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Abstract. We start with the compressible Oldroyd–B model derived in [2] (J. W. Bar-
rett, Y. Lu, and E. Süli, Existence of large-data finite-energy global weak solutions to
a compressible Oldroyd–B model, Commun. Math. Sci., 15 (2017), 1265–1323), where
the existence of global-in-time finite-energy weak solutions was shown in two dimen-
sional setting with stress diffusion. In the paper, we investigate the case without stress
diffusion. We first restrict ourselves to the corotational setting as in [28] (P. L. Li-
ons, and N. Masmoudi, Global solutions for some Oldroyd models of non-Newtonian
flows, Chin. Ann. Math., Ser. B, 21(2) (2000), 131–146) We further assume the extra
stress tensor is a scalar matrix and we derive a simplified model which takes a similar
form as the multi-component compressible Navier–Stokes equations, where, however,
the pressure term related to the scalar extra stress tensor has the opposite sign. By
employing the techniques developed in [30, 35], we can still prove the global-in-time
existence of finite energy weak solutions in two or three dimensions, without the pres-
ence of stress diffusion.

Key Words: Compressible Oldroyd–B model, stress diffusion, weak solutions, negative pressure
term.
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1 Introduction

The Oldroyd–B model is a widely used constitutive model to describe the flow of vis-
coelastic fluids. Different variants of such models were studied from different points of
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view within many decades: in the past mostly for incompressible fluids, recently, how-
ever, also for the compressible ones. There are many results in the context of small data
problems, on the other hand, the number of existence results for large data without any
restriction on the size of the data or the length of the time interval are rather rare, even in
the case of incompressible fluids. A typical feature for the viscoelastic fluid is the pres-
ence of an extra stress tensor which fulfils a certain type of transport equation. In most
cases, the global-in-time existence results rely on the fact that an additional term describ-
ing the stress diffusion is present in these transport equations. Even though it is possible
to justify the presence of the stress diffusion, in modelling, it is often neglected, as typi-
cally, such terms are many orders lower than other terms in the equations. Our aim in the
present paper is to concentrate on a special case, where it is possible to neglect the stress
diffusion in the compressible model and we can still obtain global-in-time existence of a
solution without any restriction on the size of the data.

It is known that from the incompressible Navier–Stokes–Fokker–Planck system which
is a micro-macro model describing incompressible dilute polymeric fluids one can derive
the incompressible Oldroyd–B model in dumbbell Hookean setting, see [27]. A similar
derivation can be performed in the compressible setting, see [2], where the existence
of global-in-time finite-energy weak solutions was also shown in the two dimensional
setting. However, an important role in the analysis of these models was played by the
presence of the stress diffusion.

Let Ω ⊂ Rd be a bounded open domain with a C2,β boundary (briefly, a C2,β domain),
with β ∈ (0, 1], and d = 2, 3. The compressible Oldroyd–B model derived in [2] posed in
the time-space cylinder QT := (0, T)×Ω is the following:

∂t$ + divx($u) = 0, (1.1a)
∂t($u) + divx($u⊗ u) +∇x p($)− divxS(∇xu)

= divx
(
T− (kLη + zη2)I

)
+ $f, (1.1b)

∂tη + divx(ηu) = ε∆xη, (1.1c)

∂tT + Divx(uT)−
(
∇xuT + T∇T

x u
)
= ε∆xT +

k
2λ

ηI− 1
2λ

T. (1.1d)

Above, S(∇xu) is the Newtonian stress tensor defined by

S(∇xu) = µS
(
∇xu +∇T

x u
2

− 1
d
(divxu)I

)
+ µB(divxu)I, (1.2)

where µS > 0 and µB ≥ 0 are the shear and bulk viscosity coefficients, respectively.
The pressure p and the density $ of the solvent are supposed to be related by the typical
power law relation:

p($) = a$γ, a > 0, γ ≥ 1. (1.3)

OPEN ACCESS

DOI https://doi.org/10.4208/ata.OA-SU3 | Generated on 2024-12-19 04:47:07
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The extra stress tensor T = (Tij), 1 ≤ i, j ≤ d is a positive definite symmetric matrix
defined on QT, and the notation Divx(uT) is to be understood as

(Divx(uT))ij = divx(uTij), 1 ≤ i, j ≤ d. (1.4)

The polymer number density η is a non-negative scalar function defined as the in-
tegral of the probability density function ψ in the conformation vector. The probability
density function ψ is governed by the Fokker–Planck equation. The conformation vector
is a microscopic variable in the modelling of dilute polymer chains. The term kLη + zη2

in the momentum equation (1.1b) can be seen as the polymer pressure, compared to the
fluid pressure p($).

The meanings of the various quantities and parameters appearing in (1.1a)–(1.1d)
were introduced in the derivation of the model in [2]. In particular, the parameters ε, k,
λ, z, L are all non-negative numbers.

The mathematical study of Oldroyd–B models attracts a lot interests. While, many
fundamental problems are still open. Concerning the incompressible case without stress
diffusion, the global-in-time existence of large data solutions is not known, even weak
ones, either in the two dimensional or the three dimensional setting. With stress diffu-
sion, the global-in-time existence of large data solutions in the two dimensional setting
is known: see [1] for weak solutions, and [12] for strong solutions. But in the three di-
mensional setting, the global-in-time existence of large data solutions, strong or weak, is
still open. Note in this context that in [25] a special non-linear diffusion was used and
global-in-time large-data solution for the corresponding Oldroyd–B model was possible
to prove for a large variety of power-law models for the solvent stress tensor (from shear
thinning to shear thickening, including, indeed, the linear dependence). Another inter-
esting recent result is paper [11], where a slightly modified model was considered. The
model was developed as a simplification of the general model based on the approach
from [33] and global-in-time existence of weak solutions was shown for large data.

Even less is known concerning the compressible Oldroyd–B models. We recall some
mathematical results for compressible viscoelastic models, which have been the subject
of active research in recent years. First, note that in [10] a model based on the general
approach from [33] was studied and global in time existence of weak solutions for suffi-
ciently large γ in the pressure law was shown. Note that the stress diffusion is present
in the model. The existence and uniqueness of local strong solutions and the existence of
global solutions near an equilibrium for macroscopic models of three-dimensional com-
pressible viscoelastic fluids was considered in [23, 24, 26, 32]. In particular, Fang and
Zi [13] proved the existence of a unique local-in-time strong solution to a compressible
Oldroyd–B model and established a blow-up criterion for strong solutions. In [2], not
only the compressible Oldroyd–B model (1.1a)–(1.3) was derived, but also the existence
of global-in-time weak solutions in two dimensional setting was shown. Recently in [29],
one of the authors and his collaborator proved the weak-strong uniqueness, gave a re-
fined blow-up criterion and showed a conditional regularity result in two dimensional
setting.
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There are stress diffusion terms ε∆xη and ε∆xT in (1.1c) and (1.1d) which help for the
mathematical analysis of existence theory. Such spatial stress diffusions are allowed in
some models of complex fluids, such as the creeping flow regime, as pointed out in [12].
Also in the modelling of the compressible Navier–Stokes–Fokker–Planck system arising
in the kinetic theory of dilute polymeric fluids, where polymer chains immersed in a
barotropic, compressible, isothermal, viscous Newtonian solvent, Barrett and Süli [3–7]
observed the presence of the centre-of-mass diffusion term ε∆xψ, where ψ is the prob-
ability density function depending on both microscopic and macroscopic variables; as
a result, its macroscopic closure (the compressible Oldroyd–B model) contains such dif-
fusion terms. The center-of-mass coefficient ε = (l2

0/L2
0)(1/4(K + 1)λ), where L0 is the

macroscopic characteristic length-scale of the solvent flow and l0 is the characteristic mi-
croscopic length-scale. The parameter λ > 0 is the Deborah number, and K + 1 is the
number of beads in the bead-spring polymer chain.

