|v+|2L2(Ω) ≤
1
2

σS|u+|2Lr(Ω) + c∗µ|u+|2L2(Ω) < ν2,

hence v = Au ∈ Q and A(∂Q) ⊂ Q. Similarly A(∂P) ⊂ P.

We apply the abstract theorem (Proposition 2.1) to define a sequence of critical values
of the functional Iµ, and estimate the bound of the critical values.

Definition 2.3. Let 0 < λ1 < λ2 ≤ · · · be the eigenvalues of the Laplacian operator −∆ in
H1

0(Ω) ∩ H2(Ω), e1, e2, · · · , be the corresponding eigenfunctions. Denote

El = span{e1, e2, · · · , el}, Bl = {u| u ∈ El , ‖u‖ ≤ Rl},

where Rl > 0 satisfies that Iµ(u) ≤ I(u) < 0 for u ∈ El , ‖u‖ ≥ Rl . Define

cl = inf
ϕ∈Γl

sup
u∈ϕ(Bl)\W

Iµ(u), l = 2, 3, · · · ,

Γl = {ϕ| ϕ ∈ C(Bl , H1
0(Ω)), ϕ is odd, ϕ|∂Bl = Id}.
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Lemma 2.8. There exist 0 < αl < βl , l = 2, 3, · · · , such that

αl ≤ cl(µ) ≤ βl , l = 2, 3, · · · , and αl → +∞ as l → +∞.

Proof. Since Id ∈ Γl , we have

cl(µ) ≤ sup
Bl\W

Iµ(u) ≤ sup
El

I(u) := βl .

By the condition ( f1), we can choose τ > 0 such that

Iµ(u) ≥
1
2

σ
∫

Ω
|∇u|2 dx−

∫
Ω

(1
2

τu2 +
1
r

cτ|u|r
)

dx

≥1
4

σ
∫

Ω
|∇u|2 dx− 1

r
cτ

∫
Ω
|u|r dx := L(u).

Define
M =

{
u
∣∣∣u ∈ H1

0(Ω),
σ

2

∫
Ω
|∇u|2 dx− cτ

∫
Ω
|u|rdx ≥ 0

}
.

By choosing Rl large enough, we can assume

∂Bl ∩M = ∅.

By Lemma 4.5 [16] for ν0 sufficiently small it holds that(
ϕ(Bl)\W

)
∩ ∂M ∩ E⊥l−2 6= ∅ for ϕ ∈ Γl , l = 2, 3, · · · . (2.11)

Hence
cl(µ) = inf

ϕ∈Γl
sup

u∈ϕ(Bl)\W
Iµ(u) ≥ inf

u∈∂M∩E⊥l−2

Iµ(u) ≥ inf
u∈∂M∩E⊥l−2

L(u).

We claim that there exist positive constants τ and c, independent of µ and l such that

cl(µ) ≥ inf
u∈∂M∩E⊥l−2

L(u) ≥ cλτ
l−1 := αl , l = 2, 3, · · · . (2.12)

Choose p ∈ (r, 2∗), t ∈ (0, 1) such that 1
r = t

2 +
1−t

p . For u ∈ ∂M ∩ E⊥l−2, we have

σ

2

∫
Ω
|∇u|2 dx =cτ

∫
Ω
|u|r dx ≤ cτ

( ∫
Ω

u2 dx
) r

2 t( ∫
Ω
|u|p dx

) r
p (1−t)

≤cτ

(
λ−1

l−1

∫
Ω
|∇u|2 dx

) r
2 t
·
(

cp

∫
Ω
|∇u|2 dx

) r
2 (1−t)

=cλ
− r

2 t
l−1

( ∫
Ω
|∇u|2 dx

) r
2

,

hence ∫
Ω
|∇u|2 dx ≥ cλ

r
r−2 t
l−1 ,

L(u) =
(1

4
− 1

2r

)
σ
∫

Ω
|∇u|2 dx ≥ cλ

r
r−2 t
l−1 .

Thus, we complete the proof.
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We are in a position to prove Theorem 1.1. To do it, we need the following regularity
result for solutions of the quasilinear elliptic equation (2.13), the proof of which will be
given in Appendix.

