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1 Introduction

The Calderón-Zygmund singular integral operator is a natural generalization of the
Hilbert transform and the Riesz transform on the Euclidean space, and its corresponding
theories have been proven to be a powerful tool in many aspects of harmonic analysis
and partial differential equations. The exploration of multilinear operators is not only
motivated by the generalization of linear operators, but also their natural appearance in
analysis. The study on the class of multilinear Calderón-Zygmund operators was pre-
liminarily considered by Coifman and Meyer in [4] and was systematically discussed by
Grafakos and Torres in [10]. Since then, a lot of papers focus on this field of research.
The following are some recent development: Grafakos et al. [8] provided a self-contained
proof of the multilinear extension of the Marcinkiewicz real method interpolation the-
orem; Mo and Lu [18] established the boundedness of commutators generated by the
multilinear Calderón-Zygmund type singular integrals and Lipschitz functions on the

∗Corresponding author. Email addresses: zsy494355731@163.com (S. Zhang), haibolincau@126.com (H. Lin),
linyan@cumtb.edu.cn (Y. Lin)

http://www.global-sci.org/ata/ 465 c©2021 Global-Science Press

OPEN ACCESS

DOI https://doi.org/10.4208/ata.2021.lu80.10 | Generated on 2024-12-22 14:41:58



466 S. Zhang, H. Lin and Y. Lin / Anal. Theory Appl., 37 (2021), pp. 465-480

Triebel-Lizorkin space and Lipschitz spaces; Lin et al. [17] obtained some sharp max-
imal estimates for multilinear commutators of multilinear strongly singular Calderón-
Zygmund operators.

On the other hand, the weighted inequalities arise naturally in Fourier analysis, but
their use is best justified by the variety of applications in which they appear; see, for in-
stance, Grafakos [7]. Grafakos and Torres [11] established the weighted estimates with
Ap weights for the multilinear Calderón-Zygmund operator and the corresponding max-
imal operator. The corresponding results are generalized to the multilinear singular in-
tegral operators with non-smooth kernels by Hu and Lu [13]. In 2009, Lerner et al. [16]
developed the theory of the multiple Ap weight, which was applied to the weighted
estimates for multilinear Calderón-Zygmund operators. Recently, Chen et al. [1] estab-
lished the multiple weighted norm inequalities for the maximal vector-valued multilin-
ear Calderón-Zygmund operators. In 2013, Wang and Yi [22] studied the boundedness
properties of multilinear Calderón-Zygmund operators on products of weighted Morrey
spaces with multiple weights. We mention that the classical Morrey spaces were intro-
duced by Morrey [19] in order to study the existence and differentiability properties of the
solutions of second-order elliptic partial differential equations, and the weighted Morrey
space was first introduced by Komori and Shirai [15].

With the deepening of theoretical research, it has been discovered that a number of
remarkable problems do not need to be embedded in the framework of Euclidean spaces
equipped with Lebesgue measures. A prime example is the spaces of homogeneous type
introduced by Coifman and Weiss [5, 6]. In the past decade, the analysis on RD-space,
which is a special space of homogeneous type equipped with measures satisfying an
additional reverse doubling property, has been greatly developed; see, for instance, [3, 9,
12, 14, 20, 23–25] and the references therein. It should be pointed out that the theory of
multilinear operators on RD-spaces has been discussed by Grafakos et al. [9] in a unified
way. Moreover, Kokilashvili and Meskhi [14] introduced the weighted Morrey space on
RD-spaces.

Inspired by the above works, the main purpose of this paper is to establish the bound-
edness properties of multilinear Caldeŕon-Zygmund operators on products of weighted
Morrey spaces with multiple weights defined on RD-spaces.

To illustrate our main results, we first review some necessary definitions and notation.
We begin with the definition of RD-space.

Definition 1.1. Let (X , d) be a metric space and for any x ∈ X and r ∈ (0, ∞), let the ball
B(x, r) := {y ∈ X : d(x, y) < r}. Suppose that µ is a regular Borel measure defined on a
σ-algebra which contains all Borel sets induced by the open balls {B(x, r) : x ∈ X , r > 0}, and
that 0 < µ(B(x, r)) < ∞ for all x ∈ X and r ∈ (0, ∞).

