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Abstract. We establish local and global well-posedness of the 2D dissipative quasi-
geostrophic equation in critical mixed norm Lebesgue spaces. The result demonstrates
the persistence of the anisotropic behavior of the initial data under the evolution of
the 2D dissipative quasi-geostrophic equation. The phenomenon is a priori nontrivial
due to the nonlocal structure of the equation. Our approach is based on Kato’s method
using Picard’s interation, which can be apdated to the multi-dimensional case and
other nonlinear non-local equations. We develop time decay estimates for solutions of
fractional heat equation in mixed norm Lebesgue spaces that could be useful for other
problems.

Key Words: Local well-posedness, global well-posedness, dissipative quasi-geostrophic equa-
tion, fractional heat equation, mixed-norm Lebesgue spaces.

AMS Subject Classifications: 35A01, 35K55, 35K61

1 Introduction and main result

We study the Cauchy problem for the 2D dissipative quasi-geostrophic equation{
ut + (−∆)αu = R(u) · ∇u in R2 × (0, T),
u(·, 0) = θ0(·) in R2,

(1.1)

where α ∈ (0, 1), u : R2 × (0, T) → R is an unknown solution with some T > 0, θ0 :
R2 → R is a measurable function of initial data, and

R(u) = (−R2(u),R1(u))
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in which Rk is the kth Riesz transform which is defined by

Rk(u) = ∂xk(−∆)−
1
2 u, k = 1, 2.

Moreover, in (1.1), (−∆)α denotes the fractional Laplace operator of order α whose precise
definition will be recalled in Subsection 2.3.

The goal of this paper is to study the well-posedness of (1.1) in critical mixed-norm
Lebesgue spaces. To make sense what we mean by this, let us recall the following scaling
invariant property of (1.1). From a simple calculation, we see that for each solution u of
(1.1) and each λ > 0, the rescaled function uλ defined by

uλ(x, t) = λ2α−1u(λx, λ2αt), (x, t) ∈ R2 × (0, T/λ2α), (1.2)

is also a solution of (1.1) with the corresponding scaled initial data θλ
0 defined as in (1.2).

Now, for each p1, p2 ∈ (1, ∞), the mixed norm Lp1,p2(R
2) of a measurable function

f : R2 → R is defined in [1] by

‖ f ‖Lp1,p2 (R
2) =

(∫
R

(∫
R
| f (x1, x2)|p1 dx1

) p2
p1

dx2

) 1
p2

.

Similar definitions can be formulated with either or both of p1 = ∞, p2 = ∞. Then, we
observe that

‖uλ(·, t)‖Lp1,p2 (R
2) = ‖u(·, λ2αt)‖Lp1,p2 (R

2) for all λ > 0 and for all t ∈ [0, T/λ2α)

if and only if
1
p1

+
1
p2

= 2α− 1. (1.3)

Note that (1.3) is valid only when α ≥ 1
2 .

The study of (dissipative) active scalar equations has seen a great topic of research in
the last decades, starting with the seminal works of Constantin, Majda and Tabak [7, 8].
It is commonly known that (see also (1.3)), Eq. (1.1) is critical for α = 1

2 , subcritical for
α > 1

2 and supercritical otherwise. For the latter, the global well-posedness is largely
open (see e.g., [24]). For the subcritical case, the problem has been investigated in [6]
(see also e.g., [10,16]) and for the critical case in the seminal work [5] (see the predecessor
paper [19] for smooth data and also [9]). The super-critical case has been addressed in [11,
12] where some regularity is assumed for the velocity. It is important to notice that even
if in the present work we are considering a subcritical problem as far as the scaling is
concerned, the fact that the initial data is chosen in a critical space does not allow to
obtain easily a global well-posedness result for large data in our framework. Indeed, the
local well-posedness in the critical Lebesgue space L

2
2α−1 obtained in [6] can be improved

to a global one using the Lp-maximum principle in [13]. However in our case, we do not
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know if such a maximum principle in mixed Lebesgue norms is available, leaving open
the global well-posedness for large data. We plan to address this issue in the next future.

There is by now a huge literature dealing with this type of equations with or without
dissipation and we refer the reader to the excellent survey paper [18].

In this paper, we focus on well-posedness of (1.1) in critical mixed norm spaces
Lp1,p2(R

2) in which p1, p2 satisfy (1.3). In particular, the results of the paper demonstrate
the persistence of the anisotropic behavior of the initial data under the evolution of the
2D dissipative quasi-geostrophic equation. Due to the nonlocal structure of the equation,
the phenomenon is a priori nontrivial and interesting. To state our result precisely, we
introduce some notations. Given p = (p1, p2) and q = (q1, q2) such that pk ∈ (1, ∞) and
qk ∈ [pk, ∞) for k = 1, 2, assume that (1.3) holds and

1
q1

+
1
q2

= δ ∈ (0, 2α− 1). (1.4)

