Hausdorff Dimension of a Class of Weierstrass Functions

Huojun Ruan[∗] and Na Zhang

School of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China

Received 20 September 2020; Accepted (in revised version) 5 November 2020

Dedicated to Professor Weiyi Su on the occasion of her 80th birthday

Abstract. It was proved by Shen that the graph of the classical Weierstrass function $\sum_{n=0}^{\infty} \lambda^n \cos(2\pi b^n x)$ has Hausdorff dimension $2 + \log \lambda / \log b$, for every integer $b \ge 2$ and every $\lambda \in (1/b, 1)$ [Hausdorff dimension of the graph of the classical Weierstrass functions, Math. Z., 289 (2018), 223–266]. In this paper, we prove that the dimension formula holds for every integer *b* \geq 3 and every $\lambda \in (1/b, 1)$ if we replace the function cos by sin in the definition of Weierstrass function. A class of more general functions are also discussed.

Key Words: Hausdorff dimension, Weierstrass function, SRB measure. **AMS Subject Classifications**: 28A80

1 Introduction

Weierstrass functions are classical fractal functions. The non-differentiability of these functions were studied by Weierstrass and Hardy [2]. Recently, Shen [7] proved that the graph of the classical Weierstrass function $\sum_{n=0}^{\infty} \lambda^n \cos(2\pi b^n x)$ has Hausdorff dimension $2 + \log \lambda / \log b$, for every integer $b > 2$ and every $\lambda \in (1/b, 1)$, which solved a longstanding conjecture. Some relevant results can be found in [1, 3–5, 8]. Naturally, we want to study the Hausdorff dimension of the graph of Weierstrass functions with the following form:

$$
W_{\lambda,b,\theta}(x)=\sum_{n=0}^{\infty}\lambda^n\cos(2\pi b^nx+\theta),\quad x\in\mathbb{R},
$$

where $b \ge 2$ is an integer, $\lambda \in (1/b, 1)$ and $\theta \in \mathbb{R}$.

Denote $D_{\lambda,b} = 2 + \log \lambda / \log b$. Denote by $\dim_H \Gamma W_{\lambda,b,\theta}$ the Hausdorff dimension of the graph of *Wλ*,*b*,*^θ* . Our main result is:

http://www.global-sci.org/ata/ 482 c 2020 Global-Science Press

[∗]Corresponding author. *Email addresses:* ruanhj@zju.edu.cn (H. J. Ruan), 21535049@zju.edu.cn (N. Zhang)

Theorem 1.1. *If* $\theta = -\pi/2$, then $\dim_{H} \Gamma W_{\lambda,b,\theta} = D_{\lambda,b}$ for every integer $b \geq 3$ and every $\lambda \in (1/b, 1)$ *. If the integer* $b \geq 7$ *, then the dimension formula holds for every* $\lambda \in (1/b, 1)$ *and every* $\theta \in \mathbb{R}$ *.*

The paper is organized as follows. In next section, we present necessary notations and properties introduced by Shen [7] and Tsujii [8]. In Sections 3 and 4, we prove the main result.

2 Preliminaries

In this section, we present necessary notations and properties introduced in [7,8]. Denote *γ* = 1/(*λb*), $φ_θ(x)$ = cos(2*πx* + *θ*), and $ψ_θ(x) = φ_θ(x)$ *. Let* $A = \{0, 1, \cdots, b-1\}$ *. Given* $x \in \mathbb{R}$ and $\mathbf{u} = \{u_n\}_{n=1}^{\infty} \in A^{\mathbb{Z}^+}$, we define

$$
S_{\theta}(x, \mathbf{u}) = \sum_{n=1}^{\infty} \gamma^{n-1} \psi_{\theta}(x(\mathbf{u}|_{n})),
$$

where $\mathbf{u}|_n = (u_1, \dots, u_n)$ and

$$
x(\mathbf{u}|_n) = \frac{x}{b^n} + \frac{u_1}{b^n} + \frac{u_2}{b^{n-1}} + \cdots + \frac{u_n}{b}.
$$

For simplicity, we will use $S(x, \mathbf{u})$ to denote $S_\theta(x, \mathbf{u})$ if no confusion occurs.