Proposition 2.2. Let u ∈ H1
0(Ω), DIµ(u) = 0 and Iµ(u) ≤ L. Then there exist K > 0, γ ∈

(0, 1), depending on L only, such that

‖u‖C1,γ(Ω) ≤ K. (2.13)

Proof of Theorem 1.1. Given an integer l ≥ 2, by Proposition 2.1 there exist ul(µ) ∈ H1
0(Ω),

µ ∈ (0, 1] such that ul(µ) is sign-changing, DIµ(ul(µ)) = 0, αl ≤ Iµ(ul(µ)) ≤ βl . By
Proposition 2.2 there exist kl = kl(βl) > 0, γl = γl(βl) ∈ (0, 1) such that ‖ul(µ)‖C1,γl (Ω) ≤
kl . Choose µl such that b+k2

l ≤
1

2µl
. Denote ul = ul(µl), then

N

∑
i,j=1

βij(ul)Diul Djul ≤ b+k2
l ≤

1
2µl

for x ∈ Ω,

h′µ
( N

∑
i,j=1

βij(ul)Diul Djul

)
≡ 1 for x ∈ Ω.

ul is a sign-changing solution of the original equation (1.1), and I(ul) = Iµl (ul) = cl(µl) ≥
αl → ∞ as l → +∞. We obtain infinitely many sign-changing solutions of Eq. (1.1)

Remark 2.1. Without the assumptions (b4), ( f4), we have the following theorem of three
nontrivial solutions, which is reminiscent of the well known result for semilinear elliptic
equations such as in [7, 9, 23, 25].

Theorem 2.1. Assume (b1)-(b3), ( f1)-( f3). Then Eq. (1.1) has at least three nontrivial solutions,
one is positive, one is negative and the third is sign-changing.

Again we apply the method of invariant sets of the descending flow, see [6,18,19]. We
leave the detail of proof to the interested readers.

Appendix

Proposition A.1. Assume u ∈ H1
0(Ω), DIµ(u) = 0 and Iµ(u) ≤ L. Then there exist K > 0,

γ ∈ (0, 1), depending on L only, such that

‖u‖C1,γ(Ω) ≤ K. (A.1)

First we apply Moser’s iteration to obtain the L∞-bound.

Lemma A.1. Assume u ∈ H1
0(Ω), DIµ(u) = 0 and Iµ(u) ≤ L. Then there exists M > 0,

depending on L only, such that
|u|L∞(Ω) ≤ M.
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Proof. First we note that u satisfies the equation

σ
∫

Ω
∇u∇ϕ dx +

∫
Ω

h′µ
( N

∑
i,j=1

βij(u)DiuDju
) N

∑
i,j=1

(
βij(u)DiuDj ϕ

+
1
2

Dzβij(u)DiuDjuϕ
)

dx

=
∫

Ω
f (u)ϕ dx (A.2)

for ϕ ∈ H1
0(Ω). Given T > 0. Let uT be the truncated function: uT = u if |u| ≤ T;

uT = ±T if ±u ≥ T. Assume s > 1, take ϕ = |uT|2s−2u as test function in (A.2). Notice
that ∫

Ω
h′µ
( N

∑
i,j=1

βij(u)DiuDju
) N

∑
i,j=1

(
βij(u)DiuDj ϕ +

1
2

Dzβij(u)DiuDjuϕ
)

dx ≥ 0,

we have
σ
∫

Ω
∇u∇ϕ dx ≤

∫
Ω

f (u)ϕ dx. (A.3)

Choose p = 2N
N−2 if N ≥ 3; p ∈ (r,+∞) if N = 1, 2. By the Sobolev embedding theorem

and (2.3) in Lemma 2.3,
|u|Lγ(Ω) ≤ c‖u‖ ≤ c(L).

Denote d = 2+p−r
2 , d > 1. Assume ∫

Ω
|u|sp· 1d dx < +∞.

Let T → ∞ in (A.3), we obtain

(2s− 1)σ
∫

Ω
|∇u|2|u|2s−2 dx ≤

∫
Ω
| f (u)| |u|2s−1 dx. (A.4)

The left hand side of (A.4),

LHS ≥ c
s

∫
Ω

∣∣∇|u|s−1u
∣∣2 dx ≥ c

s

( ∫
Ω
|u|sp dx

) 2
p
. (A.5)

The right hand side of (A.4),

RHS ≤
∫

Ω
c
(
1 + |u|r−1)|u|2s−1 dx ≤ c

(
1 +

∫
Ω
|u|r−2 · |u|2s dx

)
≤c
(

1 +
( ∫

Ω
|u|p dx

) r−2
p
( ∫

Ω
|u|sp· 2

2+p−r dx
) 2+p−r

p
)

≤c
(

1 +
( ∫

Ω
|u|sp· 1d dx

) 2d
p
)

≤c max
{

1,
( ∫

Ω
|u|sp· 1d dx

) 2d
p
}

. (A.6)
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By (A.5) and (A.6), we have

max
{

1,
( ∫

Ω
|u|sp dx

) 1
sp
}
≤ (cs)

1
2s max

{
1,
( ∫

Ω
|u|sp· 1d dx

) d
sp
}

.