However, in standard derivations of bead-spring models the center-of-mass diffusion
term is routinely omitted, on the grounds that it is several orders of magnitude smaller
than the other terms in the equations. Indeed, Bhave, Armstrong and Brown [8] show
the ratio l2

0/L2
0 to be in the range of about 10−9 to 10−7. For such a reason, in most pre-

vious mathematical studies of Oldroyd–B model, the stress diffusion is not included,
for example in Renardy [34], Guillopé and Saut [20, 21] and Fernández-Cara, Guillén
and Ortega [18] for the local-in-time well-posedness, as well as the global-in-time well-
posedness with small data, Lions and Masmoudi [28] for the global-in-time existence of
weak solutions with large initial data in the corotational derivative setting. These men-
tioned results considered incompressible Oldroyd-B models. While for the compressible
models without stress diffusion, according to the authors’ knowledge, there is basically
no results concerning the global-in-time existence of large solutions. This is the direc-
tion that we are working on in this paper and the aim is to find out under which further
assumptions the global-in-time existence of large solutions can be shown for the com-
pressible Oldroyd-B model without stress diffusion.

Inspired by the work of Lions and Masmoudi [28], we consider the corotational
derivative setting. Additionally, assuming the extra stress tensor is a scalar matrix, we
derive a simplified model which takes a similar form as the multi-component compress-
ible Navier–Stokes equations. However, as explained in the next section, the simplified
model we derive has a pressure term that has a wrong sign which could cause the a priori
energy estimates fail. While under a domination assumption on the data, we can still em-
ploy the techniques recently developed in [30, 35] and prove the global-in-time existence
of large date finite energy weak solutions in two or three dimensions.

2 Formulation of the problem and main results

In this section, we will formulate our simplified models step by step and give the main
results. As mentioned in the introduction, we will not include the stress diffusion ε∆xη
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and ε∆xT in (1.1c)–(1.1d).

2.1 Formulation of the problem–a simplified model

In (1.1d), the derivative

∂tT + Divx(uT)−
(
∇xuT + T∇T

x u
)

(2.1)

is called the upper convected derivative which naturally appears in several macroscopic
models derived from microscopic models. It is known to be frame invariant. Other frame
invariant derivatives exist, like the corotational one (see [27, 28])

∂tT + Divx(uT)− (ω(u)T−Tω(u)) , (2.2)

where ω(u) =
(
∇xu − ∇T

x u
)
/2 is the vorticity tensor. We first restrict ourselves to

the corotational derivative setting (2.2) in (1.1d), where the deformation tensor D(u) =(
∇xu +∇T

x u
)
/2 is neglected in the upper convected derivative (2.1).

We further make a serious simplifying assumption that the extra stress tensor T is a
scalar matrix:

T = τI for some scalar function τ. (2.3)

Since T is a positive definite matrix, τ is supposed to be a positive scalar function. Then
equation (1.1d) without stress diffusion ε∆xT becomes

∂tτ + divx(τu) =
k

2λ
η − 1

2λ
τ. (2.4)

By introducing

τ̃ = τ − kη, (2.5)

we deduce from (1.1c) and (2.4) that

∂tτ̃ + divx(τ̃u) = − 1
2λ

τ̃. (2.6)

By omitting the tilde in (2.6), and collecting (1.1a), (1.1b) and (1.1c) without stress
diffusion, we finally derive the following model in QT = (0, T)×Ω:

∂t$ + divx($u) = 0, (2.7a)

∂t($u) + divx($u⊗ u) +∇x
(

p($) + q(η)− τ
)
− divxS(∇xu) = $f, (2.7b)

∂tη + divx(ηu) = 0, (2.7c)

∂tτ + divx(τu) = − 1
2λ

τ. (2.7d)
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Here the pressure p($) and the Newtonian stress tensor S(∇xu) are defined as in (1.3)
and (1.2), and the polymer pressure q(η) takes the form

q(η) := k(L− 1)η + zη2. (2.8)

We impose for simplicity the no slip boundary condition

u = 0 on (0, T)× ∂Ω. (2.9)

The external force f is assumed to be in L∞(QT; Rd). In this paper, we focus on the simpli-
fied model (2.7a)–(2.9) and we will show the global-in-time existence of large data finite
energy weak solutions. Note that it is natural to assume that $ and η are non-negative,
while the fact that the original τ is non-negative does not say anything about the sign of
τ̃ defined in (2.5). However, in what follows, we will assume that τ̃, i.e., our τ in system
(2.7a)–(2.7d), is non-negative.

Having a first glance at this model, it looks like the multi-component compressible
Navier–Stokes equations considered in [30, 35], with three density functions $, η, τ. But
the sign of the pressure term related to τ in the momentum equations is negative, which
is opposite to the sign of the other two pressure terms p($) and q(η). This different sign
is bad or wrong in the sense that in the a priori energy equality, the energy functional
could have no determinate sign, even after some modifications by adding a fixed large
constant. This can be seen later in the energy inequality (2.13).

Without a clear sign of the energy functional in the energy inequality one could fail to
deduce uniform a priori estimates on the solutions which is usually the starting point of
the existence theory. We overcome this difficulty by imposing a domination assumption
on the initial data. One can show that this domination will preserve as time goes. This
allows us to obtain uniform estimates on the solutions from the energy inequality with
bad sign.

Another difference compared to the multi-component compressible Navier–Stokes
equations considered in [30, 35] is that in the momentum equation, the time derivative
term and the convective term involves only the fluid density $. Fortunately, as we will see
below, this does not cause any troubles. The a priori estimates are not really influenced.
Moreover, by uniform estimates and Arzelà–Ascoli type lemma, we can show the weak
compactness of the convective terms (i.e., terms $u and $u⊗ u). Thus in the proof of the
weak compactness of the pressures by using effective viscous flux, these two terms do
not play any role. Then the strong convergence of the density can still be shown.

2.2 Global-in-time finite energy weak solutions

The basic hypotheses on the initial data are

$(0, ·) = $0(·) with $0 ≥ 0 a.e. in Ω, $0 ∈ Lγ(Ω), (2.10a)

$0u0 ∈ L1(Ω; Rd), $0|u0|2 ∈ L1(Ω), u0 = u(0, ·), (2.10b)
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354 Y. Lu and M. Pokorný / Anal. Theory Appl., 36 (2020), pp. 348-372

η(0, ·) = η0(·) with η0 ≥ 0 a.e. in Ω, η0 ∈ L2(Ω), (2.10c)

τ(0, ·) = τ0(·) with τ0 ≥ 0 a.e. in Ω, τ0 log τ0 ∈ L1(Ω). (2.10d)

We give the definition of finite energy weak solutions:

Definition 2.1. Let T > 0 and Ω ⊂ Rd be a bounded C2,β domain with 0 < β ≤ 1. We say
that ($, u, η, τ) is a finite-energy weak solution in QT to the system of Eqs. (2.7a)–(2.9),
supplemented by the initial data (2.10), if:

• $ ≥ 0 a.e. in (0, T)×Ω, $ ∈ Cw([0, T]; Lγ(Ω)), u ∈ L2(0, T; W1,2
0 (Ω; Rd)),

$u ∈ Cw([0, T]; L1(Ω; Rd)), $|u|2 ∈ L∞(0, T; L1(Ω)),

η ≥ 0 a.e. in (0, T)×Ω, η ∈ Cw([0, T]; L2(Ω)),

τ ≥ 0 a.e. in (0, T)×Ω, τ log τ ∈ Cw([0, T]; L1(Ω)).