Given $\varepsilon, \delta > 0$. Two words $\mathbf{i}, \mathbf{j} \in \mathcal{A}^{\mathbb{Z}^+}$ are called (ε, δ) -tangent at a point $x_0 \in \mathbb{R}$ if

$$
|S(x_0, \mathbf{i}) - S(x_0, \mathbf{j})| \le \varepsilon \quad \text{and} \quad |S'(x_0, \mathbf{i}) - S'(x_0, \mathbf{j})| \le \delta.
$$

Let $E(q, x_0; \varepsilon, \delta)$ denote the set of pairs $(\mathbf{k}, \mathbf{l}) \in \mathcal{A}^q \times \mathcal{A}^q$ for which there exist $\mathbf{u}, \mathbf{v} \in \mathcal{A}^{\mathbb{Z}^+}$ such that **ku** and **lv** are $(ε, δ)$ -tangent at x_0 . Let

$$
e(q, x_0; \varepsilon, \delta) = \max_{\mathbf{k} \in \mathcal{A}^{\mathbb{Z}^+}} \# \{ \mathbf{l} \in \mathcal{A}^q : (\mathbf{k}, \mathbf{l}) \in E(q, x_0; \varepsilon, \delta) \},
$$

\n
$$
E(q, x_0) = \bigcap_{\varepsilon > 0} \bigcap_{\delta > 0} E(q, x_0; \varepsilon, \delta),
$$

\n
$$
e(q, x_0) = \max_{\mathbf{k} \in \mathcal{A}^q} \# \{ \mathbf{l} \in \mathcal{A}^q : (\mathbf{k}, \mathbf{l}) \in E(q, x_0) \}.
$$

For $J \subset \mathbb{R}$, define

$$
E(q, J; \varepsilon, \delta) = \bigcup_{x_0 \in J} E(q, x_0; \varepsilon, \delta),
$$

\n
$$
E(q, J) = \bigcap_{\varepsilon > 0} \bigcap_{\delta > 0} E(q, J; \varepsilon, \delta),
$$

\n
$$
e(q, J) = \max_{\mathbf{k} \in \mathcal{A}^q} \# \{ \mathbf{l} \in \mathcal{A}^q : (\mathbf{k}, \mathbf{l}) \in E(q, J) \}.
$$

Tsujii's notation $e(q)$ is defined as

$$
e(q) = \lim_{p \to \infty} \max_{k=0}^{b^p-1} e\left(q, \left[\frac{k}{b^p}, \frac{k+1}{b^p}\right]\right).
$$

It is well-known that $e(q) = \max_{x \in [0,1)} e(q,x)$. For details, please see [7].

Now we define another useful function $\sigma(q)$ introduced by Shen [7]. A measurable function $\omega : [0,1) \to [0,\infty)$ is called a weight function if $\|\omega\|_{\infty} < \infty$ and $\|1/\omega\|_{\infty} < \infty$. A *testing function of order q* is a measurable function $V : [0,1) \times \mathcal{A}^q \times \mathcal{A}^q \to [0,\infty)$. A testing function of order *q* is called admissible if there exist $\varepsilon > 0$ and $\delta > 0$ such that the following hold: For any $x \in [0, 1)$, if $(\mathbf{u}, \mathbf{v}) \in E(q, x; \varepsilon, \delta)$, then

$$
V(x, \mathbf{u}, \mathbf{v})V(x, \mathbf{v}, \mathbf{u}) \geq 1.
$$

Given a weight function ω and an admissible testing function *V* of order *q*, we define a new measurable function Σ^q_V $V^q_{V,\omega}: [0,1) \to \mathbb{R}$ as follows: for each $x \in [0,1)$, let

$$
\Sigma_{V,\omega}^q(x) = \sup \left\{ \frac{\omega(x)}{\omega(x(\mathbf{u}))} \sum_{\mathbf{v} \in \mathcal{A}^q} V(x, \mathbf{u}, \mathbf{v}) : \mathbf{u} \in \mathcal{A}^q \right\}.
$$

Define

$$
\sigma(q)=\inf\|\Sigma_{V,\omega}^q\|_\infty,
$$

where the infimum is taken over all weight functions *ω* and admissible testing functions *V* of order *q*.