Then, given T ∈ (0, ∞], we denote Xp,q,T the space consisting of all measurable functions
f : R2 × [0, T)→ R such that for

g(x, t) = t
2α−1−δ

2α f (x, t) and g̃(x, t) = t
1

2α∇ f (x, t) with (x, t) ∈ R2 × (0, T),

then

g ∈ C([0, T), Lq1,q2(R
2)), g̃ ∈ C([0, T), Lp1,p2(R

2)2),

and moreover g(x, 0) = 0, g̃(x, 0) = 0 and the norm

‖ f ‖Xp,q,T = sup
t∈(0,T)

[
‖g(·, t)‖Lq1,q2 (R

2) + ‖g̃‖Lp1,p2 (R
2)

]
< ∞. (1.5)

We also denote Yp,T the space consisting of all functions f ∈ C([0, T), Lp1,p2(R
2)) such

that t
1

2α∇ f ∈ C([0, T), Lp1,p2(R
2)2) and

‖ f ‖Yp,T = sup
t∈(0,T)

[
‖ f (t)‖Lp1,p2 (R

2) + t
1

2α ‖∇ f (t)‖Lp1,p2 (R
2)

]
< ∞. (1.6)

The following result exhibits local and global existence together with uniqueness in
mixed norm Lebesgue spaces Lp1,p2(R

2).

Theorem 1.1. Let α ∈ ( 1
2 , 1], p = (p1, p2) and q = (q1, q2) with pk ∈ (1, ∞), qk ∈ [pk, ∞) for

k = 1, 2. Assume also that the conditions (1.3) and (1.4) hold and

pk

qk
+ 1 ≤ pk, k = 1, 2. (1.7)

Then, there exist a sufficiently small constant λ0 > 0 and a large number N0 > 0 depending only
on α, p, and q such that the following assertions hold.
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(i) For every θ0 ∈ Lp1,p2(R
2), if ‖θ0‖Lp1,p2 (R

2) ≤ λ0, then the Cauchy problem (1.1) has
unique global in time solution u ∈ Xp,q,∞ ∩ Yp,∞ with

‖u‖Xp,q,∞ ≤ N0‖θ0‖Lp1,p2 (R
2) and ‖u‖Yp,∞ ≤ N0‖θ0‖Lp1,p2 (R

2).

(ii) For every θ0 ∈ Lp1,p2(R
2), there exists T0 > 0 sufficiently small depending on α, p, q and

θ0 such that the Cauchy problem (1.1) has unique local in time solution u ∈ Xp,q,T0 ∩ Yp,T0

with

‖u‖Xp,q,T0
≤ N0‖θ0‖Lp1,p2 (R

2) and ‖u‖Yp,T0
≤ N0‖θ0‖Lp1,p2 (R

2).

The previous theorem is proved via the Kato’s method which is based on the Picard’s
iteration. A straightforward inspection of the proof of Theorem 1.1 shows that similar
results also hold if in (1.1) we replace R2 by Rn for any n ≥ 2, and R is any operator so that
each of its components is bounded in weighted Lebesgue space Lp(Rn, ω) → Lp(Rn, ω)
for any Muckenthoupt Ap weight ω, like for instance a Calderon-Zygmund operator
(see Section 2.1 for its definition). It is also possible to extend the results and ideas in
this work to more general equations and systems of equations in more general setting
of mixed-norm functional spaces such as mixed norm Sobolev spaces and mixed norm
Besov spaces.

2 Preliminary estimates in mixed norm Lebesgue spaces

For p1, · · · , pn ∈ [1, ∞), and for a given measurable function f : Rn → R, we say that f
belongs to the mixed-norm Lebesgue space Lp1,··· ,pn(R

n) if its norm

‖ f ‖Lp1,··· ,pn (R
n)

=


(· · ·(∫

R
| f (x1, · · · xn)|p1 dx1

) p2
p1

dx2 · · ·
) pn−1

pn−2

dxn−1


pn

pn−1

dxn


1

pn

< ∞.

Similar definitions can be also formulated if some of the indices in {p1, · · · , pn} are equal
to ∞. Note that it follows directly from the definition that if p = p1 = · · · = pn, then
Lp1,··· ,pn(R

n) is the same as the usual Lebesgue space Lp(Rn). For more details on mixed
norm Lebesgue space Lp1,··· ,pn(R

n), one can see [1].

2.1 Riesz transform in mixed norm spaces

This subsection proves that the Riesz transforms are bounded in the mixed-norm
Lebesgue spaces. The main result of the section is stated in the following theorem.
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Theorem 2.1. For any j = 1, · · · , n and any p1, · · · , pn ∈ (1, ∞), there exists a positive con-
stant N = N(p1, · · · , pn, n) such that

‖Rj( f )‖Lp1,··· ,pn (R
n) ≤ N‖ f ‖Lp1,··· ,pn (R

n)

for every f ∈ Lp1,··· ,pn(R
n), where Rj is the jth-Riesz transform defined by Rj( f ) =

∂xj(−∆)−
1
2 f .