(i) The triple (X , d, µ) is called a space of homogeneous type if there exists a constant C1 ∈
[1, ∞) such that, for any x ∈ X and r ∈ (0, ∞),

µ(B(x, 2r)) ≤ C1µ(B(x, r)). (1.1)
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(ii) The triple (X , d, µ) is called an RD-space if there exist constants τ ∈ (0, n] and C2 ∈
[1, ∞) such that, for any x ∈ X , r ∈ (0, diam(X )/2) and λ ∈ [1, diam(X)/(2r)),

(C2)
−1λτµ(B(x, r)) ≤ µ(B(x, λr)) ≤ C2λnµ(B(x, r)), (1.2)

where
diam(X ) := sup

x,y∈X
d(x, y).

Remark 1.1. (i) Obviously, an RD-space is a space of homogeneous.
(ii) It has been shown in [12] that, if µ satisfies (1.1), then µ satisfies (1.2) if and only if

there exist constants a0, C0 ∈ (1, ∞) such that, for any x ∈ X and r ∈ (0, diam(X )/a0),

µ(B(x, a0r)) ≥ C0µ(B(x, r)),

and equivalently for any x ∈ X and r ∈ (0, diam(X )/a0),

B(x, a0r) \ B(x, r) 6= ∅,

which is known in the topology as the uniform prefectness. For more details, see also [24].

Throughout the whole paper, we always assume that the underlying space (X , d, µ)
is an RD-space with µ(X ) = ∞. Motivated by [9] we study the following multilinear
singular integrals on (X , d, µ).

Definition 1.2. For η ∈ (0, 1], let Cη(X ) be the set of all functions f : X → C such that

‖ f ‖Cη(X ) := sup
x 6=y

| f (x)− f (y)|
d(x, y)η

< ∞.

Denote by supp( f ) the closure of the set {x ∈ X : f (x) 6= 0} in X . Define

Cη
b (X ) := { f ∈ Cη(X ) : f has bounded support}.

Denote by (Cη
b (X ))′ the dual space of Cη

b (X ), namely, the collection of all continuous linear
functionals on Cη

b (X ).

Given m ∈N, set

Ωm := X m+1 \ {(y0, y1, · · · , ym) : y0 = y1 = · · · = ym},
V(x, y) := µ(B(x, d(x, y))) for all x, y ∈ X .

Definition 1.3. Suppose that K : Ωm → C is locally integrable. The function K is called a
Calderón-Zygmund kernel if there exist constants CK ∈ (0, ∞) and γ ∈ (0, 1] such that, for all
(y0, y1, · · · , ym) ∈ Ωm,

|K(y0, y1, · · · , ym)| ≤ CK

[ m

∑
j=1

V(y0, yk)
]−m

, (1.3)
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and that, for all k ∈ {0, 1, · · · , m},

|K(y0, y1, · · · , yk, · · · , ym)− K(y0, y1, · · · , y′k, · · · , ym)|

≤CK

 d(yk, y′k)
max

0≤k≤m
d(y0, yk)

γ [ m

∑
k=1

V(y0, yk)
]−m

, (1.4)

whenever
d(yk, y′k) ≤

1
2

max
0≤k≤m

d(y0, yk).

In this case, we write K ∈ Ker(m, CK, γ).

Definition 1.4. Let η ∈ (0, 1]. An m-linear Calderón-Zygmund operator is a continuous opera-
tor

T :

m times︷ ︸︸ ︷
Cη

b (X )× · · · × Cη
b (X )→ (Cη

b (X ))′

such that, for all f1, · · · , fm ∈ Cη
b (X ) and x /∈ ∩m

i=1supp( fi),

T( f1, · · · , fm)(x) =
∫
Xm

K(x, y1, · · · , ym)
m

∏
i=1

fi(yi)dµ(y1) · · · dµ(ym),

where the kernel K ∈ Ker(m, CK, γ) for some CK ∈ (0, ∞) and γ ∈ (0, 1].

In what follows, for any p ∈ [1, ∞), let p′ := p/(p− 1) denote its conjugate index.
Given a measure ρ absolutely continuous with respect to the measure µ, that is, there is
a non-negative locally integrable function ω such that dρ(x) = ω(x)dµ(x) for all x ∈ X ,
then ρ is called a weighted measure with respect to µ and ω is called a weight. A weight
ω is said to belong to the Muckenhoupt class Ap(µ) for p ∈ (1, ∞) if

[ω]Ap := sup
B

[
1

µ(B)

∫
B

ω(y)dµ(y)
] [

1
µ(B)

∫
B

ω(y)1−p′dµ(y)
]p−1

< ∞, (1.5)

where the supremum is taken over all balls B contained in X . When p = 1, a weight ω is
said to belong to the Muckenhoupt class A1(µ) if

[ω]A1 := sup
B

[
1

µ(B)

∫
B

ω(y)dµ(y)
] [

inf
B

ω(x)
]−1

< ∞.