Let $\mathbb P$ be the Bernoulli measure on $\mathcal A^{\mathbb Z^+}$ with uniform probabilities $\{1/b, 1/b, \cdots, 1/b\}$. For each $x \in \mathbb{R}$, define a Borel probability measure m_x on \mathbb{R} by

$$
m_{\mathfrak{X}}(A) = \mathbb{P}(\{\mathbf{v}: S(\mathfrak{x}, \mathbf{v}) \in A\}), \quad A \subset \mathbb{R}.
$$

Then m_x 's are the conditional measures along vertical fibers of the unique SRB measure *ν* of the skew product map $T : \mathbb{R}/\mathbb{Z} \times \mathbb{R} \to \mathbb{R}/\mathbb{Z} \times \mathbb{R}$,

$$
T(x,y) = (bx \mod 1, \gamma y + \psi_{\theta}(x)).
$$

That is, the SRB measure *ν* can be defined by

$$
\nu(B) = \int_0^1 m_x(B_x) dx
$$

for each Borel set *B* $\subset \mathbb{R}/\mathbb{Z} \times \mathbb{R}$, where $B_x = \{y \in \mathbb{R} : (x, y) \in B\}$.

We will use the following two theorems to prove our main result.

Theorem 2.1 ([7]). If there exists $q \in \mathbb{Z}^+$, such that $\sigma(q) < (\gamma b)^q$, then the SRB measure v is *absolutely continuous with respect to the Lebesgue measure on* $\mathbb{R}/\mathbb{Z} \times \mathbb{R}$ with square integrable *density. In particular, for Lebesgue a.e.* $x \in [0, 1)$ *,* m_x *is absolutely continuous with respect to the* Lebesgue measure on \R and with square integrable density. As a result, $\dim_{\mathrm{H}} \Gamma W_{\lambda, b, \theta} = D_{\lambda, b}.$

Theorem 2.2 ([7])**.** $\sigma(q) \leq e(q)$ **.**

We remark that Theorem 2.1 strengths a similar result by Tsujii [8], and the dimension formula $\dim_{\text{H}} \Gamma W_{\lambda,b,\theta} = D_{\lambda,b}$ follows from Ledrappier's theorem [6]. For details, please see [7].

The following result can be derived from the definitions of $E(q, x)$ and $E(q, J; \varepsilon, \delta)$. The proof for general case is same as the special case $\theta = 0$, which is presented in [7]. Thus we omit the details.

Lemma 2.1 ([7]). *Let* $x_0 \in \mathbb{R}$ *, and* $\mathbf{k}, \mathbf{l} \in \mathcal{A}^q$ *. Then*

- *(1)* $(\mathbf{k}, \mathbf{l}) \in E(q, x_0)$ *if and only if there exist* **u** *and* **v** *in* $A^{\mathbb{Z}^+}$ *such that* $F(x) = S(x, \mathbf{ku})$ − *S*(*x*, **lv**) *has a multiple zero at* x_0 *, that is,* $F(x_0) = F'(x_0) = 0$ *.*
- *(2)* If $(\mathbf{k}, \mathbf{l}) \notin E(q, x_0)$, then there is a neighborhood U of x_0 and $\varepsilon, \delta > 0$ such that $(\mathbf{k}, \mathbf{l}) \notin E(q, x_0)$. *E*(q , *U*;*ε*, $δ$).
- *(3)* For any compact $K \subset \mathbb{R}$, if $(k, l) \notin E(q, K)$, then there exist $\varepsilon, \delta > 0$, such that $(k, l) \notin E(q, K)$ *E*(q , K ; ε , δ).
- *(4)* For any $\varepsilon > \varepsilon' > 0$, $\delta > \delta' > 0$, there exists $\eta > 0$, such that if $|x x_0| < \eta$, $(\mathbf{k}, \mathbf{l}) \notin$ $E(q, x_0; \varepsilon, \delta)$, then $(\mathbf{k}, \mathbf{l}) \notin E(q, x; \varepsilon', \delta').$

The following three lemmas are very useful in the proof of the results in [7]. They still hold in our case.

Lemma 2.2 ([7]). *Assume that for all* $x \in [0, 1)$ *,* $E(q, x) \neq A^q \times A^q$ *. Then*

$$
\sigma(q)\leq b^q-2+2/\alpha,
$$

where $\alpha = \alpha(b, q) > 1$ *satisfies* $2 - \alpha = (b^q - 2)\alpha(\alpha - 1)$.