To prove Theorem 2.1, it requires several definitions and results from analysis. We
first recall the definition of Muckenhoupt Aq(Rn)-class of weights. For each q ∈ (1, ∞), a
non-negative, locally integrable function ω : Rn → R is said to be in the Muckenhoupt
Aq(Rn)-class of weights if

[ω]Aq =: sup
R>0, x0∈Rn

(
1

|BR(x0)|

∫
BR(x0)

ω(x)dx
)(

1
|BR(x0)|

∫
BR(x0)

ω(x)−
1

q−1 dx
)q−1

< ∞,

where BR(x0) denotes the ball in Rn of radius R centered at x0 ∈ Rn. In the following,
for each given p ∈ [1, ∞) and each given weight ω : Rn → R, a measurable function
f : Rn → R is said to be in the weighted Lebesgue space Lp(Rn, ω) if its norm

‖ f ‖Lp(Rn,ω) =

(∫
Rn
| f (x)|pω(x)dx

) 1
p

< ∞.

We recall the following amazing result from [21, Theorem 6.2], which is a beautiful appli-
cation of the Rubio De Francia extrapolation theory (see [14] and [15, Corollary 2.7] for
instance).

Theorem 2.2. Let pk ∈ (1, ∞) for all k = 1, · · · , n. Then, there exists a constant K0 =
K0(n, p1, · · · , pn) such that the following holds true. For a pair of given measurable functions
f , g : Rn → R such that if

‖ f ‖Lp1 (R
n,ω) ≤ ‖g‖Lp1 (R

n,ω)

for every ω ∈ Ap1 with [ω]Ap1
≤ K0, then we have

‖ f ‖Lp1,··· ,pn (R
n) ≤ 4n‖g‖Lp1,··· ,pn (R

n).

Now, we are ready to provide the proof of Theorem 2.1.

Proof of Theorem 2.1. We plan to apply Theorem 2.2. For given p1, · · · , pn ∈ (1, ∞), let
K0 be as in Theorem 2.2. By using the truncation and a multiplication with suitable cut-
off functions, we can approximate f ∈ Lp1,··· ,pn(R

n) by a sequence of bounded com-
pactly supported functions (see [1]). Therefore, we may assume that f is bounded
and compactly supported in Rn. Without loss of generality, we can also assume that
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p1 = min{p1, · · · , pn}. Under these assumptions, we see that f ∈ Lp1(R
n, ω) for every

weight ω ∈ Ap1(R
n). Then, since p1 ∈ (1, ∞), by the classical Calderón-Zygmund theory

(see [14, 17] for instance), there exists a constant N = N(p1, n, K0) such that

‖Rj( f )‖Lp1 (R
n,ω) ≤ N‖ f ‖Lp1 (R

n,ω) (2.1)

for every ω ∈ Ap1 with [ω]Ap1
≤ K0. From (2.1) and Theorem 2.2, we infer that

‖Rj( f )‖Lp1,··· ,pn (R
n) ≤ 4nN‖ f ‖Lp1,··· ,pn (R

n).

This is the desired estimate and the proof is therefore completed.

2.2 Young’s inequality in mixed norm Lebesgue spaces

The following Young’s inequality in mixed norm Lebesgue spaces is needed in this paper.

Proposition 2.1 (Young’s inequality in mixed norm). Let pk, rk and qk be given numbers in
[1, ∞] that satisfy

1
pk

+ 1 =
1
qk

+
1
rk

, k = 1, · · · , n.

Then
‖ f ∗ g‖Lp1,··· ,pn (R

n) ≤ ‖ f ‖Lq1,··· ,qn (R
n)‖g‖Lr1,··· ,rn (R

n) (2.2)

for every f ∈ Lq1,··· ,qn(R
n) and g ∈ Lr1,··· ,rn(R

n).

Proof. The proof can be done using induction on the dimension n. For details, see [23,
Theorem 1.2].

2.3 Fractional heat equations in mixed norm Lebesgue spaces

We consider the Cauchy problem of the fractional heat equation{
ut + (−∆)su = 0 in Rn × (0, ∞),
u(x, 0) = u0(x) for x ∈ Rn,

(2.3)

where s ∈ (0, 1] is a given number and u0 : Rn → R is a given measurable function. The
fractional Laplace operator (−∆)s can be defined through its Fourier transform or by the
presentation (see [25] for instance)

(−∆)s f (x) = N(n, s)
∫

Rn

f (x)− f (y)
|x− y|2n+2s dy.

Under some sufficient conditions on the given initial data u0, the function

u(x, t) = e−(−∆)stu0(x) =
∫

Rn
Ps(x− y, t)u0(y)dy (2.4)
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is a solution of (2.3). Here, in (2.4) the function Ps(x, t) is the fractional heat kernel. When
s = 1, the fractional heat equation becomes the usual heat equation and

P1(x, t) =
1

(4πt)
n
2

e−
|x|2
4t , (x, t) ∈ Rn × (0, ∞).