Set
A∞(µ) :=

⋃
1≤p<∞

Ap(µ).

For m exponents p1, · · · , pm, write p for the exponent defined by

1
p
=

1
p1

+ · · ·+ 1
pm

and ~P := (p1, · · · , pm).
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Definition 1.5. Let p1, · · · , pm ∈ [1, ∞) and p ∈ (0, ∞) such that

1
p
=

m

∑
j=1

1
pj

.

Set

~ω := (ω1, · · · , ωm) and v~ω :=
m

∏
i=1

ω
p/pi
i

for every ωj being a weight. We say that ~ω satisfies the A~P condition if

sup
B

[
1

µ(B)

∫
B

v~ω(x)dµ(x)
]1/p m

∏
j=1

[
1

µ(B)

∫
B

ωj(x)1−p′j dµ(x)
]1/p′j

< ∞, (1.6)

where, when pj = 1, [
1

µ(B)

∫
B

ωj(x)1−p′j dµ(x)
]1/p′j

is understood as infB ω−1
j .

In the remainder of this article, for any measurable set E and a weight ω, we set

ω(E) :=
∫

E
ω(x) dµ(x).

Definition 1.6. Let p ∈ (0, ∞) and κ ∈ (0, 1), and let ω be a weight. Then the weighted Morrey
space is defined by setting

Mp,κ
ω (X ) := { f ∈ Lp

loc(ω) : ‖ f ‖Mp,κ
ω (X ) < ∞},

where

‖ f ‖Mp,κ
ω (X ) := sup

B

[
1

[ω(B)]κ

∫
B
| f (x)|pω(x)dµ(x)

] 1
p

.

We also denote by WMp,κ
ω (X ) the generalized weighted weak Morrey space of all locally integrable

functions satisfying

‖ f ‖WMp,κ
ω (X ) := sup

B
sup
t>0

1
[ω(B)]κ/p tω({x ∈ B : | f (x)| > t})

1
p < ∞.

Remark 1.2. If κ ≡ 0, Mp,κ
ω (X ) is just the weighted Lebesgue spaces.

We now formulate our main results as follows.
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Theorem 1.1. Let m ≥ 2, and T be an m-linear Calderón-Zygmund operator. If
p1, · · · , pm ∈ (1, ∞) with 1

p = 1
p1

+ · · · + 1
pm

and ~ω = (ω1, · · · , ωm) ∈ A~p with
ω1, · · · , ωm ∈ A∞(µ), then for any κ ∈ (0, 1), there exists a positive constant C independent of
~f = ( f1, · · · , fm) such that

‖T(~f )‖Mp,κ
v~ω

(X ) ≤ C
m

∏
i=1
‖ fi‖M

pi ,κ
ωi (X ), (1.7)

where

v~ω =
m

∏
i=1

ω
p/pi
i . (1.8)

Theorem 1.2. Let m ≥ 2, and T be an m-linear Calderón-Zygmund operator. If p1, · · · , pm ∈
[1, ∞) with some pi = 1 and 1

p = 1
p1

+ · · · + 1
pm

and ~ω = (ω1, · · · , ωm) ∈ A~p with
ω1, · · · , ωm ∈ A∞(µ), then for any κ ∈ (0, 1), there exists a positive constant C independent of
~f = ( f1, · · · , fm) such that

‖T(~f )‖WMp,κ
v~ω

(X ) ≤ C
m

∏
i=1
‖ fi‖M

pi ,κ
ωi (X ), (1.9)

where v~ω is given by (1.8).

This paper is organized as follows. In Section 2, we recall some useful lemmas associ-
ated with the weights as well as the weighted Lp-boundedness of the m-linear Calderón-
Zygmund operator. Section 3 is devoted to prove Theorems 1.1 and 1.2.

Finally, we make some conventions on notation. Throughout this paper, we always
denote by C a positive constant which is independent of the main parameters, but they
may vary from line to line. Constants with subscripts, such as C1 and C2, do not change
in different occurrences. The expression Y . Z means that there exists a positive constant
C such that Y ≤ CZ. The expression A ∼ B means that A . B . A. Also, for any subset
E ⊂ X , χE denotes its characteristic function.

2 Preliminaries

In this section, we show several lemmas which will be used in the proof of Theorems 1.1
and 1.2. We begin with the properties of the Ap and A~p weights.

