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Abstract. In this paper we prove that the critical exponents of Besov spaces on a com-
pact set possessing an Ahlfors regular measure is an invariant under Lipschitz trans-
forms. Under mild conditions, the critical exponent of Besov spaces of certain self-
similar sets coincides with the walk dimension, which plays an important role in the
analysis on fractals. As an application, we show examples having different critical
exponents are not Lipschitz equivalent.
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1 Introduction

Let (X, d1) and (Y, d2) be two metric spaces. We say that T : (X, d1) → (Y, d2) is a bi-
Lipschitz transform, if T is a bijection and furthermore, there exists a constant C > 0 such
that for any x, y ∈ X,

C−1d1(x, y) ≤ d2(Tx, Ty) ≤ Cd1(x, y). (1.1)

The study of Lipschitz equivalence of self-similar sets are initiated by Falconer and
Marsh [5] and David and Semmes [4]. Rao, Ruan and Xi [18] (2006) answered a question
posed by David and Semmes [4], by showing that the self-similar sets in Fig. 1 are Lips-
chitz equivalent. After that, there are many works devoted to this topic, for example, Xi
and Xiong [24,25], Luo and Lau [15], Ruan et al. [22], and Rao and Zhang [19]. However,
the studies mentioned above are all on self-similar sets with simple topological structure,
that is, the fractals under consideration are totally disconnected.
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Recently, there are some studies on a class of self-similar sets which are not totally
disconnected. A non-empty compact set satisfying the set equation F =

∪
d∈D

F+d
n is

called a fractal square if n ≥ 2 and D ⊂ {0, 1, · · · , n − 1}2. Ruan and Wang [21] studied
fractal squares of ratio 1/3 and with 7 or 8 branches, which are all connected fractals.
Their method is to find various connectivity properties, which depend on very careful
observations. Rao and Zhu [20] and Zhu and Yang [26] construct bi-Lipschitz mappings
between the fractals illustrated in Fig. 3.

E F

Figure 1: The Cantor sets E and F are Lipschitz equivalence [18].

(a) (b) (c)

(d) (e) (f)

Figure 2: [21] shows that the above three fractal squares are not Lipschitz equivalent.

The study of the Lipschitz equivalence of connected self-similar sets is a very hard
problem. Let us consider the fractals in Fig. 4. By a result of Whyburn [23], they are
homeomorphic, and [21] conjectures these two fractal squares are not Lipschitz equiva-
lent (see also [17]). To show two sets are not Lipschitz equivalent, the main method is to
construct a certain Lipschitz invariant to distinct them.

In this paper, we use the Besov spaces to construct Lipschitz invariants for fractals
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admitting Ahlfors regular measures.
Let F be a compact subset of Rn. A Borel measure µ on F is said to be Ahlfors regular,

if there exists 0 < α ≤ n and a constant C > 0 such that for any Euclidean metric ball
B(x, r) with 0 < r < 1,

C−1rα ≤ µ(B(x, r)) ≤ Crα. (1.2)

The set F is called an α-set if it admits an Ahlfors regular measure. It is known [11] that
such µ is equivalent to the α-dimensional Hausdorff measure on F; moreover, if F is a
self-similar set satisfying the open set condition, then F is an α-set.

(a) (b) (c)

(d) (e) (f)

Figure 3: (d) is equivalent to (e) is proved in [26], (d) is equivalent to (f) is proved in [20].

Let (M, d) be a locally compact, separable metric space, let ν be a Radon measure on
M with full support. We call (M, d, ν) a metric measure space. From now on, we shall al-
ways use | · | to denote the Euclidean metric on Rn, and use µ to denote the α-dimensional
Hausdorff measure. When we write (F, | · |, µ), we mean that µ is the restriction of the
α-dimensional Hausdorff measure on F.

For a metric space (M, d, ν), Gu and Lau [8] (see also [7]) define a family of Besov
spaces

Wσ,2 with σ > 0,
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(a) (b)

(c) (d)

Figure 4: It is conjectured [21] that the above two fractal squares are not Lipschitz equivalent.

and then define two critical exponents σ∗ and σ# (see Section 2 for precise definition). The
main goal of the present paper is to show that both σ∗ and σ# are Lipschitz invariants.

Theorem 1.1. Let F be an α-set in Rn. Let T : F → T(F) be a bi-Lipschitz transform. Denote
by σ∗

1 and σ#
1 the critical exponents of (F, | · |, µ) and by σ∗

2 and σ#
2 the critical exponents of

(T(F), | · |, µ) respectively. Then we have

σ∗
1 = σ∗

2 , σ#
1 = σ#

2 . (1.3)

Remark 1.1. It is shown [7] that under mild heat kernel assumptions, σ∗ = σ# and the
walk dimension β∗ equals to 2σ∗. The walk dimension is an important parameter in the
heat kernel estimates, which corresponding to the speed of diffusion on the underlying
sets. Heuristically, the larger the value β∗, the harder is for the diffusion process to drift
away from the initial position.