Lemma 2.3 ([7]). Let $q \in \mathbb{Z}^+$. Suppose that there are constants $\varepsilon > 0$ and $\delta > 0$ and $K \subset [0,1)$ *with the following properties:*

- (1) For $x \in K$, $e(q, x; \varepsilon, \delta) = 1$ and for $x \in [0, 1) \setminus K$, $e(q, x; \varepsilon, \delta) \leq 2$;
- *(2) If* $(\mathbf{u}, \mathbf{v}) \in E(q, x; \varepsilon, \delta)$ *for some* $x \in [0, 1) \setminus K$ *and* $u \neq v$ *, then both* $x(\mathbf{u})$ *and* $x(\mathbf{v})$ *belong to K.* √

Then $\sigma(q) \leq$ 2*.*

Lemma 2.4 ([7]). Let $q \in \mathbb{Z}^+$. Suppose that there are constants $\varepsilon > 0$ and $\delta > 0$ and $K \subset [0,1]$ *with the following properties:*

- (1) For $x \in K$, $e(q, x; \varepsilon, \delta) = 1$ and for $x \in [0, 1) \setminus K$, $e(q, x; \varepsilon, \delta) \leq 2$;
- *(2) If* $(\mathbf{u}, \mathbf{v}) \in E(q, x; \varepsilon, \delta)$ *for some* $x \in [0, 1) \setminus K$ *and* $\mathbf{u} \neq \mathbf{v}$ *, then either* $x(\mathbf{u}) \in K$ *or* $x(\mathbf{v}) \in K$.

Then $\sigma(q) \leq$ (√ $(5+1)/2.$

3 The case when *b* **is large**

If $e(1) = 1$, then form $\gamma b = 1/\lambda > 1$, we have $e(1) < \gamma b$. Thus, we always assume that $e(1) ≥ 2$. From $e(1) = max_{x ∈ [0,1)} e(1, x)$, there exists $x^* ∈ [0,1)$, such that $e(1, x^*) = e(1)$. We will fix x^* in the sequel of the paper.

From definition, there exists $k \in \mathcal{A}$, such that $\#\{\ell \in \mathcal{A} : (k, \ell) \in E(1, x^*)\} = e(1)$. Let ℓ^1, ℓ^2, \cdots , $\ell^{e(1)}$ be all elements in A such that $(k, \ell^{(i)}) \in E(1, x^*)$, and

$$
\sin(2\pi x^1 + \theta) \le \sin(2\pi x^2 + \theta) \le \cdots \le \sin(2\pi x^{e(1)} + \theta),
$$

where $x^{i} = (x^{*} + \ell^{i})/b$, $i = 1, \cdots, \ell(1)$.

Similarly as Lemma 3.2 and Lemma 3.3 in [7], we have the following two lemmas. Since the proof are same as that of in [7], we omit the details again.

Lemma 3.1. *If* $(k, \ell) \in E(1, x^*)$ *, then*

$$
\left|\sin\left(\frac{2\pi(x^*+k)}{b}+\theta\right)-\sin\left(\frac{2\pi(x^*+\ell)}{b}+\theta\right)\right|\leq \frac{2\gamma}{1-\gamma},\tag{3.1a}
$$

$$
\left|\cos\left(\frac{2\pi(x^*+k)}{b}+\theta\right)-\cos\left(\frac{2\pi(x^*+\ell)}{b}+\theta\right)\right|\leq \frac{2\gamma}{b-\gamma},\tag{3.1b}
$$

$$
4\sin^2\frac{\pi(k-\ell)}{b} \le \left(\frac{2\gamma}{1-\gamma}\right)^2 + \left(\frac{2\gamma}{b-\gamma}\right)^2. \tag{3.1c}
$$

Lemma 3.2. *Under the above circumstances, and with the assumption that* $1 \le i \le j \le e(1)$ *, the followings hold:*

1. If $\ell^i = k$ or $\ell^j = k$, then $\sin(2\pi x^j + \theta) - \sin(2\pi x^i + \theta) \ge \frac{2\beta_0(b,\gamma)}{b}$ $\frac{(v,r)}{b}$,

2.
$$
\sin(2\pi x^j + \theta) - \sin(2\pi x^i + \theta) \ge \frac{2\beta_1(b,\gamma)}{b},
$$