Lemma 2.1 ( [21, Theorem 15]). Let ω ∈ Ap(µ) with p ∈ [1, ∞). Then there exist positive
constants C3 and C4 such that, for any ball B ⊂ X and each measurable set E ⊂ B,

ω(E)
ω(B)

≤ C3

[
µ(E)
µ(B)

] 1
p

,

ω(E)
ω(B)

≥ C4

[
µ(E)
µ(B)

]p

.
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Lemma 2.2 ([9]). Let p1, · · · , pm ∈ [1, ∞), and

1
p
=

m

∑
k=1

1
pk

.

Then ~ω = (ω1, · · · , ωm) ∈ A~p if and only if ω
1−p′j
j ∈ Amp′j

, j = 1, · · · , m,

v~ω ∈ Amp,

where v~ω is given by (1.8), and the condition ω
1−p′j
j ∈ Amp′j

in the case pj = 1 is understood as

ω1/m
j ∈ A1.

Lemma 2.3 ( [2, p. 60]). Let (Ω, d, µ) be a nonnegative metric measure space with µ(Ω) < ∞.
Let f ∈ L1(Ω) and f (Ω) ⊂ I with I being an interval. If Φ is convex on I, then the following
Jensen inequality

Φ
(

1
µ(Ω)

∫
Ω

f dµ

)
≤ 1

µ(Ω)

∫
Ω

Φ ◦ f dµ

holds, provided that Φ ◦ f ∈ L1(Ω).

Lemma 2.4. Let ω ∈ A∞(µ), then for all balls B ⊂ X , the following reverse Jensen inequality
holds:

1
µ(B)

∫
B

ω(x)dµ(x) ≤ C exp
{

1
µ(B)

∫
B

log ω(x)dµ(x)
}

, (2.1)

where C is a positive constant independent of B.

Proof. If ω ∈ A∞(µ), then there exists some p ∈ (1, ∞) such that ω ∈ Ap(µ). On the other
hand, notice that ex is convex on (−∞, ∞), if we replace f by log[( 1

ω(x) )
1/(p−1)] in Lemma

2.3, it is easy to see that

1
µ(B)

∫
B

log

[(
1

ω(x)

)1/(p−1)
]

dµ(x) ≤ log

{
1

µ(B)

∫
B

[(
1

ω(x)

)1/(p−1)
]

dµ(x)

}
,

which is equivalent to

exp
{

1
µ(B)

∫
B

log
1

ω(x)
dµ(x)

}
≤
[

1
µ(B)

∫
B

(
1

ω(x)

)1/(p−1)

dµ(x)

]p−1

.

This, together with (1.5), implies that (2.1) holds true.
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Lemma 2.5. Let m ≥ 2, p1, · · · , pm ∈ [1, ∞), and p ∈ (0, ∞) with 1/p = ∑m
k=11/pk. Assume

that ω1, · · · , ωm ∈ A∞(µ) and v~ω is given by (1.8), then there exists a positive constant C such
that, for any ball B,

m

∏
i=1

(∫
B

ωi(x)dµ(x)
)p/pi

≤ C
∫

B
v~ω(x)dµ(x).

Proof. Since ω1, · · · , ωm ∈ A∞(µ), then by using Lemma 2.4, we have

m

∏
i=1

(∫
B

ωi(x)dµ(x)
)p/pi

.
m

∏
i=1

(
µ(B) · exp

{
1

µ(B)

∫
B

log ωi(x)dµ(x)
})p/pi

=
m

∏
i=1

(
µ(B)p/pi · exp

{
1

µ(B)

∫
B

log[ωi(x)]p/pi dµ(x)
})

= (µ(B))∑m
i=1 p/pi · exp

{
m

∑
i=1

1
µ(B)

∫
B

log[ωi(x)]p/pi dµ(x)

}
.

Notice that
m

∑
i=1

p/pi = 1 and v~ω(x) =
m

∏
i=1

ωi(x)p/pi .

It then follow from Lemma 2.3 that

m

∏
i=1

(∫
B

ωi(x)dµ(x)
)p/pi

.µ(B) exp

[
1

µ(B)

∫
B

log

(
m

∏
i=1

(ωi(x))p/pi

)
dµ(x)

]
.
∫

B
v~ω(x)dµ(x),

which completes the proof of Lemma 2.5.

Grafakos et al. [9] gave the following weighted Lp-boundedness of multilinear
Caldeŕon-Zygmund operators on RD-spaces.