The calculation of σ∗ is a difficult problem. It is well-known that for a smooth domain
in Rd, σ∗ = 1; for the n-dimensional Sierpinski gasket, σ∗ = log(n + 3)/(2 log 2) [10].
There are extensions on the nested fractals [16], and approximate value of the Sierpinski
carpet [2]; also for Cantor-type sets, σ∗ = ∞ [13]. The exact value of σ∗ is only known for
limited pcf self-similar sets. Nevertheless, we hope our study may shed some light on
the study of Lipschitz equivalence of connected fractals.

The paper is organized as follows. In Section 2, we recall the definition of σ∗ and σ#,
and prove Theorem 1.1. In Section 3, we discuss the calculation of the critical exponents
σ∗ and σ# by showing examples.
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Notation 1.1. Throughout this paper, the sign f ≍ g for two functions f and g means
that there exists constant c > 0 such that c−1 f ≤ g ≤ c f . The letters C, C′ with or without
subscripts denote positive constants whose values are not important and may change
from line to line.

2 Critical exponents of Besov spaces and proof of Theorem 1.1

Let (M, d, ν) be a metric measure space. Let C(M) be the continuous function space. For
any 1 ≤ p ≤ ∞, let Lp(M, ν) be the Lebesgue function space, and set

||u||p = ||u||Lp(M,ν).

For any σ > 0, define the functional Wσ,M(u) on measurable functions on M by

Wσ,M(u) =: sup
0<r<1

r−2σ
∫

M

[
1

ν(B(x, r))

∫
B(x,r)

|u(x)− u(y)|2dν(y)
]

dν(x), (2.1)

where B(x, r) =: {y ∈ M : d(x, y) < r} is an open metric ball. Define the space Wσ,2 as
follows,

Wσ,2 = Wσ,2(M, d, ν) =: {u ∈ L2 : Wσ,M(u) < ∞}.

Thus Wσ,2 is a Banach space with the norm

||u||σ,2 =: ||u||2 + Wσ,M(u)1/2,

and it is one of the families of Besov spaces, see [7, Section 4]. Set

σ∗ =: sup{σ : Wσ,2 ∩ C(M) is dense in C(M)}, (2.2)

and
σ# =: sup{σ : Wσ,2 ∩ C(M) contains non-constant functions}. (2.3)

Clearly we have σ∗ ≤ σ#. Following [8], we call σ∗ and σ# the critical exponents of the
family Wσ,2 of the Besov spaces in (M, d, ν). Note that the critical exponents are intrinsic
parameters of (M, d, ν).

Before proving Theorem 1.1, we first give two lemmas. Recall that µ denotes the
α-dimensional Hausdorff measure.

Lemma 2.1. Assume that all the assumptions in Theorem 1.1 hold. Then for any 1 ≤ p ≤ ∞,
there exists a constant λp only depending on F, T and p such that for any measurable function υ
on F,

||υ ◦ T−1||Lp(T(F)) ≤ λp||υ||Lp(F). (2.4)
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Proof. It is well known that for any Borel set A ⊆ F,

C−1µ(A) ≤ µ(T(A)) ≤ Cµ(A) (2.5)

(see for example, [6]). Therefore, an approximation argument by using simple functions
leads to (2.4).

Lemma 2.2. Assume that all the assumptions in Theorem 1.1 hold. Then for any σ > 0, there
exist constants C, C′ > 0 only depending on F, T and σ such that for any 0 < r < 1 and any
measurable function u on F,∫

T(F)

[∫
B(x,r)

|u ◦ T−1(x)− u ◦ T−1(y)|2dµ(y)
]

dµ(x)

≤C′
∫

F

[∫
B(x,Cr)

|u(x)− u(y)|2dµ(y)
]

dµ(x). (2.6)

Proof. Fix x ∈ T(F), then by using the fact that T is Lipschitz, there exists C > 0 which is
independent of x such that

T−1(B(x, r)) ⊆ B(T−1x, Cr).