• For any t ∈ (0, T) and any test function φ ∈ C∞([0, T]×Ω), one has∫ t

0

∫
Ω

[
$∂tφ + $u · ∇xφ

]
dxdt′ =

∫
Ω

$(t, ·)φ(t, ·)dx−
∫

Ω
$0φ(0, ·)dx, (2.11a)∫ t

0

∫
Ω

[
η∂tφ + ηu · ∇xφ

]
dxdt′ =

∫
Ω

η(t, ·)φ(t, ·)dx−
∫

Ω
η0φ(0, ·)dx, (2.11b)∫ t

0

∫
Ω

[
τ∂tφ + τu · ∇xφ− 1

2λ
τφ
]
dxdt′

=
∫

Ω
η(t, ·)φ(t, ·)dx−

∫
Ω

η0φ(0, ·)dx. (2.11c)

• For any t ∈ (0, T) and any test function ϕ ∈ C∞([0, T]; C∞
c (Ω; Rd)), one has∫ t

0

∫
Ω

[
$u · ∂tϕ+ ($u⊗ u) : ∇xϕ+

(
p($) + q(η)− τ

)
divxϕ

− S(∇xu) : ∇xϕ
]
dxdt′

=−
∫ t

0

∫
Ω

$f ·ϕdxdt′ +
∫

Ω
$u(t, ·) ·ϕ(t, ·)dx−

∫
Ω

$0u0 ·ϕ(0, ·)dx. (2.12)

• For a.e. t ∈ (0, T), the following energy inequality holds∫
Ω

[
1
2

$|u|2 + H($, η, τ)

]
(t, ·)dx +

∫ t

0

∫
Ω

S(∇xu) : ∇xudxdt′

≤
∫

Ω

[
1
2

$0|u0|2 + H($0, η0, τ0)

]
dx +

∫ t

0

∫
Ω

$f · udxdt′

+
1

2λ

∫ t

0

∫
Ω
(τ log τ + τ)dxdt′, (2.13)
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Y. Lu and M. Pokorný / Anal. Theory Appl., 36 (2020), pp. 348-372 355

where the Helmholtz free energy is defined as

H($, η, τ) = P($) + Q(η)− τ log τ (2.14)

with

Q(η) = zη2 + k(L− 1)η log η, P($) =

{ a
γ− 1

$γ, if γ 6= 1,

a$ log $, if γ = 1.
(2.15)

We are now in position to state our main result.

Theorem 2.1. Let Ω ⊂ Rd, d = 2, 3, be a bounded C2,β domain with β ∈ (0, 1]. Let 0 < γ ≤ 2,
the constant parameters λ, z be positive, and k, L be non-negative. We further assume that the
initial data satisfy the domination relation:

$0 ≤ Cη0, τ0 ≤ Cη0 a.e. in Ω for some C > 0. (2.16)

Then, for any T > 0, there exists a finite-energy weak solution ($, u, η, τ) in the sense of Defini-
tion 2.1 with initial data (2.10) by replacing the integrability on $ and τ by

$ ∈ Cw([0, T]; L2(Ω)), τ ∈ Cw([0, T]; L2(Ω)).

Moreover, the domination condition preserves for all times:

$(t, x) ≤ Cη(t, x), τ(t, x) ≤ Cη(t, x) for a.a. (t, x) ∈ QT. (2.17)

Remark 2.1. Before presenting the proof, we give several remarks concerning our result:

• We first remark that γ ≤ 2 is not essential. By (2.10) and (2.16), one has $0 ∈ L2(Ω),
τ0 ∈ L2(Ω). If γ > 2, $0 ∈ Lγ(Ω) has better integrability than L2. This case is
actually easier: one can use $ as the benchmark density and consider the following
domination condition:

η0 ≤ C$0, τ0 ≤ C$0 for some C > 0. (2.18)

Then the results and the proofs follow in the same manner. Another possibility is
to employ the idea in [36] to avoid any domination conditions. For such a reason,
we will consider only the case γ ≤ 2.

• In general, the adiabatic number γ ≥ 1. It is even required γ > 3/2 for the existence
of weak solutions to the compressible Navier-Stokes equations (see [16]). Here we
could allow γ in a much larger regime (0,+∞) due to the domination relations
in (2.16) and the quadratic term η2 in q(η). Together with the preservation of the
domination conditions, a consequence is that one obtains the L2 integrability of the
fluid density for free, no matter how small γ is. This is also observed in [30].

OPEN ACCESS

DOI https://doi.org/10.4208/ata.OA-SU3 | Generated on 2024-12-19 04:47:07
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• Assumption (2.16) on the initial data means that one density dominates the others.
This allows us to control $ and τ by using the estimates on η. This assumption
is inspired by the study of global-in-time existence of weak solutions for multi-
component fluid flows, see [35] and [30]. Recently Wen [36] eliminates this condi-
tion under some further restrictions on the adiabatic numbers. Note that it would
lead to restriction γ ≥ 9

5 .

• Other boundary conditions such as periodic boundary condition and Navier
boundary condition can also be considered. The results and the proofs follow in
a straightforward way as the present case with homogeneous Dirichlet boundary
condition under proper modifications. We refer to Section 7.12 in [31] (see Theorem
7.69) for such results concerning compressible Navier-Stokes equations.

• The C2,β regularity assumption on the domain Ω is not necessary and could be
relaxed. For example, Lipschitz regularity for bounded domain Ω will be enough
to prove Theorem 2.1 via a smoothing technique on the boundary, see [17].

2.3 Preliminaries

Before giving the proof, we recall the results from [30] with a few comments on the hy-
potheses. Therein, the following problem is studied

∂t$ + div($u) = 0, (2.19a)
∂tZi + div(Ziu) = 0, i = 1, · · · , K, (2.19b)

∂t

((
$ +

K

∑
i=1

Zi

)
u
)
+ div

((
$ +

K

∑
i=1

Zi

)
u⊗ u

)
+∇P($, Z0, Z1, · · · , ZK)

= µ∆u + (µ + λ)∇xdivu, (2.19c)

together with the boundary condition u = 0 on (0, T)× ∂Ω, and the initial conditions in
Ω

$(0, x) = $0(x), (2.20a)
Zi(0, x) = Zi0(x), i = 1, · · · , K, (2.20b)(

$ +
K

∑
i=1

Zi

)
u(0, x) = m0(x). (2.20c)

The weak formulation of this problem is similar to our weak formulation from Definition
2.1.