Lemma 2.6 ( [9]). Let p1, · · · , pm ∈ [1, ∞), 1
p = 1

p1
+ · · · + 1

pm
, ~P := (p1, · · · , pm), and

~ω = (ω1, · · · , ωm) ∈ A~P. Then the following hold:

(i) T can be extended to a bounded m-linear operator from Lp1(ω1) × · · · × Lpm(ωm) to
Lp(v~ω) if all the exponents pj are greater than 1;

(ii) T can be extended to a bounded m-linear operator from Lp1(ω1) × · · · × Lpm(ωm) to
Lp,∞(v~ω) if some of the exponents pj are equal to 1.
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3 Proof of Theorems 1.1 and 1.2

For the sake of brevity, we will limit our proof to the case of m = 2.

Proof of Theorem 1.1. For any ball B = B(cB, rB) ⊂ X , decompose fi = f 0
i + f ∞

i , where
f 0
i = fiχ2B, i = 1, 2. Then we have

2

∏
i=1

fi(yi) =
2

∏
i=1

(
f 0
i (yi) + f ∞

i (yi)
)

= f 0
1 (y1) f 0

2 (y2) + f 0
1 (y1) f ∞

2 (y2) + f ∞
1 (y1) f 0

2 (y2) + f ∞
1 (y1) f ∞

2 (y2),

which, together with the fact that T is an multilinear operator, shows that

1
[v~ω(B)]κ/p

(∫
B
|T( f1, f2)(x)|pv~ω(x)dµ(x)

)1/p

.
1

[v~ω(B)]κ/p

(∫
B

∣∣T( f 0
1 , f 0

2 )(x)
∣∣p v~ω(x)dµ(x)

)1/p

+
1

[v~ω(B)]κ/p

(∫
B

∣∣T( f 0
1 , f ∞

2 )(x)
∣∣p v~ω(x)dµ(x)

)1/p

+
1

[v~ω(B)]κ/p

(∫
B

∣∣T( f ∞
1 , f 0

2 )(x)
∣∣p v~ω(x)dµ(x)

)1/p

+
1

[v~ω(B)]κ/p

(∫
B
|T( f ∞

1 , f ∞
2 )(x)|p v~ω(x)dµ(x)

)1/p

= : I1 + I2 + I3 + I4.

In view of Lemma 2.2, we have that v~ω ∈ A2p(µ). Applying Lemmas 2.6, 2.5 and 2.1 and
(1.2), we get

I1 ≤
1

[v~ω(B)]κ/p

(∫
X

∣∣T( f 0
1 , f 0

2 )(x)
∣∣p v~ω(x)dµ(x)

)1/p

.
1

[v~ω(B)]κ/p

2

∏
i=1

(∫
X
| f 0

i (x)|pi ωi(x) dµ(x)
)1/pi

=
1

[v~ω(B)]κ/p

2

∏
i=1

(∫
2B
| fi(x)|pi ωi(x) dµ(x)

)1/pi

=
2

∏
i=1

[
1

[ωi(2B)]κ

(∫
2B
| fi(x)|pi ωi(x) dµ(x)

)]1/pi

·
2

∏
i=1

[ωi(2B)]κ/pi · [v~ω(B)]−κ/p

≤
2

∏
i=1
‖ fi‖M

pi ,κ
ωi (X ) ·

2

∏
i=1

[ωi(2B)]κ/pi · [v~ω(B)]−κ/p
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=
2

∏
i=1
‖ fi‖M

pi ,κ
ωi (X ) ·

[
2

∏
i=1

(∫
2B

ωi(x) dµ(x)
)p/pi

]κ/p

· [v~ω(B)]−κ/p

.
2

∏
i=1
‖ fi‖M

pi ,κ
ωi (X ) ·

[v~ω(2B)]κ/p

[v~ω(B)]κ/p

.
2

∏
i=1
‖ fi‖M

pi ,κ
ωi (X ).