3. If
$$
\ell^i - \ell^j \neq \pm 1 \mod b
$$
, then $\sin(2\pi x^j + \theta) - \sin(2\pi x^i + \theta) \geq \frac{2\beta_2(b,\gamma)}{b}$,

where

$$
\beta_0(b,\gamma) = \sqrt{\max \left\{ 0, \left(b \sin \frac{\pi}{b} \right)^2 - \frac{\gamma^2 b^2}{(b-\gamma)^2} \right\}},
$$

$$
\beta_1(b,\gamma) = \sqrt{\max \left\{ 0, \left(b \sin \frac{\pi}{b} \right)^2 - \frac{4\gamma^2 b^2}{(b-\gamma)^2} \right\}},
$$

$$
\beta_2(b,\gamma) = \sqrt{\max \left\{ 0, \left(b \sin \frac{2\pi}{b} \right)^2 - \frac{4\gamma^2 b^2}{(b-\gamma)^2} \right\}}.
$$

Using these two lemmas and lemmas in Section 2, we can prove the following theorem, which implies that Theorem 1.1 holds if $b \geq 7$.

Theorem 3.1. *1. If* $b \geq 7$ *, then e*(1) < γb .

- *2. If* $b = 4, 5, 6$ *, then either e*(1) = 2 *or e*(1) < γb *.*
- *3. If* $b = 3$ *, then either e*(1) ≤ 2 *or* $\sigma(1) < \gamma b$ *.*

Proof. Using the exactly same method as in [7], we can obtain the following result: if *b* \geq 4, then either $e(1) = 2$ or $e(1) < \gamma b$; if $b = 3$, then either $e(1) \leq 2$ or $\sigma(1) < \gamma b$. Thus, we only need to prove the theorem holds if $b > 7$ and $e(1) = 2$. If $\gamma b > 2$, then $\gamma b > e(1)$. Thus it suffices to show it is impossible that $e(1) = 2$ and $\gamma b \le 2$.

We will prove this by contradiction. Assume that $e(1) = 2$ and $\gamma b \leq 2$, then $(\ell^1, \ell^2) \in$ $E(1, x^*)$. From Lemma 3.1 and $\gamma \leq 2/b$, we have

$$
4\sin^2\frac{\pi(\ell^2-\ell^1)}{b} \le \left(\frac{2\gamma}{1-\gamma}\right)^2 + \left(\frac{2\gamma}{b-\gamma}\right)^2
$$

$$
\le \left(\frac{2\cdot(2/b)}{1-2/b}\right)^2 + \left(\frac{2\cdot(2/b)}{b-2/b}\right)^2 = \frac{16}{(b-2)^2} + \frac{16}{(b^2-2)^2}.
$$

Thus

$$
\sin^2\frac{\pi}{b} \le \frac{4}{(b-2)^2} + \frac{4}{(b^2-2)^2}.\tag{3.2}
$$

Consider the function $g(t) = g_1(t) - g_2(t)$, where

$$
g_1(t) = t^2 \sin^2(\pi/t)
$$
 and $g_2(t) = \frac{4t^2}{(t-2)^2} + \frac{4t^2}{(t^2-2)^2}$.

It is easy to check that g_1 is increasing on $(2, +\infty)$ while g_2 is decreasing on $(2, +\infty)$. Thus, if *b* \geq 7, we have $g(b) \geq g(7) > 9 - 8 > 0$, which implies that (3.2) does not hold for $b \geq 7$. \Box

4 Proof of Theorem 1.1: the case $b = 3, 4, 5, 6$

In this section, we will restrict $\theta = -\pi/2$. We will show the following result under this restriction: for $b = 3, 4, 5, 6$, if $e(1) = 2$ then $\sigma(1) < \gamma b$. Combining this result with Theorem 3.1, we have either $e(1) < \gamma b$ or $\sigma(1) < \gamma b$ for $b = 3, 4, 5, 6$. Thus Theorem 1.1 holds for this case.

Using the same method as in the proof of Lemma 4.1 in [7], we have the following lemma. We omit the details.