As we will explain later, the fact that for our problem one of the continuity equations
has non-trivial special right hand side does not play any significant role in the analysis.
Similarly, the fact that in our problem we have only ∂t($u) and div($u⊗ u) rather sim-
plifies the proof. Also the presence of the external force $f with f ∈ L∞(QT; R3) does not
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cause any troubles. Finally, the 2-D case is even simpler and the hypotheses presented
below are surely sufficient to get a solution also in this situation.
Hypothesis (H1).

($0, Z10, Z20, · · · , ZK0) ∈ O~a

:=
{
($, Z1, Z2, · · · , ZK) ∈ RK+1|$ ∈ [0, ∞), ai$ < Zi < ai$

}
, (2.21)

where 0 ≤ ai < ai < ∞, i = 1, · · · , K.
Hypothesis (H2).

$0 ∈ Lγ(Ω), Zi0 ∈ Lβi(Ω) if βi > γ,

m0 ∈ L1(Ω; R3),
(

$0 +
K

∑
i=1

Zi0

)
|u0|2 ∈ L1(Ω), i = 1, · · · , K.

(2.22)

Hypothesis (H3). Function P ∈ C(O~a) ∩ C1(O~a) and

∀$ ∈ (0, 1), sup
s∈ΠK

i=1[ai ,ai ]

|P($, $s1, $s2, · · · , $sK)| ≤ C$α

with some C > 0 and α > 0, (2.23a)

C
(

$γ +
K

∑
i=1

Zβi
i − 1

)
≤ P($, Z1, · · · , ZK) ≤ C

(
$γ +

K

∑
i=1

Zβi
i + 1

)
in O~a, (2.23b)

with γ ≥ 9
5 , βi > 0, i = 1, · · · , K. We moreover assume for i = 1, · · · , K

|∂Zi P($, Z1, Z2, · · · , ZK)| ≤ C($−Γ + $Γ−1) in O~a (2.24)

with some 0 ≤ Γ < 1, and with some 0 < Γ < γ + γBOG if ai = 0, 0 < Γ < max{γ +
γBOG, βi + (βi)BOG} if ai > 0.
Hypothesis (H4). We assume

P($, $s1, $s2, · · · , $sK) = P($, s1, s2, · · · , sK)−R($, s1, s2, · · · , sK), (2.25)

where [0, ∞) 3 $ 7→ P($, s1, s2, · · · , sK) is non decreasing for any si ∈ [ai, ai], i = 1, · · · , K,
and $ 7→ R($, s1, s2, · · · , sK) is for any si ∈ [ai, ai], i = 1, · · · , K a non-negative C2-function
in [0, ∞) with uniformly bounded C2-norm with respect to si ∈ [ai, ai], i = 1, · · · , K and
with compact support uniform with respect to si ∈ [ai, ai], i = 1, · · · , K. Here, ai, ai are
the constants from relation (2.21).
Hypothesis (H5). Functions $ 7→ P($, Z1, Z2, · · · , ZK), Zi > 0, i = 1, · · · , K resp.
(Z1, Z2, · · · , ZK) 7→ ∂Zj P($, Z1, Z2, · · · , ZK), $ > 0, are Lipschitz on ∩K

i=1(Zi/ai, Zi/ai) ∩
(r, ∞)K resp. ΠK

i=1(ai$, ai$) ∩ (r, ∞)K for all r > 0 with Lipschitz constants

L̃P ≤ C(r)(1 + |Z|A) resp. L̃P ≤ C(r)(1 + $A) (2.26)

with some non negative number A. Number C(r) may diverge to +∞ as r → 0+.
The following result is taken from [30, Theorem 15].
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Theorem 2.2. Let γ > 9
5 . Then under Hypotheses (H1)–(H5), there exists at least one

weak solution to problem (2.19)–(2.20). Moreover, the densities $ ∈ Cweak([0, T); Lγ(Ω)),
Zi ∈ Cweak([0, T); Lmax{γ,βi}(Ω)), i = 1, 2, · · · , K, ($+∑K

i=1 Zi)u ∈ Cweak([0, T); Lq(Ω; R3))
for some q > 1, and P($, Z1, Z2, · · · , ZK) ∈ Lq(Ω) for some q > 1.

Note that in [30], also the case γ = 9
5 is treated. Since it requires certain extra con-

ditions which we do not need (recall that our largest exponent is equal to 2), we skip
them.

The above Hypotheses, in particular (H3) and (H5), are connected with the Helmholtz
free energy HP($, Z1, · · · , ZK), a solution to the partial differential equation of the first
order in O~a,

P($, Z1, Z2, · · · , ZK) =$
∂HP($, Z1, Z2, · · · , ZK)

∂$

+
K

∑
i=1

Zi
∂HP($, Z1, Z2, · · · , ZK)

∂Zi
− HP($, Z1, Z2, · · · , ZK) (2.27)

in the form

HP($, Z1, Z2, · · · , ZK) = $
∫ $

1

P
(
s, s Z1

$ , s Z2
$ , · · · , s ZK

$

)
s2 ds, HP(0, · · · , 0) = 0. (2.28)

However, we consider a slightly different form of the solution to (2.27), using the fact
that the pressure can be written as a sum of three pressures, each dependent only on one
unknown. Therefore we have to modify the Hypotheses (H3) and (H5) for this situation.
We will comment on this in the next section.

We also formulate one important auxiliary result which is the main ingredient of the
compactness of the densities other than the main one, see [30, Proposition 7].

Proposition 2.1. 1. Let

un ∈ L2(I, W1,2
0 (Ω; R3)), ($n, Zn) ∈ O0 ∩

(
C(I; L1(Ω)) ∩ L2(QT)

)2
.

Suppose that

sup
n∈N

(
‖$n‖L∞(I;Lγ(Ω)) + ‖Zn‖L∞(I;Lγ(Ω)) + ‖$n‖L2(QT) + ‖un‖L2(I;W1,2(Ω))

)
< ∞,

where γ > 6/5, and that both couples ($n, un), (Zn, un) satisfy continuity equation

∂t$n + div($nun) = 0, ∂tZn + div(Znun) = 0.

Then, up to a subsequence (not relabeled)

($n, Zn)→ ($, Z) in (Cweak(I; Lγ(Ω)))2, un ⇀ u weakly in L2(I; W1,2(Ω; R3)),
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where ($, Z) belongs to spaces

O0 ∩ (L2(QT))
2 ∩ (L∞(I, Lγ(I, Ω)))2 ∩ (C(I; L1(Ω))2

and ($, u) as well as (Z, u) verify continuity equation in the renormalized sense.

2. We define for all t ∈ I,

sn(t, x) =
Zn(t, x)
$n(t, x)

, s(t, x) =
Z(t, x)
$(t, x)

, (2.29)

where sn(t, x) = 0 (s(t, x) = 0) provided $n(t, x) = 0 ($(t, x) = 0). Suppose in addition
to assumptions of Item 1. that

∫
Ω

$n(0, x)s2
n(0, x)dx →

∫
Ω

$(0, x)s2(0, x)dx.

Then sn, s ∈ C(I; Lq(Ω)), 1 ≤ q < ∞ and for all t ∈ I, 0 ≤ sn(t, x) ≤ a, 0 ≤ s(t, x) ≤ a
for a.a. x ∈ Ω. Moreover, both (sn, un) and (s, u) satisfy transport equation

∂tsn + un · ∇sn = 0, ∂ts + u · ∇s = 0,

in the weak and time-integrated sense (cf. (3.38a) below).