For the other terms, let us first consider the I4. Notice that, for any x ∈ B and y ∈
X \ (2B), we have V(x, y) ∼ V(cB, y). It then follows from (1.3) and (1.2) that

|T( f ∞
1 , f ∞

2 )(x)| .
∫
(X\2B)2

|K(x, y1, y2)|
∣∣∣ 2

∏
i=1

fi(yi)
∣∣∣ dµ(y1)dµ(y2)

.
∫
(X\2B)2

2

∏
i=1
| fi(yi)|

[ 2

∑
i=1

V(x, yi)
]−2

dµ(y1)dµ(y2)

.
∫
(X\2B)2

2

∏
i=1
| fi(yi)|

[ 2

∑
i=1

V(cB, yi)
]−2

dµ(y1)dµ(y2)

.
∫
(X )2\(2B)2

2

∏
i=1
| fi(yi)|

[ 2

∑
i=1

V(cB, yi)
]−2

dµ(y1)dµ(y2)

.
∞

∑
j=1

∫
(2j+1B)2\(2jB)2

2

∏
i=1
| fi(yi)|

[ 2

∑
i=1

V(cB, yi)
]−2

dµ(y1)dµ(y2)

.
∞

∑
j=1

1[
µ( 2jB√

2
)
]2

∫
(2j+1B)2\(2jB)2

2

∏
i=1
| fi(yi)| dµ(y1)dµ(y2)

.
∞

∑
j=1

2

∏
i=1

µ(2j+1B)
µ(2jB)

· 1
µ(2j+1B)

∫
2j+1B
| fi(yi)|dµ(yi)

.
∞

∑
j=1

2

∏
i=1

1
µ(2j+1B)

∫
2j+1B
| fi(yi)|dµ(yi).

From this, together with Hölder’s inequality, (1.6) and Lemma 2.5, we deduce that

|T( f ∞
1 , f ∞

2 )(x)|

.
∞

∑
j=1

2

∏
i=1

1
µ(2j+1B)

∫
2j+1B
| fi(yi)|[ωi(yi)]

1/pi [ωi(yi)]
−1/pi dµ(yi)

≤
∞

∑
j=1

2

∏
i=1

1
µ(2j+1B)

[(∫
2j+1B
| fi(yi)|pi ωi(yi) dµ(yi)

)1/pi

×
(∫

2j+1B
[ωi(yi)]

1−p′i dµ(yi)

)1/p′i
]

OPEN ACCESS

DOI https://doi.org/10.4208/ata.2021.lu80.10 | Generated on 2024-12-22 14:41:58



S. Zhang, H. Lin and Y. Lin / Anal. Theory Appl., 37 (2021), pp. 465-480 475

=
∞

∑
j=1

1
µ(2j+1B)2

2

∏
i=1

(
1

µ(2j+1B)

∫
2j+1B

[ωi(yi)]
1−p′i dµ(yi)

)1/p′i
× [µ(2j+1B)]1/p′i

×
(

1
[ωi(2j+1B)]κ

∫
2j+1B
| fi(yi)|pi ωi(yi)dµ(yi)

)1/pi

× [ωi(2j+1B)]
κ
pi

≤
2

∏
i=1
‖ fi‖M

pi ,κ
ωi (X ) ·

∞

∑
j=1

( 2

∏
i=1

[ωi(2j+1B)]κ/pi

[v~ω(2j+1B)]1/p

)

.
2

∏
i=1
‖ fi‖M

pi ,κ
ωi (X ) ·

∞

∑
j=1

[v~ω(2j+1B)](κ−1)/p. (3.1)

Due to v~ω ∈ A2p(µ) ⊂ A∞(µ) and Lemma 2.1, by taking δ = 1
2p , we see that

v~ω(B)
v~ω(2j+1B)

.
(

µ(B)
µ(2j+1B)

)δ

,

which, together with (1.2), implies that

I4 =
1

[v~ω(B)]κ/p

(∫
B
|T( f ∞

1 , f ∞
2 )(x)|p v~ω(x)dµ(x)

)1/p

≤[v~ω(B)](1−κ)/p sup
x∈B
|T( f ∞

1 , f ∞
2 )(x)|

.
2

∏
i=1
‖ fi‖M

pi ,κ
ωi (X ) ·

∞

∑
j=1

[v~ω(B)](1−κ)/p

[v~ω(2j+1B)](1−κ)/p

≤
2

∏
i=1
‖ fi‖M

pi ,κ
ωi (X ) ·

∞

∑
j=1

(
µ(B)

µ(2j+1B)

)δ(1−κ)/p

.
2

∏
i=1
‖ fi‖M

pi ,κ
ωi (X ) ·

∞

∑
j=1

(
1

2(j+1)τ

)δ(1−κ)/p

≤
2

∏
i=1
‖ fi‖M

pi ,κ
ωi (X ), (3.2)

where the last inequality holds since κ ∈ (0, 1) and δ > 0.
We now consider the terms I2 and I3. We only give the arguments for I2 since the

arguments for I3 are similar. Using the (1.3) again, we deduce that, for any x ∈ B,

|T( f ∞
1 , f 0

2 )(x)| =
∣∣∣∣∫X 2

K(x, y1, y2) f ∞
1 (y1) f 0

2 (y2)dµ(y1)dµ(y2)