For general s ∈ (0, 1) the formula of Ps(x, t) is not explicit, except for the case s = 1
2 for

which

P1
2
(x, t) =

N(n)t

(t2 + |x|2) n+1
2

, (x, t) ∈ Rn × (0, ∞),

where N(n) = Γ(n + (1/2))/πn+(1/2) is a normalization constant. However, for every
s ∈ (0, 1), it is known from [3, 20] that Ps ∈ C∞(Rn × (0, ∞)). Moreover, it also follows
from [2] that

Ps(x, t) = t−
n
2s Fs(|x|t−

1
2s ),

where Fs ∈ C∞(R) satisfying the following asymptotic property

lim
|ξ|→∞

|ξ|n+2sFs(ξ) = N(n, s).

In particular, for s ∈ (0, 1), we have

N1(n, s)t

(t
1
s + |x|2) n+2s

2
≤ Ps(x, t) ≤ N2(n, s)t

(t
1
s + |x|2) n+2s

2
, (x, t) ∈ Rn × (0, ∞), (2.5)

for some universal positive constants N1, N2.
The main result of this section is the following theorem on time decay estimates for

the fractional heat equation in mixed norm Lebesgue spaces.

Theorem 2.3 (Time decaying of solutions for fractional heat equation in mixed-norm).
Let s ∈ (0, 1] and 1 ≤ qk ≤ pk ≤ ∞. There exists a positive constant N depending only on
p1, · · · , pn, q1, · · · , qn, s and n such that for the solution u(x, t) = e−(−∆)stu0(x) defined in
(2.4) of the Cauchy problem (2.3) with u0 ∈ Lq1,··· ,qn(R

n), it holds that

‖u(·, t)‖Lp1,··· ,pn (R
n) ≤ Nt−

1
2s ∑n

k=1(
1

qk
− 1

pk
)‖u0‖Lq1,··· ,qn (R

n) for t > 0. (2.6)

Moreover, for every l = 1, · · · and for t > 0

‖Dl
xu(·, t)‖Lp1,··· ,pn (R

n) ≤ Nt−
l

2s−
1
2s ∑n

k=1(
1

qk
− 1

pk
)‖u0‖Lq1,··· ,qn (R

n), (2.7)

where Dl
x denotes the lth-derivative in x-variable.
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Proof. When s = 1, Theorem 2.3 follows from [23, Theorem 2.9]. Therefore, we only
consider the case s ∈ (0, 1). We begin with the proof of (2.6). For each k = 1, · · · , n, by
the assumption that qk ≤ pk, we can find rk ∈ [1, ∞] such that

1
pk

+ 1 =
1
rk

+
1
qk

. (2.8)

Then, because u(x, t) = (Ps(·, t) ∗ u0)(x), we can use the mixed-norm Young’s inequality
in Theorem 2.1 to see that

‖u(·, t)‖Lp1,··· ,pn (R
n) ≤ ‖Ps(·, t)‖Lr1,··· ,rn (R

n)‖u0‖Lq1,··· ,qn (R
n). (2.9)

We now estimate ‖Ps(·, t)‖Lr1,··· ,rn (R
n). By (2.5), we see that

‖Ps(·, t)‖Lr1,··· ,rn (R
n) ≤ N(n, s)t−

n
2s ‖Gt(·)‖Lr1,··· ,rn (R

n),

where

Gt(x) =
1

(1 + | x

t
1
2s
|2) n+2s

2
.

Then, by the change of variable y = x

t
1
2s

, we see that

‖Gt(·)‖Lr1,··· ,rn (R
n) =t

1
2s ∑n

k=1
1
rk ‖G1(·)‖Lr1,··· ,rn (R

n)

=N(n, r1, · · · , rn)t
1
2s

[
n−∑n

k=1

(
1

qk
− 1

pk

)]
.

This last estimate and (2.9) imply (2.6).
Next, we prove (2.7). We only demonstrate the proof of (2.7) with l = 1 as the general

case can be done in a similar way. We observe that for each i = 1, · · · , n,

Dxi u(x, t) = ([Dxi Ps(·, t)] ∗ u0)(x), (x, t) ∈ Rn × (0, ∞).

Then, by the mixed norm Young’s inequality in Theorem 2.1, we have

‖Dxi u(·, t)‖Lp1,··· ,pn (R
n) ≤ ‖Dxi Ps(·, t)‖Lr1,··· ,rn (R

n)‖u0(·)‖Lq1,··· ,qn (R
n). (2.10)

It remains to estimate the mixed norm ‖Dxi Ps(·, t)‖Lr1,··· ,rn (R
n). Observe that (see [4,

Eq. (1.5)] for instance)

|Dxi Ps(x, t)| ≤ N(n, s)txi

(t
1
s + |x|2) n+2s

2 +1
= N(n, s)t−

n
2s−

1
2s

xi

t
1
2s

(1 + | x

t
1
2s
|2) n+2s

2 +1
.
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Then, by using the change of variable x 7→ x

t
1
2s

, we see that

‖Dxi Ps(·, t)‖Lr1,··· ,rn (R
n) ≤N(n, s, r1, · · · , rn)t−

n
2s−

1
2s t

1
2s ∑n

k=1
1
rk

=N(n, s, r1, · · · , rn)t
− 1

2s−
1
2s ∑n

k=1

(
1

qk
− 1

pk

)
.