3. Finally, ∫
Ω
($n|sn − s|θ)(τ, ·)dx → 0 with any 1 ≤ θ < ∞ (2.30)

for all τ ∈ [0, T].

The rest of the paper is devoted to the proof of Theorem 2.1. First we check that we
fulfil most of the Hypotheses (H1)–(H5) presented above and then explain that the re-
maining ones are actually not important. To document this fact, we also give the most
important ideas of the proof: the a priori estimates and the weak compactness of the solu-
tions to our problem. The way of constructing approximate solution sequences by mul-
tiple levels of approximations is now well understood for compressible Navier–Stokes
equations, see [15, 16, 30, 31], hence we will not repeat the approximation schemes. The
full proof follows by combining the rather classical construction of approximate solutions
done in the above references and the uniform estimates and the compactness shown in
the following sections.

In the sequel, we use C to denote a universal positive constant whose value may differ
from line to line.
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360 Y. Lu and M. Pokorný / Anal. Theory Appl., 36 (2020), pp. 348-372

3 Proof of the main result

3.1 Properties of the pressure

The main purpose of this subsection is to investigate the properties of the pressure and
verify Hypotheses (H1)–(H5) presented above. Before doing so, note that the role of
the function $ in Theorem 2.2 is in our case of Theorem 2.1 played by the function η.
Therefore the exponent γ in Theorem 2.2 is equal to 2 and β1 = γ (Z1 = $) and β2 = 1
(Z2 = τ).

With this notation, it is not difficult to see that Hypothesis (H1) is fulfilled with a1 = 0
and a2 = 0. Moreover, a1 = a2 = C > 0. Next, Hypothesis (H2) is also fulfilled (however,
with a slight straightforward modification due to the different form of the momentum
equation).

We denote the total pressure as

h(η, $, τ) := q(η) + p($)− τ = zη2 + k(L− 1)η + a$γ − τ. (3.1)

Related to the domination condition (2.16), we denote the set

S := {(η, $, τ) ∈ R3 : 0 < $ < Cη, 0 < τ < Cη} (3.2)

with closure

S := {(η, $, τ) ∈ R3 : 0 ≤ $ ≤ Cη, 0 ≤ τ ≤ Cη}. (3.3)

Then S plays the role of O~a and S of its closure in the above hypotheses.
Clearly, the total pressure h(η, $, τ) ∈ C(S) and h(η, $, τ) ∈ C1(S). For all η ∈ (0, 1)

and for all (η, $, τ) ∈ S, direct calculation gives

|h(η, $, τ)| ≤ zη2 + k|L− 1|η + aCγ
ηγ + Cη ≤ C(η + ηγ) ≤ Cη. (3.4)

Next, in S, we have that

C1(η
2 + $γ − τ − 1) ≤ h(η, $, τ) ≤ C2(η

2 + $γ + τ + 1) (3.5)

for some positive constants C1, C2. Using the domination assumption and the resulted
domination for all times (proved, however, in the following subsection), we get that

−τ ≥ −Cη,

whence we have

C1(η
2 + $γ − 1) ≤ h(η, $, τ) ≤ C2(η

2 + $γ + τ + 1). (3.6)

Using once more the domination, we can also write

C1(η
2 + $γ + τ − 1) ≤ h(η, $, τ) ≤ C2(η

2 + $γ + τ + 1). (3.7)
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Moreover, it is not difficult to see that we also have

C1(η
2 + $γ + τ| log τ| − 1) ≤ H(η, $, τ) ≤ C2(η

2 + $γ + τ| log τ|+ 1), (3.8)

which follows from the form of our Helmholtz free energy and the domination proper-
ties. This estimate is important in the construction of weak solutions to our problem.
Furthermore, for each (η, $, τ) ∈ S,

|∂τh(η, $, τ)| = 1, |∂$h(η, $, τ)| = |aγ$γ−1|. (3.9)

For γ ≥ 1 it implies that (2.24) is fulfilled for the choice a1 = 0. However, for γ ∈ (0, 1)
we cannot fulfil this assumption for a1 = 0, as γ − 1 < 0 and we need to control the
function $ by η from below. However, this condition is in fact in our case not needed and
we have an alternative way how to overcome its use. It is connected with the proof that
the pressure h(ηn, $n, τn) converges weakly in L1(QT) to h(η, $, τ) and it will be explained
in Subsection 3.5. Thus, the main part of Hypothesis (H3) is satisfied.

For each (η, $, τ) ∈ S, we define the following functions

s$ :=


$

η
, if| η > 0,

0, if η = 0,
sτ :=


τ

η
, if η > 0,

0, if η = 0.
(3.10)

Clearly s$, sτ ∈ [0, C] for all (η, $, τ) ∈ S. Then for each (η, $, τ) ∈ S, we can write

h(η, $, τ) = h(η, ηs$, ηsτ) = zη2 + k(L− 1)η + aηγsγ
$ − ηsτ, s$, sτ ∈ [0, C]. (3.11)

In S, the monotonicity of the total pressure h is mainly determined by η. We now show
that even though h could be non monotone in η, we can decompose it into a monotone
part and a compactly supported part. Let R > 1 and χ ∈ C∞

c ([0, R)) be a non-increasing
cut-off function satisfying 0 ≤ χ ≤ 1 and χ = 1 on [0, R1], 0 < R1 < R. We write the total
pressure as

h(η, ηs$, ηsτ) = P(η, s$, sτ)−R(η, s$, sτ), (3.12)

with

P(η, s$, sτ) = zη2 + kLη + aηγsγ
$ −

(
1− χ(η)

)(
kη + ηsτ

)
, (3.13a)

R(η, s$, sτ) = χ(η)
(
kη + ηsτ

)
. (3.13b)

By choosing R1 (and thus also R) large enough, it is straightforward to check that the
decomposition (3.12)–(3.13) satisfies Hypothesis (H4).

Hypothesis (H5) needs more attention, since it is closely connected to the form of the
Helmholtz free energy. In fact, it is used in the construction of the approximate problem
and it yields that

|∇2
η,$,τ H(η, $, τ)| ≤ C(r)(1 + ηA)
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in the set {η2 + $2 + τ2 > r2} ∩ S. Hence, for our choice of the Helmholtz energy, we only
need that

|∇2
ηq(η)|+ |∇2

$ p($)|+ |1/τ| ≤ C(r)(1 + ηA)

in the set {η2 + $2 + τ2 > r2} ∩ S. However, it follows directly with the choice A = 0
from the form of the pressure. The modified Hypothesis (H5) is fulfilled.

3.2 A priori estimates for smooth solutions

In this section, we derive the a priori estimates for smooth solutions. Let ($, u, η, τ) be a
smooth solution to (2.7a)–(2.9) in QT with smooth initial data satisfying the domination
condition (2.16). Moreover, without loss of generality, we assume the initial data for
($, η, τ) are bounded and strictly positive in Ω:

0 < a ≤ $0, η0, τ0 ≤ a < ∞ for all x ∈ Ω. (3.14)

Otherwise, a standard trick is to mollify the initial data and add a strictly positive con-
stant to the mollified data. Note that this can be done in such a way that the domination
(2.16) still holds.