Applying Lemma 2.1 to the L2 function

υ ◦ T−1(y) = |u ◦ T−1(x)− u ◦ T−1(y)| · 1B(x,r)(y),

we obtain ∫
B(x,r)

|u ◦ T−1(x)− u ◦ T−1(y)|2dµ(y)

≤λ2

∫
T−1(B(x,r))

|u ◦ T−1(x)− u(z)|2dµ(z)

≤λ2

∫
B(T−1x,Cr)

|u ◦ T−1(x)− u(z)|2dµ(z). (2.7)

Thus by integrating on x over T(F), we get∫
T(F)

[∫
B(x,r)

|u ◦ T−1(x)− u ◦ T−1(y)|2dµ(y)
]

dµ(x)

≤λ2

∫
T(F)

[∫
B(T−1x,Cr)

|u ◦ T−1(x)− u(z)|2dµ(z)
]

dµ(x). (2.8)

Applying Lemma 2.1 again to the L1 function

υ ◦ T−1(x) =
∫

B(T−1(x),Cr)
|u ◦ T−1(x)− u(z)|2dµ(z),
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we have ∫
T(F)

[∫
B(T−1x,Cr)

|u ◦ T−1(x)− u(z)|2dµ(z)
]

dµ(x)

≤λ1

∫
F

[∫
B(x,Cr)

|u(x)− u(y)|2dµ(y)
]

dµ(x). (2.9)

Combining (2.8) and (2.9), we have (2.6) with C′ = λ1λ2.

Proof of Theorem 1.1. We only need to show that σ∗
1 ≤ σ∗

2 and σ#
1 ≤ σ#

2 separately. In the
following, we simply write Wσ,2(F) instead of Wσ,2(F, | · |, µ) without causing confusion
and similar for Wσ,2(T(F)).

Case for σ#. For any σ < σ#
1 , by definition we can find a non-constant function u ∈

Wσ,2(F), thus ||u||L2(F) < ∞ and Wσ,F(u) < ∞.
Firstly, by Lemma 2.1, we have u ◦ T−1 ∈ L2(T(F)). Secondly, by Lemma 2.2, we have

Wσ,T(F)(u ◦ T−1)

≤ sup
0<r<1

C1r−2σ−α
∫

T(F)

[∫
B(x,r)

|u ◦ T−1(x)− u ◦ T−1(y)|2dµ(y)
]

dµ(x)

≤C′ sup
0<r<1

r−2σ−α
∫

F

[∫
B(x,Cr)

|u(x)− u(y)|2dµ(y)
]

dµ(x)

≤C′ sup
0<r<C

r−2σ−α
∫

F

[∫
B(x,r)

|u(x)− u(y)|2dµ(y)
]

dµ(x)

≤C′
{

sup
0<r<1

+ sup
1≤r<C

}
r−2σ−α

∫
F

[∫
B(x,r)

|u(x)− u(y)|2dµ(y)
]

dµ(x)

≤C′Wσ,F(u) + 2C′
∫

F
|u(x)|2 sup

x∈F
µ(B(x, C))

≤C′Wσ,F(u) + C′Cα||u||L2(F) < ∞. (2.10)

Therefore u ◦ T−1 is a non-constant function in Wσ,2(T(F)), which implies that σ ≤ σ#
2 .

Since σ < σ#
1 is assumed arbitrary, we conclude that σ#

1 ≤ σ#
2 .

Case for σ∗. For any σ < σ∗
1 , by definition we can find a sequence of functions {un}∞

n=1
in Wσ,2(F) ∩ C(F) such that it is dense in C(F). Now pick any υ ∈ C(T(F)), we have
υ ◦ T ∈ C(F) and there is a subsequence of {un}∞

n=1 which we still denote by {un}∞
n=1

such that un → υ ◦ T in C(F) as n → ∞. We then clearly have un ◦ T−1 → υ in C(T(F))
as n → ∞ by that T is bi-Lipschitz. On the other hand, from the argument we used in the
first case, we have un ◦ T−1 ∈ Wσ,2(T(F)) ∩ C(T(F)). This implies that {un ◦ T−1}∞

n=1 is
dense in C(T(F)), and thus σ ≤ σ∗

2 . Consequently, by that σ < σ∗
1 is arbitrary we have

σ∗
1 ≤ σ∗

2 .
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3 Examples

In this section, we are concerned with the calculation of σ∗ and σ# for α-sets. In the case
that the metric space (M, d, ν) admits a heat kernel with certain fast decay condition (e.g.,
sub-Gaussian), we know from [7] that

β = 2σ∗ = 2σ#,

where β is the walk dimension of the heat kernel.

Theorem 3.1 (Theorem 4.6 in [7]). If there exists a heat kernel pt on (M, d, ν) satisfying the
following decay condition:

pt(x, y) ≍ C
tα/β

Φ
(

c
d(x, y)

t1/β

)
. (3.1a)∫ ∞

0
sα+β+εΦ(s)

ds
s

< ∞, (3.1b)

where 0 < t < t0 with t0 > 0 and Φ is a decreasing function which maps [0,+∞) onto (0, 1].
Then β = β∗ (the number β satisfying (3.1a) and (3.1b) is called the walk dimension of M).