From this, (2.7) with l = 1 follows. The proof is completed.

Next, we introduce and prove the following simple lemma on the continuity property
of the solutions of the fractional heat equation (2.3) in mixed norm spaces.

Lemma 2.1. Let s ∈ (0, 1] and pk ∈ [1, ∞) for k = 1, · · · , n. Assume that u0 ∈ Lp1,··· ,pn(R
n).

Let u(x, t) = e−(−∆)stu0 be the solution of the fractional heat equation (2.3) defined in (2.4).
Then, the following assertions hold

(i) u ∈ C([0, ∞), Lp1,··· ,pn(R
n)) and

lim
t→0+
‖u(·, t)− u0‖Lp1,··· ,pn (R

n) = 0. (2.11)

(ii) For every qk ∈ [pk, ∞) with k = 1, · · · , n, let

σ =
n

∑
k=1

( 1
pk
− 1

qk

)
,

we have

lim
t→0+

t
σ
2α ‖u(·, t)‖Lq1,··· ,qn (R

n) = 0, (2.12a)

lim
t→0+

t
1+σ
2α ‖∇u(·, t)‖Lq1,··· ,qn (R

n) = 0. (2.12b)

Proof. We start with proving the assertion (i). We only prove (2.11) as the proof of the
continuity of u at t0 > 0 can be done similarly. Let ε > 0, from [1], by using the truncation
and a multiplication by a suitable cut-off function, we can find a bounded compactly
support function ũ0 such that

‖u0 − ũ0‖Lp1,··· ,pn (R
n) ≤

ε

4N
,

where N = N(n, p1, · · · , pn) > 1 is the number defined in Theorem 2.3. Then, by Theo-
rem 2.3, we have

‖e−(−∆)st(u0 − ũ0)‖Lp1,··· ,pn (R
n) ≤ N0‖u0 − ũ0‖Lp1,··· ,pn (R

n) ≤
ε

4
.
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From the previous two estimates, we see that

‖e−(−∆)st(u0 − ũ0)− (u0 − ũ0)‖Lp1,··· ,pn (R
n) ≤

ε

4
+

ε

4N
≤ ε

2
. (2.13)

Our next goal is to show that

lim
t→0+
‖e−(−∆)stũ0 − ũ0‖Lp1,··· ,pn (R

n) = 0.

Take p > max{p1, · · · , pn} and choose the numbers qk ∈ (pk, ∞) such that

1
qk

=
1
pk
− 1

p
, k = 1, · · · , n.

Then, by applying the Hölder’s inequality repeatedly for each integration with respect to
each variable xk, we see that

‖e−(−∆)stũ0 − ũ0‖Lp1,··· ,pn (R
n)

≤‖e−(−∆)stũ0 − ũ0‖Lp(Rn)‖e−(−∆)stũ0 − ũ0‖Lq1,··· ,qn (R
n)

≤‖e−(−∆)stũ0 − ũ0‖Lp(Rn)

[
‖e−(−∆)stũ0‖Lq1,··· ,qn (R

n) + ‖ũ0‖Lq1,··· ,qn (R
n)

]
≤N‖e−(−∆)stũ0 − ũ0‖Lp(Rn)‖ũ0‖Lq1,··· ,qn (R

n).

Observe that as ũ0 is bounded and compactly supported, ‖ũ0‖Lq1,··· ,qn (R
n) < ∞. Therefore,

‖e−(−∆)stũ0 − ũ0‖Lp1,··· ,pn (R
n) ≤ Ñ‖e−(−∆)stũ0 − ũ0‖Lp(Rn) → 0 as t→ 0+,

where in the last assertion, we used the continuity of the fractional heat flow in the un-
mixed space Lp(Rn) and the fact that ũ0 ∈ Lp(Rn). From this and (2.13), we conclude
that there is δ = δ(ε) > 0 such that

‖e−(−∆)stu0 − u0‖Lp1,··· ,pn (R
n) ≤ ε, ∀t ∈ (0, δ0).

This proves (2.11) as desired.
We now prove (ii). We only provide the proof of the first assertion in (2.12) as

the second one can be done similarly. We may assume that u0 is bounded and com-
pactly supported if needed. Let ε > 0. Then, by using approximation, we can find
g ∈ Lp1,··· ,pn(R

n)n ∩ Lq1,··· ,qn(R
n)n such that

‖u0 − g‖Lp1,··· ,pn (R
n) ≤

ε

2N0
,

where N0 > 0 is defined as in the proof of (i). Now, by Theorem 2.3, we see that

t
σ
2α ‖e−(−∆)st(u0 − g)‖Lq1,··· ,qn (R

n) ≤ N‖u0 − g‖Lp1,··· ,pn (R
n) ≤

ε

2
.
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On the other hand, using the first assertion in (i) again, we also obtain

t
σ
2α ‖e−(−∆)stg‖Lq1,··· ,qn (R

n) ≤ Nt
σ
2α ‖g‖Lq1,··· ,qn (R

n) → 0 as t→ 0+.