We start by showing the positivity of $, η, τ and the domination conditions (2.17)

∂t$ + u · ∇x$ = (−divxu)$, (3.15a)
∂tη + u · ∇xη = (−divxu)η, (3.15b)

∂tτ + u · ∇xτ =
(
− divxu− 1

2λ

)
τ. (3.15c)

By introducing the characteristic along the velocity field

d
dt

X(t, x) = u(t, X(t, x)), X(0, x) = x,

the new unknowns along the characteristic defined by

$̃(t, x) = $(t, X(t, x)), η̃(t, x) = η(t, X(t, x)), τ̃(t, x) = τ(t, X(t, x))

solve

∂t$̃ = (−divxu)(t, X(t, x))$̃, (3.16a)
∂tη̃ = (−divxu)(t, X(t, x))η̃, (3.16b)

∂tτ̃ =
(
− divxu− 1

2λ

)
(t, X(t, x))τ̃. (3.16c)
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It is straightforward to deduce that for all (t, x) ∈ QT,

inf
x∈Ω

$0(x) exp
(
−
∫ t

0
‖divxu‖L∞(Ω)dt′

)
≤ $(t, x) ≤ sup

x∈Ω
$0(x) exp

(∫ t

0
‖divxu‖L∞(Ω)dt′

)
, (3.17a)

inf
x∈Ω

η0(x) exp
(
−
∫ t

0
‖divxu‖L∞(Ω)dt′

)
≤ η(t, x) ≤ sup

x∈Ω
η0(x) exp

(∫ t

0
‖divxu‖L∞(Ω)dt′

)
, (3.17b)

inf
x∈Ω

τ0(x) exp
(
−
∫ t

0
‖divxu‖L∞(Ω)dt′ − t

2λ

)
≤ τ(t, x) ≤ sup

x∈Ω
τ0(x) exp

(∫ t

0
‖divxu‖L∞(Ω)dt′ − t

2λ

)
. (3.17c)

By (3.14) and (3.17), we know that $, η, τ are all bounded and strictly positive on QT.
Similarly, for the differences ξ := Cη − $ and ζ := Cη − τ, we have

∂tξ + u · ∇xξ = (−divxu)ξ, ξ(0, ·) = Cη0 − $0 ≥ 0,

∂tζ + u · ∇xζ = (−divxu)ζ +
1

2λ
τ, ζ(0, ·) = Cη0 − τ0 ≥ 0.

Direct calculation gives for all (t, x) ∈ QT:

ξ(t, x) ≥ inf
x∈Ω

ξ(0, x) exp
(∫ t

0
−‖divxu‖L∞(Ω)dt′

)
≥ 0, (3.18a)

ζ(t, x) ≥ inf
x∈Ω

ζ(0, x) exp
(∫ t

0
−‖divxu‖L∞(Ω)dt′

)
+

t
2λ

inf
x∈Ω

τ0 exp
(∫ t

0
−2‖divxu‖L∞(Ω)dt′ − t

2λ

)
≥ 0. (3.18b)

This implies that the domination condition preserves:

0 ≤ $(t, x) ≤ Cη(t, x), 0 ≤ τ(t, x) ≤ Cη(t, x) for all t, x ∈ QT. (3.19)

Multiplying the momentum equation (2.7b) by u and using the other equations, one can
derive the following energy equality∫

Ω

[
1
2

$|u|2 + H($, η, τ)

]
(t, ·)dx +

∫ t

0

∫
Ω

S(∇xu) : ∇xudxdt′

=
∫

Ω

[
1
2

$0|u0|2 + H($0, η0, τ0)

]
dx +

∫ t

0

∫
Ω

$f · udxdt′

+
1

2λ

∫ t

0

∫
Ω
(τ log τ + τ)dxdt′, (3.20)
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where the Helmholtz free energy H is given in (2.14)–(2.15). As pointed in the introduc-
tion, the Helmholtz free energy may have a negative sign. While, this can be remedied
by employing the domination condition (3.19). Indeed, if η ≥ R2 for some R2 large,
by using (3.19), the quadratic term η2 dominates and there holds H($, η, τ) > 0. For
0 ≤ η ≤ R2, due to the continuity of H and (3.19), there exists a constant C > 0 such that
H($, η, τ) + C > 0. Hence, there exists a positive constant C such that

H̃($, η, τ) := H($, η, τ) + C > 0 for all η ≥ 0. (3.21)

Again by (3.19), there holds, by choosing C suitably large, that

τ2 + τ log τ + τ ≤ CH̃($, η, τ), $ + $ log $ + $2 + $γ ≤ CH̃($, η, τ).

We thus deduce from (3.20) that∫
Ω

[
1
2

$|u|2 + H̃($, η, τ)

]
(t, ·)dx +

∫ t

0

∫
Ω

S(∇xu) : ∇xudxdt′

≤
∫

Ω

[
1
2

$0|u0|2 + H̃($0, η0, τ0)

]
dx +

1
2

∫ t

0

∫
Ω

$|u|2dxdt′

+
C
2λ

∫ t

0

∫
Ω

H̃($, η, τ)dxdt′. (3.22)

Hence, by Gronwall’s and Korn’s inequalities, we obtain from (3.22) the following esti-
mates

η, $, τ ∈ L∞(0, T; L2(Ω)), u ∈ L2(0, T; W1,2
0 (Ω; Rd)), $|u|2 ∈ L∞(0, T; L1(Ω)). (3.23)

Next, in order to identify at least the weak limit of the pressure, we need to improve the
L1-estimate in the spatial variables. To this aim, the standard technique by Bogovskii-
operator estimate can be employed, see [9] or the books [15, 19, 31]. Since this is a com-
pletely standard technique (see e.g., [30, Formula (117)]), we do not present here any
details. It yields, combined with the domination property,

η, $, τ ∈ L
7
3 (QT).

Finally, using [30, Proposition 5] with a slight modification due to the additional damping
term in the continuity equation for τ we easily verify that functions s$ and sτ, defined in
(3.10) solve the following transport equations in the renormalized sense integrated up to
the boundary and in the time integrated form (compare with (3.36a))

∂ts$ + u · ∇xs$ = 0, ∂tsτ + u · ∇xsτ = − sτ

2λ
. (3.24)

Note that the assumption of Proposition 5 from [30] is fulfilled since all functions $, η
and τ are renormalized solutions to the continuity equation and therefore they are also
in C([0, T]; Lθ(Ω)) for all 1 ≤ θ < 2.
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3.3 Uniform estimates and basic convergence

By using rather standard approach of constructing approximate solutions to compress-
ible Navier-Stokes equations, that is to add artificial pressure terms, add diffusions for
the continuity equations, and use Galerkin approximation for the momentum equations,
one can get a family of approximate solutions which enjoy uniform estimates deduced
from in Section 3.2. We will not go through all the approximation schemes, because it can
be done in the same manner as in Section 4 of [30], and is similar as in [15,16,31]. Instead,
we will start with ($n, un, ηn, τn)n∈N which is a sequence of finite energy weak solutions
in the sense of Definition 2.1 and we have the following uniform estimates deduced from
the energy inequality

sup
n

(
‖(ηn, $n, τn)‖L∞(0,T;L2(Ω)) + ‖(ηn, $n, τn)‖L

7
3 (QT)

+ ‖un‖L2(0,T;W1,2
0 (Ω;Rd)) + ‖$n|un|2‖L∞(0,T;L1(Ω))

)
< +∞, (3.25)

together with the domination relations

0 ≤ $n(t, x) ≤ Cηn(t, x), 0 ≤ τn(t, x) ≤ Cηn(t, x), (3.26a)

for each n ∈N for a.a. (t, x) ∈ QT. (3.26b)

We will pass to the limit in the sequel and show the compactness. The limit passage is
done always up to a sequence, so we will not repeat this point.