Starting from s0 = d > 1, by iteration we obtain

|u|L∞(Ω) ≤ c
(
1 + |u|Lp(Ω)

)
≤ c(1 + ‖u‖) ≤ C(L).

Thus, we complete the proof.

Proof of Proposition A.1. We write down the quasilinear equation (1.1) in the divergence
form {

Q(u) = divAµ(u,∇u) + Bµ(u,∇u) = 0 in Ω,
u = 0 on ∂Ω,

(Q)

where Aµ(z, p) =
(

Ai
µ(z, p)

)N
i=1, z ∈ R, p = (pi) ∈ RN and

Ai
µ(z, p) = σpi + h′µ

( N

∑
i,j=1

βij(z)pi pj

) N

∑
i,j=1

βij(z)pj, i = 1, · · · , N,

Bµ(z, p) = −h′µ
( N

∑
i,j=1

βij(z)pi pj

) N

∑
i,j=1

Dzβij(z)pi pj + f (z).

Denote

aij
µ =

∂Ai
µ

∂pj
=σδij + h′µ

( N

∑
i,j=1

βij(z)pi pj

)
βij(z)

+ 2h′′µ
( N

∑
i,j=1

βij(z)pi pj

) N

∑
i=1

βij(z)pi

N

∑
j=1

βij(z)pj,

for i, j = 1, · · · , N. We verify the structure conditions satisfied by the quasilinear equa-
tion (Q) by use of the assumptions (B), (F) and the property of the truncated function hµ.

(a1) |Aµ(z, p)| ≤ σ|p|+
∣∣∣( N

∑
j=1

βij(z)pj

)N

i=1

∣∣∣ ≤ σ|p|+ (b+ − σ)|p| = b+|p|.

(a2) p · Aµ(z, p) = σ|p|2 + h′µ
( N

∑
i,j=1

βij(z)pi pj

) N
∑

i,j=1
βij(z)pi pj ≥ σ|p|2.

(a3)
N
∑

i,j=1
aij

µ(z, p)ξiξ j
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=σ|ξ|2 + h′µ
( N

∑
i,j=1

βij(z)pi pj

) N

∑
i,j=1

βij(z)ξiξ j + 2h′′µ
( N

∑
i,j=1

βij(z)pi pj

)( N

∑
i,j=1

βij(z)piξ j

)2

≥σ|ξ|2 − 2
∣∣∣h′′µ( N

∑
i,j=1

βij(z)pi pj

)∣∣∣ · N

∑
i,j=1

βij(z)pi pj ·
N

∑
i,j=1

βij(z)ξiξ j

≥σ|ξ|2 − 2εb+|ξ|2 ≥
1
2

σ|ξ|2 for ξ = (ξi) ∈ RN .

(a4) For z, w ∈ R, denote yt = tz + (1− t)w, t ∈ (0, 1]. Then∣∣∣Ai
µ(z, p)− Ai

µ(w, p)
∣∣∣

=
∣∣∣ ∫ 1

0
dt

{
h′µ
( N

∑
i,j=1

βij(yt)pi pj

) N

∑
i,j=1

βij(yt)pj

}∣∣∣
≤
∣∣∣ ∫ 1

0
h′µ
( N

∑
i,j=1

βij(z)pi pj

) N

∑
i,j=1

Dzβij(yt)pj(z− w) dt
∣∣∣

+
∣∣∣ ∫ 1

0
h′′µ
( N

∑
i,j=1

βij pi pj

) N

∑
i,j=1

Dzβij(yt)pi pj(z− w) ·
N

∑
j=1

βij(yt)pj dt
∣∣∣

≤c|p| |z− w|.

(b) On the other hand, we have∣∣Bµ(z, p)
∣∣ ≤∣∣∣h′µ( N

∑
i,j=1

βij(z)pi pj

) N

∑
i,j=1

Dzβij(z)pi pj

∣∣∣+ | f (z)|
≤c|p|2 + Λ(M) ≤ Λ(M)(1 + |p|2) for z ∈ R, |z| ≤ M,

where Λ(M) is an increasing function from R+ to R+.

Assume u ∈ H1
0(Ω), DIµ(u) = 0, Iµ(u) ≤ L. By Lemma A.1, there exists M = M(L)

such that |u|L∞(Ω) ≤ M. The quasilinear equation (Q) satisfies the natural structure
conditions for elliptic equation. All the assumptions of Corollary 1.5, Theorem 1.7 of [14]
(see also [12]) are fulfilled. Therefore there exist K > 0, γ ∈ (0, 1) depending only on M,
Λ such that

‖u‖C1,γ(Ω) ≤ K.

We complete the proof.
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