∣∣∣∣
.
∫
X 2

| f ∞
1 (y1) f 0

2 (y2)|
[∑2

i=1 V(x, yi)]2
dµ(y1)dµ(y2)
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≤
∫

2B
| f2(y2)|dy2 ×

∫
X\(2B)

| f1(y1)|
[V(x, y1)]2

dµ(y1)

.
∫

2B
| f2(y2)|dµ(y2)×

∞

∑
j=1

∫
(2j+1B\2jB)

| f1(y1)|
[V(x, y1)]2

dµ(y1)

.
∫

2B
| f2(y2)|dµ(y2)×

∞

∑
j=1

1
µ(2j+1B)2

∫
2j+1B\2jB

| f1(y1)|dµ(y1)

≤
∞

∑
j=1

2

∏
i=1

1
µ(2j+1B)

∫
2j+1B
| fi(yi)|dµ(yi).

It then follow from (3.1) that

|T( f ∞
1 , f 0

2 )(x)| .
2

∏
i=1
‖ fi‖M

pi ,κ
ωi (X ) ·

∞

∑
j=1

[v~ω(2j+1B)](κ−1)/p.

Similar to (3.2), we have

I2 ≤[v~ω(B)](1−κ)/p sup
x∈B
|T( f ∞

1 , f 0
2 )(x)|

.
2

∏
i=1
‖ fi‖M

pi ,κ
ωi (X ) ·

∞

∑
j=1

[v~ω(B)](1−κ)/p

[v~ω(2j+1B)](1−κ)/p

.
2

∏
i=1
‖ fi‖M

pi ,κ
ωi (X ).

Combining the above estimates and then taking the supremum over all balls B ⊂ X , we
finish the proof of Theorem 1.1.

Proof of Theorem 1.2. For any ball B = B(cB, rB), decompose fi = f 0
i + f ∞

i with the same
notation in the proof of Theorem 1.1. Recall that

2

∏
i=1

fi(yi) =
2

∏
i=1

(
f 0
i (yi) + f ∞

i (yi)
)

= f 0
1 (y1) f 0

2 (y2) + f 0
1 (y1) f ∞

2 (y2) + f ∞
1 (y1) f 0

2 (y2) + f ∞
1 (y1) f ∞

2 (y2).

Then we have, for any λ ∈ (0, ∞),

v~ω({x ∈ B : |T( f1, f2)(x)| > λ})1/p

.v~ω

({
x ∈ B : |T( f 0

1 , f 0
2 )| >

λ

4

})1/p

+ v~ω

({
x ∈ B : |T( f 0

1 , f ∞
2 )| > λ

4

})1/p

+ v~ω

({
x ∈ B : |T( f ∞

1 , f 0
2 )| >

λ

4

})1/p

+ v~ω

({
x ∈ B : |T( f ∞

1 , f ∞
2 )| > λ

4

})1/p

= : I∗1 + I∗2 + I∗3 + I∗4 .

OPEN ACCESS

DOI https://doi.org/10.4208/ata.2021.lu80.10 | Generated on 2024-12-22 14:41:58



S. Zhang, H. Lin and Y. Lin / Anal. Theory Appl., 37 (2021), pp. 465-480 477

By Lemma 2.2 again, we know that v~ω ∈ A2p(µ) with 2p ∈ [1, ∞). Applying Lemmas
2.6, 2.5 and 2.1, we have

I∗1 .
1
λ

2

∏
i=1

(∫
2B
| fi(x)|pi ωi(x)dµ(x)

)1/pi

=
1
λ

2

∏
i=1

[ωi(2B)]κ/pi

[ωi(2B)]κ/pi

(∫
2B
| fi(xi)|pi ωi(x)dµ(x)

)1/pi

.

2

∏
i=1

[ωi(2B)]κ/pi

λ
·

2

∏
i=1
‖ fi‖M

pi ,κ
ωi (X )

≤ [v~ω(2B)]κ/p

λ

2

∏
i=1
‖ fi‖M

pi ,κ
ωi (X )

.
[v~ω(B)]κ/p

λ

2

∏
i=1
‖ fi‖M

pi ,κ
ωi (X ).