By (3.25) using that (ηn, $n, τn) solve the continuity equations, we have the weak con-
vergence

(ηn, $n, τn)→ (η, $, τ) weakly-* in Cw([0, T]; L2(Ω)) and weakly in L
7
3 (QT), (3.27a)

un → u weakly in L2(0, T; W1,2
0 (Ω; Rd)), (3.27b)

and the limit satisfies

0 ≤ $(t, x) ≤ Cη(t, x), 0 ≤ τ(t, x) ≤ Cη(t, x) for a.a. (t, x) ∈ QT. (3.28)

We use convention (3.10) to introduce

rn = s$n =
$n

ηn
, sn = sτn :=

τn

ηn
. (3.29)

Due to [30, Proposition 5] we easily verify that functions rn and sn solve the following
transport equations in the renormalized form integrated up to the boundary and in the
time integrated form (see (3.38a))

∂trn + un · ∇xrn = 0, ∂tsn + un · ∇xsn = − sn

2λ
. (3.30)
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Due to the domination condition (3.28) on the limit, we can define by using the conven-
tion (3.10)

r :=
$

η
, s :=

τ

η
. (3.31)

By (3.26) and (3.28), there holds

0 ≤ rn, sn, r, s ≤ C, ∀n. (3.32)

Moreover, by using the continuity equations and the momentum equations, we have
uniform estimates for the time derivatives ∂t$n, ∂tηn, ∂tτn and ∂t($nun) in Lθ(0, T; W−1,θ)
for some θ > 1. We thus have

(ηn, $n, τn)→ (η, $, τ) in Cweak([0, T]; L2(Ω)). (3.33)

Together with un → u weakly in L2(0, T; W1,2
0 (Ω; Rd)) and by an Arzelà–Ascoli type

argument we have the weak convergence for the nonlinear terms:

$nun → $u, ηnun → ηu, τnun → τu, $nun ⊗ un → $u⊗ u in D′(QT). (3.34)

Then the limit functions solve the continuity equations in the sense of distributions

∂t$ + divx($u) = 0, (3.35a)
∂tη + divx(ηu) = 0, (3.35b)

∂tτ + divx(τu) = − 1
2λ

τ. (3.35c)

3.4 Renormalized continuity equations

By applying Proposition 4 in [30] and using estimates (3.27), it is straightforward to de-
duce that all the continuity equations are satisfied in the renormalized sense up to the
boundary:∫ t

0

∫
Ω

(
b(ζn)∂tφ + b(ζn)un · ∇xφ− (b′(ζn)ζn − b(ζn))divxunφ

)
dxdt′

=
∫

Ω
b(ζn)φ(t, x)dx−

∫
Ω

b(ζn)φ(0, x)dx + δζ,τ

∫ t

0

∫
Ω

b′(τn)τn

2λ
dxdt′, (3.36a)∫ t

0

∫
Ω

(
b(ζ)∂tφ + b(ζ)u · ∇xφ− (b′(ζ)ζ − b(ζ))divxuφ

)
dxdt′

=
∫

Ω
b(ζ)φ(t, x)dx−

∫
Ω

b(ζ)φ(0, x)dx + δζ,τ

∫ t

0

∫
Ω

b′(τ)τ
2λ

dxdt′, (3.36b)

for all t ∈ [0, T] and for all φ ∈ C1(QT), where ζ and ζn can be arbitrarily chosen
from {$, η, τ} and {$n, ηn, τn}, respectively. The equalities hold for all b ∈ C([0, ∞)) ∩
C1((0, ∞)) satisfying

b′(θ)θ − b(θ) ∈ C[0, ∞), |b(θ)|+ |b′(θ)θ − b(θ)| ≤ C(1 + θ) for all θ ≥ 0. (3.37)
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The constant δζ,τ = 1 if ζ = τ; otherwise δζ,τ = 0.
For rn, sn, r, s, applying Proposition 5, Proposition 7 (i.e., Proposition 2.1 in this paper),

and Remark 3.2 in [30] implies that the transport equations (3.24) hold in the renormal-
ized sense up to the boundary:

∫ t

0

∫
Ω

(
b(ζn)∂tφ + b(ζn)un · ∇xφ + b(ζn)divxunφ

)
dxdt′

=
∫

Ω
b(ζn)φ(t, x)dx−

∫
Ω

b(ζn)φ(0, x)dx + δζ,r

∫ t

0

∫
Ω

b′(rn)rn

2λ
dxdt′, (3.38a)∫ t

0

∫
Ω

(
b(ζ)∂tφ + b(ζ)u · ∇xφ + b(ζ)divxuφ

)
dxdt′

=
∫

Ω
b(ζ)φ(t, x)dx−

∫
Ω

b(ζ)φ(0, x)dx + δζ,r

∫ t

0

∫
Ω

b′(r)r
2λ

dxdt′, (3.38b)

for all φ ∈ C1(QT), where ζ and ζn can be arbitrarily chosen from {r, s} and {rn, sn},
respectively. The equalities hold for any b ∈ C[0, ∞) ∩ C1(0, ∞) satisfying

b′(θ)θ − b(θ) ∈ C[0, ∞), |b(θ)| ≤ C(1 + θ) for all θ ≥ 0. (3.39)

The constant δζ,r = 1 if ζ = r; otherwise δζ,r = 0.
Applying again Proposition 2.1 and using its proof, we have for each 1 ≤ p < ∞ that∫

Ω
ηn|rn − r|pdx → 0,

∫
Ω

ηn|sn − s|pdx → 0 for all t ∈ [0, T]. (3.40)

We remark that in [35], a similar result is shown:

∫ T

0

∫
Ω

ηn|rn − r|pdx → 0,
∫ T

0

∫
Ω

ηn|sn − s|pdx → 0. (3.41)

The results in (3.40) and (3.41) offer some compactness for rn and sn. Since there is an
extra damping term in the continuity equation in τ, for the convenience of the readers,
we briefly prove the second result in (3.40). The strategy is to prove it for p = 2 and the
result for other p follows from interpolation. When p = 2,

ηn|sn − s|2 = ηns2
n + ηns2 − 2ηnsns. (3.42)

By virtue of the renormalized equations in sn and s, choosing b(θ) = θ2 implies that s2
n

and s2 satisfy

∂ts2
n + u · ∇xs2

n = − s2
n

λ
, ∂ts2 + u · ∇xs2 = − s2

λ
.

Proposition 6 in [30] implies that the products ηns2
n, ηns2 and ηs2 satisfy the continuity
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equations up to the boundary in the time integrated form:

∂t(ηns2
n) + divx(ηns2

nu) = −ηns2
n

2λ
,

∂t(ηns2) + divx(ηns2u) = −ηns2

2λ
,

∂t(ηs2) + divx(ηs2u) = −ηs2

2λ
.