Lemma 4.1. *Assume that* $0 \le k < \ell < b$ *satisfying* $(k, \ell) \in E(1, x^*)$ *. Then for any* $\kappa \in (0, 1)$ *, one of the followings holds: either*

$$
\left|\sin\left(\frac{2\pi(x^*+k)}{b}\right)-\sin\left(\frac{2\pi(x^*+\ell)}{b}\right)\right|\leq \frac{2\gamma\sqrt{1-\kappa^2}}{b}+\frac{2\gamma^2}{b(b-\gamma)},\tag{4.1}
$$

or

$$
\left|\cos\left(\frac{2\pi(x^*+k)}{b}\right)-\cos\left(\frac{2\pi(x^*+\ell)}{b}\right)\right|\leq 2\kappa\gamma+\frac{2\gamma^2}{1-\gamma}.\tag{4.2}
$$

Notice that $\theta = -\pi/2$. For $x \in \mathbb{R}$ and $\mathbf{i} = \{i_n\}_{n=1}^{\infty} \in \mathcal{A}^{\mathbb{Z}^+}$, we have

$$
S(x, \mathbf{i}) = \sum_{n=1}^{\infty} \gamma^{n-1} \psi(x_n) = 2\pi \sum_{n=1}^{\infty} \gamma^{n-1} \cos \left(2\pi \left(\frac{x}{b^n} + \frac{i_1}{b^n} + \dots + \frac{i_n}{b} \right) \right).
$$
 (4.3)

Lemma 4.2. *If* $x \in \mathbb{R}$ *and* $\mathbf{i} = \{i_n\}_{n=1}^{\infty}$ *. Then the following equalities hold:*

$$
S(x, \mathbf{i}) = S(1 - x, \mathbf{i}'),\tag{4.4a}
$$

$$
S'(x, i) = -S'(1 - x, i'),
$$
 (4.4b)

 \Box

 $where \mathbf{i}' = \{i'_n\}_{n=1}^{\infty}, i'_n = b - 1 - i_n.$

Proof. Notice that

$$
\cos\left(2\pi\left(\frac{1-x}{b^n}+\frac{b-1-i_1}{b^n}+\cdots+\frac{b-1-i_n}{b}\right)\right)
$$

= $\cos\left(2\pi\left(-\left(\frac{x}{b^n}+\frac{i_1}{b^n}+\cdots+\frac{i_n}{b}\right)+\left(\frac{1}{b^n}+\frac{b-1}{b^n}+\cdots+\frac{b-1}{b}\right)\right)\right)$
= $\cos\left(2\pi\left(-\left(\frac{x}{b^n}+\frac{i_1}{b^n}+\cdots+\frac{i_n}{b}\right)+1\right)\right)$
= $\cos\left(2\pi\left(\frac{x}{b^n}+\frac{i_1}{b^n}+\cdots+\frac{i_n}{b}\right)\right).$

Thus (4.4a) holds. From

$$
S'(x,\mathbf{i})=\frac{-4\pi^2}{b}\sum_{n=1}^{\infty}\left(\frac{\gamma}{b}\right)^{n-1}\sin\left(2\pi\left(\frac{x}{b^n}+\frac{i_1}{b^n}+\cdots+\frac{i_n}{b}\right)\right),
$$

we can see that (4.4b) holds.

From Lemma 4.2, we know that $(k, \ell) \in E(1, x^*)$ is equivalent to $(b - 1 - k, b - 1 - k)$ ℓ) ∈ *E*(1, 1 − *x*^{*}). Thus $e(1, x^*) = e(1, 1 - x^*)$. Hence, we may assume that $x^* \in [0, \frac{1}{2}]$.

4.1 The case $b = 6$

Proposition 4.1. *Assume b* = 6 *and* $e(1) = 2$ *. Then* $\sigma(1) < 6\gamma$ *.*

Proof. It is clear that $6\gamma > 6 \cdot (1/3) = e(1) \ge \sigma(1)$ if $\gamma > \frac{1}{3}$. Thus we may assume that $\gamma \leq \frac{1}{3}$. From $e(1) = 2$, there exist $0 \leq k < \ell < 6$, such that $(k, \ell) \in E(1, x^*)$.