Then, combine the last two estimates, we infer that there is small number δ0 = δ0(ε) > 0
such that

t
σ
2α ‖e−(−∆)stu0‖Lq1,··· ,qn (R

n) ≤ ε, ∀t ∈ (0, δ0).

This implies that

lim
t→0+

t
σ
2α ‖e−(−∆)s

u0‖Lq1,··· ,qn (R
n) = 0

as desired. The proof is completed.

3 Proof of Theorem 1.1

By Duhamel’s principle, Eq. (1.1) is recast in the following abstract form

u(t) = u0(t) +B(u, u)(t), (3.1)

where

u0(t) = e−(−∆)αtθ0, B(u, v)(t) =
∫ t

0
e−(−∆)α(t−s)R(u(s)) · ∇v(s)ds. (3.2)

Our goal is to prove the existence and uniqueness of a fixed point for Eq. (3.1). To proceed,
we need to control the nonlinear term. Our next lemma gives some important estimates
in mixed norm for the bilinear term B(u, v) defined in (3.2).

Lemma 3.1. Let pk ∈ (1, ∞) and τk, βk, γk ∈ (0, 1] be given numbers satisfying

γk ≤ τk + βk ≤ pk, k = 1, 2.

Let

τ =
2

∑
k=1

τk

pk
, β =

2

∑
k=1

βk

pk
, and γ =

2

∑
k=1

γk

pk
.

Then

‖B(u, v)(t)‖L p1
γ1

,
p2
γ2

(R2) ≤ N
∫ t

0
(t− s)−

τ+β−γ
2α ‖u(s)‖L p1

τ1
,

p2
τ2

(R2)‖∇v(s)‖L p1
β1

,
p2
β2

(R2)ds,

‖∇B(u, v)(t)‖L p1
γ1

,
p2
γ2

(R2) ≤ N
∫ t

0
(t− s)−

1+τ+β−γ
2α ‖u(s)‖L p1

τ1
,

p2
τ2

(R2)‖∇v(s)‖L p1
β1

,
p2
β2

(R2)ds,

where N is a positive number depending only on n, α, pk, αl , βk, αk for k = 1, 2.
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Proof. We only prove the first assertion in the lemma as the proof of the second one can
be done similarly. By applying (2.6) of Theorem 2.3, we see that

‖B(u, v)(t)‖L p1
γ1

,
p2
γ2

(R2) ≤ N
∫ t

0
(t− s)−

τ+β−γ
2α ‖R(u(s)) · ∇v(s)‖L p1

τ1+β1
,

p2
τ2+β2

(R2)ds.

Then, as

τk + βk

pk
=

τk

pk
+

βk

pk
for all k = 1, 2,

we can repeatedly apply the Hölder’s inequality for each integration with respect to each
variable xk to find that

‖R(u(s)) · ∇v(s)‖L p1
τ1+β1

,
p2

τ2+β2

(R2) ≤ ‖R(u(s))‖L p1
τ1

,
p2
τ2

(R2)‖∇v(s)‖L p1
β1

,
p2
β2

(R2).

Therefore

‖B(u, v)(t)‖L p1
γ1

,
p2
γ2

(R2) ≤ N
∫ t

0
(t− s)−

τ+β−γ
2α ‖R(u(s))‖L p1

τ1
,

p2
τ2

(R2)‖∇v(s)‖L p1
β1

,
p2
β2

(R2)ds.

The first assertion of the lemma follows from this last estimate and the boundedness of
the Riesz transform in Theorem 2.1. The proof is completed.

Now, to prove Theorem 1.1, let us recall the following useful abstract lemma whose
proof is based on the Picard’s interation.

Lemma 3.2. Let X be a Banach space with norm ‖·‖X. Let B : X × X → X be a bilinear map
such that there is N0 > 0 so that

‖B(u, v)‖X ≤ N0‖u‖X‖v‖X, ∀u, v ∈ X.

Then, for every u0 ∈ X with 4N0‖u0‖X < 1, the equation

u = u0 +B(u, u)

has unique solution u ∈ X with

‖u‖X ≤ 2‖u0‖X.

We are now ready to provide the proof of Theorem 1.1.