Another fact from [7] is that provided the space (M, d, ν) (ν is an α-regular measure)
having the chain condition, the following inequality holds:

1 ≤ σ∗ ≤ σ# ≤ (α + 1)/2.

In general, see the following definition of the γ-chain condition.

Definition 3.1. Fix γ > 0, a metric space (M, d) is said to satisfy the γ-chain condition if
there exists a constant C > 0 such that for any two points p, q ∈ M and for any positive
integer n there exists a sequence {qi}n

i=0 of points in M such that q0 = p, qn = q and

d(qi, qi+1) ≤ C
d(p, q)

nγ
for all i = 0, 1, · · · , n − 1.

Remark 3.1. The chain condition is the special case when γ = 1, also it is not hard to
see that the γ-chain condition as a geometric property is Lipschitz invariant, i.e., it is
preserved under bi-Lipschitz maps of two metric spaces.

Note that certain bounds of heat kernel is equivalent to the so called β-parabolic Har-
nack principle (see [3, Theorem 2.15] for details). It is shown in [3, Theorem 2.21] that the
β-parabolic Harnack principle is preserved for metric measure spaces or weight graphs
under rough isometries.
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Figure 5: The eyebolted Vicsek cross K.

Definition 3.2. A map φ : X1 → X2 is called a rough isometry between two metric
measure spaces or weight graphs (Xi, di, µi) for i = 1, 2 if there are positive constants c1,
c2, c3 such that

X2 =
∪

x∈X1

Bd2(φ(x), c1),

c−1
2 (d1(x, y)− c1) ≤ d2(φ(x), φ(y)) ≤ c2(d1(x, y) + c1),

c−1
3 µ(Bd1(x, c1)) ≤ µ(Bd2(φ(x), c1) ≤ c3µ(Bd1(x, c1)).

It is seen that rough isometry is an equivalence and bi-Lipschitz will imply rough
isometry. Hence in the case that the β-parabolic Harnack principle or equivalently cer-
tain bounds of heat kernels are assumed on (X1, d1, µ1), then the β-parabolic Harnack
principle is true on its rough isometric space (X2, d2, µ2) and this implies our result in
the case that heat kernel estimates are assumed. However, we will show that there are
examples not included in this setup. The examples are from [8], we refer to [8, Theorem
4.1,Theorem 4.3] in which the criteria are given to determine the values of σ∗ and σ# in
terms of the growth ratios of resistances with respect to primal energies for a class of pcf
self-similar sets.

Example 3.1 (Eyebolted Vicsek cross). In R2, let {p1, p2, p3, p4} be the four vertices of the
unit square S, and let p0 be the center of S. Divide S into a mesh of sub-squares of size
1/9, and we pick 21 sub-squares in two different patterns as shown in Fig. 5 and Fig. 6
separately.

Let K be corresponding self-similar set in Fig. 5 and G be in Fig. 6. The Hausdorff
dimensions of K and G are the same, that is α = log 21/ log 9.

It is known [8, Theorem 1.2] that for K,

σ∗ = σ# =
1
2

(
1 +

log 21
log 9

)
.

Also it is known that the Besov space at σ∗, Wσ∗,2 is not dense in C(K), so it can not
be a candidate of the domain of some regular Dirichlet forms and hence there does not
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Figure 6: The eyebolted Vicsek cross G.

exist a sub Gaussian heat kernel with walk dimension β∗ or its equivalent condition the
β∗-parabolic Harnack principle.

On the other hand, we see from [8, Section 7] that for G,

σ∗ = σ# =
1
2

(
log 21 + log(35/4)

log 9

)
.

Moreover, the Besov space Wσ∗,2 is a domain of some regular Dirichlet form which has a
sub-Gaussian heat kernel with β∗ = 2σ∗ as its walk dimension. The methods to obtain
the sub-Gaussian heat kernel estimates are standard (e.g., [1, 9, 12, 14]), for instance, first
deducing Nash-type inequality to obtain the existence and on-diagonal upper bound of
the heat kernel, and together with the estimation of the exist time from balls, one can
obtain the off-diagonal upper bound; Using the upper bound to get a near-diagonal lower
bound, and together with a chain argument (the Euclidean metric on G satisfies the chain
condition), one can obtain the off-diagonal lower bound.

From above, by using Theorem 1.1, we see that K and G are not Lipschitz equivalent
since they have different critical exponents of Besov spaces.
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