In the proof of Theorem 1.1, for (α1, α2) = (∞, ∞) or (0, ∞) or (0, ∞), we have already
showed the following pointwise estimate: for any x ∈ B,

|T( f α1
1 , f α2

2 )(x)| .
∞

∑
j=1

2

∏
i=1

1
µ(2j+1B)

∫
2j+1B
| fi(yi)|dµ(yi).

Without loss of generality, we assume that p1 = 1 and p2 > 1, then we have

|T( f α1
1 , f α2

2 )(x)|

.
∞

∑
j=1

{
1

µ(2j+1B)

∫
2j+1B
| f1(y1)|dµ(y1)×

1
µ(2j+1B)

∫
2j+1B
| f2(y2)|dµ(y2)

}

≤
∞

∑
j=1

{
1

µ(2j+1B)

∫
2j+1B
| f1(y1)|ω1(y1)dµ(y1)

1
inf2j+1B ω1

× 1
µ(2j+1B)

∫
2j+1B
| f2(y2)|[ω2(y2)]

1
p2 [ωi(yi)]

−1
p2 dµ(y2)

}
.

2

∏
i=1
‖ fi‖M

pi ,κ
ωi (X )

∞

∑
j=1

[v~ω(2j+1B)](κ−1)/p.

Similar to (3.2), we have, for any x ∈ B,

|T( f α1
1 , f α2

2 )(x)|

.
2

∏
i=1
‖ fi‖M

pi ,κ
ωi (X ) ·

1
[v~ω(B)](1−κ)/p

∞

∑
j=1

[
[v~ω(B)](1−κ)/p

[v~ω(2j+1B)](1−κ)/p

]
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.
2

∏
i=1
‖ fi‖M

pi ,κ
ωi (X ) ·

1
[v~ω(B)](1−κ)/p

∞

∑
j=1

[(
µ(B)

µ(2j+1B)

)δ(1−κ)/p
]

.
2

∏
i=1
‖ fi‖M

pi ,κ
ωi (X ) ·

1
[v~ω(B)](1−κ)/p

. (3.3)

If {x ∈ B : |T( f α1
1 , f α2

2 )(x)| > λ/4} = ∅, then the inequality

I∗j = v~ω

({
x ∈ B : |T( f α1

1 , f α2
2 )(x)| > λ

4

})1/p

.
[v~ω(B)]κ/p

λ

2

∏
i=1
‖ fi‖M

pi ,κ
ωi (X )

holds trivially for j = 2, 3, 4.
Now, if {x ∈ B : |T( f α1

1 , f α2
2 )(x)| > λ/4} 6= ∅, then, by the inequality (3.3), we have

λ .
2

∏
i=1
‖ fi‖M

pi ,κ
ωi (X ) ·

1
[v~ω(B)](1−κ)/p

,

which is equivalent to

[v~ω(B)]1/p .
[v~ω(B)]κ/p

λ

m

∏
i=1
‖ fi‖M

pi ,κ
ωi (X ).

Therefore, for j = 2, 3, 4,

I∗j ≤ [v~ω(B)]1/p .
[v~ω(B)]κ/p

λ

2

∏
i=1
‖ fi‖M

pi ,κ
ωi (X ),

which completes the proof of Theorem 1.2.
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[21] J. O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Mathematics,
1381, Springer-Verlag, Berlin, 1989.

[22] H. Wang and W. Yi, Multilinear singular and fractional integral operators on weighted Mor-
rey spaces, J. Funct. Spaces Appl., (2013), Art. ID 735795.

[23] D. Yang and Y. Zhou, Radial maximal function characterizations of Hardy spaces on RD-
spaces and their applications, Math. Ann., 346(2) (2010), 307–333.

[24] D. Yang, Y. Zhou, New properties of Besov and Triebel-Lizorkin spaces on RD-spaces,
Manuscripta Math., 134(1-2) (2011), 59–90.

OPEN ACCESS

DOI https://doi.org/10.4208/ata.2021.lu80.10 | Generated on 2024-12-22 14:41:58



480 S. Zhang, H. Lin and Y. Lin / Anal. Theory Appl., 37 (2021), pp. 465-480

[25] D. Yang and Y. Zhou, Localized Hardy spaces H1 related to admissible functions on RD-
spaces and applications to Schrödinger operators, Trans. Amer. Math. Soc., 363(3) (2011),
1197–1239.

OPEN ACCESS

DOI https://doi.org/10.4208/ata.2021.lu80.10 | Generated on 2024-12-22 14:41:58