This gives

lim
n→∞

(∫
Ω
(ηns2

n)(t)dx +
∫ t

0

∫
Ω

ηns2
n

2λ
dxdt′

)
= lim

n→∞

∫
Ω
(ηns2

n)(0)dx =
∫

Ω
η0s2

0dx, (3.43a)

lim
n→∞

(∫
Ω
(ηns2)(t)dx +

∫ t

0

∫
Ω

ηns2

2λ
dxdt′

)
= lim

n→∞

∫
Ω
(ηns2)(0)dx =

∫
Ω

η0s2
0dx, (3.43b)∫

Ω
(ηs2)(t)dx +

∫ t

0

∫
Ω

ηs2

2λ
dxdt′ =

∫
Ω
(ηs2)(0)dx =

∫
Ω

η0s2
0dx. (3.43c)

Again by Proposition 6 in [30], the products τns and τs satisfy

∂t(τns) + divx(τnsu) = −τns
2λ

, ∂t(τs) + divx(τsu) = − τs
2λ

.

Then

lim
n→∞

(∫
Ω
(τns)(t)dx +

∫ t

0

∫
Ω

τns
2λ

dxdt′
)
= lim

n→∞

∫
Ω
(τns)(0)dx =

∫
Ω

τ0s0dx, (3.44a)∫
Ω
(τs)(t)dx +

∫ t

0

∫
Ω

τs
2λ

dxdt′ =
∫

Ω
(τs)(0)dx =

∫
Ω

τ0s0dx, (3.44b)

and furthermore

lim
n→∞

(∫
Ω
(ηnsns)(t)dx +

∫ t

0

∫
Ω

ηnsns
2λ

dxdt′
)

= lim
n→∞

(∫
Ω
(τns)(t)dx +

∫ t

0

∫
Ω

τns
2λ

dxdt′
)

=
∫

Ω
τ0s0dx =

∫
Ω

η0s2
0dx. (3.45)

Hence, by (3.42)–(3.45), we finally obtain

lim
n→∞

(∫
Ω

ηn|sn − s|2(t)dx +
∫ t

0

∫
Ω

ηn|sn − s|2
2λ

dxdt′
)
= 0 for all t ∈ [0, T]. (3.46)

This implies (3.40) by interpolation.
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3.5 Strong convergence of the densities

In order to show that

h(ηn, $n, τn)→ h(η, $, τ) weakly in L1(QT), (3.47)

we still need to show the strong convergence for ηn and $n. The proof is long and techni-
cal but well understood nowadays: it can be done by employing the argument in Section
4.4 in [30]. So we only briefly recall the main steps, more details can be found in [30].

The starting point is to treat the total pressure as a solely function in ηn: we write
h(ηn, $n, τn) = h(ηn, ηnrn, ηnsn) with 0 ≤ rn, sn ≤ C. Then the idea is to use the nowadays
well understood approach in the study of compressible Navier–Stokes equations (see for
example [15, 16]) to prove the strong convergence of ηn. Employing the effective viscous
flux identity and using the renormalized equation in ηn and η implies that ηn log ηn =
η log η. The convexity of the function θ → θ log θ in [0, ∞) implies the strong convergence
ηn → η strongly in L1(QT). By interpolation, there holds ηn → η strongly in Lθ(QT) for
all 1 ≤ θ < 7/3. This general idea, however, works only if the function η 7→ h(η, ηr, ητ)
is monotone which is not the case here. However, since it is monotone for large values
of η uniformly with respect to r and s, we can, similarly as in [30, Sections 4.3 and 4.4],
apply the technique from [14].

Let us now explain how we can get (3.47), without having (2.23b) from Hypothesis
(H3). We first apply (3.40)–(3.41) with p = 1 to deduce

ηnrn − ηnr → 0, ηnsn − ηns→ 0 in L1(QT).

Together with the strong convergence ηn → η in L1(QT), we finally obtain

$n − $ = ηnrn − ηr = (ηnrn − ηnr) + (ηn − η)r → 0, (3.48a)
τn − τ = ηnsn − ηs = (ηnsn − ηns) + (ηn − η)s→ 0, (3.48b)

strongly in L1(QT), hence (up to a subsequence) a.e. in QT. Furthermore, the convergence
is also strong in Lθ(QT) for each 1 < θ < 7

3 by interpolation. Thus, by virtue of the Vitali’s
convergence theorem we conclude (3.47). This allows us to pass to the limit and deduce
the limit momentum equations.

3.6 Energy inequality and end of the proof

To finish the proof, it remains to show the energy inequality. We recall the energy in-
equality for ($n, un, ηn, τn): for a.a. t ∈ (0, T),∫

Ω

[
1
2

$n|un|2 + H($n, ηn, τn)

]
(t, ·)dx +

∫ t

0

∫
Ω

S(∇xun) : ∇xundxdt′

≤
∫

Ω

[
1
2

$0|u0|2 + H($0, η0, τ0)

]
dx +

∫ t

0

∫
Ω

$f · undxdt′

+
1

2λ

∫ t

0

∫
Ω
(τn log τn + τn)dxdt′. (3.49)
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The Helmholtz free energy H has the form (2.14)–(2.15). The idea is to pass n → ∞ in
(3.49) to get the energy inequality for the limit $, u, η, τ. Compared to the compressible
Navier–Stokes equations, we need to deal with the extra integrals:

k(L− 1)
∫

Ω
ηn log ηndx, −

∫
Ω

τn log τndx,
∫

Ω
$

γ
ndx, 0 < γ < 1. (3.50)

The other terms can be dealt as in the study for the compressible Navier–Stokes equa-
tions, by using the weak lower semicontinuity and the convergences in (3.27) and in
Section 3.5, and the fact that θ2, θγ with γ ≥ 1 and θ log θ are all convex functions in θ on
(0, ∞).

The issues for the terms in (3.50) are respectively that the coefficient L− 1 is possibly
negative and −1 is negative, and the function $→ $γ is not convex when 0 < γ < 1. The
idea is to consider the renormalized equations:

∂t($
γ
n) + divx($

γ
nun) + (γ− 1)$γ

ndivxun = 0, (3.51a)
∂t(ηn log ηn) + divx(ηn log ηnu) + ηndivxun = 0, (3.51b)

∂t(τn log τn) + divx(τn log τnu) + τndivxun = −τn(log τn + 1)
2λ

, (3.51c)

which hold by using the estimates in (3.25) and observing that

$
γ
ndivxun, ηndivxun, τndivxun +

τn(log τn + 1)
2λ

,

are weakly convergent to their counterparts (removing the lower index n) in L1(QT).
Then again by the estimates in (3.25), we have

$
γ
n , ηn log ηn, τn log τn ∈ Cw([0, T], L1(Ω)).

Together with the strong convergence we have shown in Section 3.5 and the estimates
from Section 3.4, we finally have

$
γ
n → $γ, ηn log ηn → η log η, τn log τn → τ log τ in Cw([0, T], L1(Ω)).

Then passing to the limit n→ ∞ gives our desired energy inequality for the limit solution
($, u, η, τ) and we complete the proof.

Acknowledgements

The work of Y. Lu has been supported by the Recruitment Program of Global Experts
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[30] A. Novotný, and M. Pokorný, Weak solutions for some compressible multicomponent fluid
models, Arch. Rational Mech. Anal., 235 (2020), 355–403.
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