Proof of Theorem 1.1. Let p = (p1, p2), q = (q1, q2) be as in the Theorem 1.1. Let θ0 ∈
Lp1,p2(R

2) and recall that

δ =
1
q1

+
1
q2
∈ (0, 2α− 1). (3.3)

OPEN ACCESS

DOI https://doi.org/10.4208/ata.OA-0018 | Generated on 2024-12-19 07:58:22



T. Phan and Y. Sire / Anal. Theory Appl., 36 (2020), pp. 111-127 123

We now prove (i). Recall the definitions of Xp,q,∞ and Yp,q,∞ in (1.5) and (1.6). We apply
Lemma 3.2 to obtain the existence and uniqueness of solution of (3.1) in Xp,q,∞. Then,
we prove that the solution u belongs to Yp,q,∞ To this end, we begin with the proof that
u0 ∈ Xp,q,∞. From Theorem 2.3 and the definition of u0 in (3.2), we have

‖u0(t)‖Lq1,q2 (R
2) ≤ N1t−

(2α−1)−δ
2α ‖θ0‖Lp1,p2 (R

2),

‖∇u0(t)‖Lp1,p2 (R
2) ≤ N1t−

1
2α ‖θ0‖Lp1,p2 (R

2), ∀t > 0,

where N1 > 0 is a universal constant depending only on n, p and q. Moreover, it follows

from Lemma 2.1 that t
(2α−1)−δ

2α e−(−∆)αt· is uniformly bounded from Lp1,p2(R
2) to Lq1,q2(R

2)

and tends to zero as t → 0+, we see that t
(2α−1)−δ

2 u0 vanishes as t = 0. Similarly, as
t

1
2α∇e−(∆)

αt· is uniformly bounded from Lp1,p2(R
2) to Lp1,p2(R

2)2 and tends to zero as
t → 0+, we also have t

1
2α∇u0 equals to zero as t → 0+. In conclusion, we have shown

that u0 ∈ Xp,q,∞ and

‖u0‖Xp,q,∞ ≤ N1‖θ0‖Lp1,p2 (R
2). (3.4)

It now remains to prove that the bilinear form B : Xp,q,∞ × Xp,q,∞ → Xp,q,∞ is bounded.
By (1.3), (1.7), and (3.3), we are able to apply the first assertion in Lemma 3.1 with βk = 1
and γk = τk =

pk
qk
∈ (0, 1] to find that

‖B(u, v)(t)‖Lq1,q2 (R
2)

≤N
∫ t

0
(t− s)−

2α−1
2α ‖u(s)‖Lq1,q2 (R

2)‖∇v(s)‖Lp1,p2 (R
2)ds

≤N‖u‖Xp,q,∞‖v‖Xp,q,∞

∫ t

0
(t− s)−

2α−1
2α s−

2α−δ
2α ds.

To control the integration in the last estimate, we split it into two time intervals (0, t/2)
and (t/2, t). We then obtain

‖B(u, v)(t)‖Lq1,q2 (R
2)

≤N‖u‖Xp,q,∞‖v‖Xp,q,∞

[∫ t/2

0
(t− s)−

2α−1
2α s−

2α−δ
2 ds +

∫ t

t/2
(t− s)−

2α−1
2α s−

2α−δ
2 ds

]
≤N‖u‖Xp,q,∞‖v‖Xp,q,∞

[
t−

2α−1
2α

∫ t/2

0
s−

2α−δ
2α ds + t−

2α−δ
2α

∫ t

t/2
(t− s)−

2α−1
2α ds

]
≤Nt−

(2α−1)−δ
2α ‖u‖Xp,q,∞‖v‖Xp,q,∞ .

Similarly, from (1.3), (1.7), (3.3), we can apply the second assertion in Lemma 3.1 with
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γk = 1, βk = 1 and τk =
pk
qk
∈ (0, 1] to obtain

‖∇B(u, v)(t)‖Lp1,p2 (R
2)

≤N
∫ t

0
(t− s)−

1+δ
2α ‖u(s)‖Lq1,q2 (R

2)‖∇u(s)‖Lp1,p2 (R
2)ds

≤N‖u‖Xp,q,∞‖v‖Xp,q,∞

∫ t

0
(t− s)−

1+δ
2α s−1+ δ

2α ds

=N‖u‖Xp,q,∞‖v‖Xp,q,∞

[∫ t/2

0
(t− s)−

1+δ
2α s−1+ δ

2α ds +
∫ t

t/2
(t− s)−

1+δ
2α s−1+ δ

2α ds
]

=N‖u‖Xp,q,∞‖v‖Xp,q,∞

[
t−

1+δ
2α

∫ t/2

0
s−1+ δ

2α ds + t−1+ δ
2α

∫ t

t/2
(t− s)−

1+δ
2α ds

]
≤Nt−

1
2α ‖u‖Xp,q,∞‖v‖Xp,q,∞ . (3.5)

From the last two estimates and the definition of B(u, v) and Lemma 2.1, it follows that
t
(2α−1)−δ

2α B(u, v) : [0, ∞)→ Lq1,q2(R
2) is continuous and vanishes at t = 0. Similarly, we can

also prove that t
1

2α∇B(u, v) : [0, ∞) → Lp1,p2(R
2) is continuous and vanishes as t → 0+.

Therefore, we conclude that B(u, v) ∈ Xp,q,∞ and

‖B(u, v)‖Xp,q,∞ ≤ N2‖u‖Xp,q,∞‖v‖Xp,q,∞ , ∀u, v ∈ Xp,q,∞, (3.6)

where N2 is a constant depending only on n, p and q. In other words, the bilinear form
B : Xp,q,∞ ×Xp,q,∞ → Xp,q,∞ is bounded.

Next, let us choose λ0 > 0 and sufficiently small so that

4N1N2λ0 < 1, (3.7)

where N1 is defined in (3.4), and N2 is defined in (3.6). Note that both of these numbers
depend only on p, q and n. Now, if ‖θ0‖Lp1,p2 (R

2) ≤ λ0, then it follows from (3.4) that

4N2‖u0‖Xp,q,∞ ≤ 4N1N2‖a0‖Lp1,··· ,pn (R
n) ≤ 4N1N2λ0 < 1.

From this and by applying Lemma 3.2, we can find a unique solution u ∈ Xp,q,∞ of
Eq. (3.1) such that

‖u‖Xp,q,∞ ≤ 2‖u0‖X∞ ≤ 2N1‖θ0‖Lp1,p2 (R
2). (3.8)

Now, to complete the proof (i), we need to show that u ∈ Yp,∞. We recall that the defini-
tion of Yp,∞ is given in (1.6). Since

u(t) = u0(t) +B(u, u)(t),

we have

‖u(t)‖Lp1,p2 (R
2) ≤ ‖u0(t)‖Lp1,p2 (R

2) + ‖B(u, u)(t)‖Lp1,p2 (R
2), (3.9a)

‖∇u(t)‖Lp1,p2 (R
2) ≤ ‖∇u0(t)‖Lp1,p2 (R

2) + ‖∇B(u, u)(t)‖Lp1,p2 (R
2). (3.9b)
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Then, by applying Lemma 2.3, we see that

‖u0(t)‖Lp1,p2 (R
2) ≤ N‖θ0‖Lp1,p2 (R

2), (3.10a)

‖∇u0(t)‖Lp1,p2 (R
2) ≤ Nt−

1
2α ‖θ0‖Lp1,p2 (R

2). (3.10b)

On the other hand, by (1.3), (1.7), and (3.3), we are able to apply the first assertion in
Lemma 3.1 with γk = 1, τk =

pk
qk
∈ (0, 1] and βk = 1 to infer that

‖B(u, u)(t)‖Lp1,p2 (R
2)

≤N
∫ t

0
(t− s)−

δ
2α ‖u(s)‖Lq1,q2 (R

2)‖∇u(s)‖Lp1,p2 (R
2)ds

≤N‖u‖2
Xp,q,∞

∫ t

0
(t− s)−

δ
2α s−(1−

δ
2α )ds

=N‖u‖2
Xp,q,∞

[∫ t/2

0
(t− s)−

δ
2α s−(1−

δ
2α )ds +

∫ t

t/2
(t− s)−

δ
2α s−(1−

δ
2α )ds

]
=N‖u‖2

Xp,q,∞

[
t−

δ
2α

∫ t/2

0
s−(1−

δ
2α )ds + t−(1−

δ
2α )
∫ t

t/2
(t− s)−

δ
2α ds

]
≤N‖θ0‖2

Lp1,p2 (R
2), (3.11)

where in the last estimate, we used (3.8). Also, by (3.5) and (3.8), it follows that

‖∇B(u, u)‖Lp1,p2 (R
2) ≤ Nt−

1
2α ‖u‖2

Xp,q,∞
≤ Nt−

1
2α ‖θ0‖2

Lp1,p2 (R
2). (3.12)

Then, from the estimates (3.9), (3.10), (3.11), (3.12) and the fact that ‖θ0‖Lp1,p2 (R
2) is suffi-

ciently small that, we see that

‖u‖Yp,∞ ≤ N0‖θ0‖Lp1,p2 (R
2).

The proof of (i) is therefore completed.
Now, we turn to prove (ii). As in the proof of (3.4), we see that u0 ∈ Xp,q,∞. From the

definition of the norm of the space Xp,q,∞ in (1.5), the continuity and the vanishes of t
1−δ
2α u0

and of t
1

2α∇u0 at t = 0, we can choose a sufficiently small number T0 > 0 depending on
n, p, q and θ0 so that

‖u0‖Xp,q,T0
≤ λ0,

where λ0 is defined as in (3.7). Moreover, by following the proof of (3.6), we can also see
that the bilinear form B : Xp,q,T0 ×Xp,q,T0 → Xp,q,T0 is bounded with

‖B(u, v)‖Xp,q,T0
≤ N2‖u‖Xp,q,T0

‖v‖Xp,q,T0
, ∀u, v ∈ Xp,q,T0 .
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Then, applying Lemma 3.2 again, we can find a unique local time solution u ∈ Xp,q,T0 of
(3.1) satisfying

‖u‖Xp,q,T0
≤ 2N1‖θ0‖Lp1,p2 (R

2).

Now, we only need to prove that the solution u that we found is indeed in Yp,T0 . However,
this can be done exactly as in the proof that u ∈ Yp,∞ in (i), and we skip it. The proof of
the theorem is then completed.
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