From $(k, \ell) \in E(1, x^*)$ and Lemma 3.1, we have

$$
\left|\sin\left(\frac{2\pi(x^*+k)}{6}\right)-\sin\left(\frac{2\pi(x^*+\ell)}{6}\right)\right|\leq \frac{2\gamma}{6-\gamma}\leq \frac{2\cdot(1/3)}{6-(1/3)}=\frac{2}{17},\quad (4.5a)
$$

$$
4\sin^2\frac{\pi(\ell-k)}{6} \le \left(\frac{2\gamma}{1-\gamma}\right)^2 + \left(\frac{2\gamma}{6-\gamma}\right)^2 \le 1^2 + (2/17)^2 < 2. \tag{4.5b}
$$

If $\ell - k \neq \pm 1 \mod 6$, then $4 \sin^2 \frac{\pi(\ell - k)}{6} \geq 4 \sin^2 \frac{2\pi}{6} = 3$, which contradicts with (4.5b). Thus $\ell - k = \pm 1 \mod 6$. Combining this with $k < \ell$, we can see that $\ell - k = 1$ or 5.

Let $\kappa = 0.98$. We will show that the inequality (4.2) does not hold. In fact, if (4.2) holds, then

$$
\left|\cos\left(\frac{2\pi(x^*+k)}{6}\right)-\cos\left(\frac{2\pi(x^*+\ell)}{6}\right)\right|\leq 2\cdot 0.98\cdot (1/3)+\frac{2\cdot (1/3)^2}{1-1/3}<0.987.
$$

Combining this with (4.5a), we have

$$
1 = 4\sin^2\frac{\pi}{6} = 4\sin^2\left(\frac{\pi(\ell - k)}{6}\right) < (2/17)^2 + 0.987^2 < 0.989.
$$

Contradiction! Thus the inequality (4.1) holds. Let $y^* = \pi(2x^* + k + \ell)/6$. Then $y^* \in$ $[0, 5\pi/3]$ and

$$
|\cos(y^*)| = \left|2\sin\frac{\pi}{6}\cos(y^*)\right| = \left|\sin\left(\frac{2\pi(x^*+k)}{6}\right) - \sin\left(\frac{2\pi(x^*+k)}{6}\right)\right|
$$

$$
\leq \frac{2\cdot(1/3)\cdot\sqrt{1-0.98^2}}{6} + \frac{2\cdot(1/3)^2}{6\cdot(6-1/3)} < 0.029 < \cos(49\pi/100).
$$

Thus *y* [∗] ∈ 49*π*/100, 51*π*/100 ∪ 149*π*/100, 151*π*/100 .

- **Case 1.** $y^* \in (49\pi/100, 51\pi/100)$. In this case, $2x^* + k + \ell \in (294/100, 306/100)$. If *k* + 1 = ℓ , then *x*^{*} + *k* ∈ (97/100, 103/100). Since *x*^{*} ∈ [0, $\frac{1}{2}$], we have (*k*, ℓ) = (1, 2) and $x^* \in [0, 3/100)$. If $k + 5 = \ell$, from $x^* \ge 0$ and $k \ge 0$, we have $2x^* + 2k + 5 \ge 0$ $5 > 306/100$, a contradiction!
- **Case 2.** $y^* \in (149\pi/100, 151\pi/100)$. In this case, $2x^* + k + \ell \in (894/100, 906/100)$. If $k + 1 = \ell$, then $x^* + k \in (397/100, 403/100)$. Since $x^* \in [0, \frac{1}{2}]$, we have $(k, l) =$ (4, 5) and x^* ∈ [0, 3/100). If $k + 5 = \ell$, we must have $k = 0$ and $\ell = 5$. Thus, from $x^* \in [0, \frac{1}{2}]$, we can obtain $2x^* + 2k + 5 \le 6 < 894/100$, a contradiction!

From Case 1 and Case 2, we can see that in the case that $\gamma \leq \frac{1}{3}$, if $0 \leq k < l < 6$ satisfying $(k, l) \in E(1, x^*)$, then $0 \le x^* < 3/100$, and $(k, l) = (1, 2)$ or $(k, l) = (4, 5)$.

From above arguments, $e(1, x) = 1$ if $x \in [3/100, 1/2]$. Using the fact that $e(1, x) =$ *e*(1, 1 – *x*), we also have *e*(1, *x*) = 1 if $x \in [1/2, 97/100]$.

 \Box

Let $K = \frac{3}{100}$, 97/100. Then $e(1, K) = 1$ and $e(1, [0, 1)) \le 2$. From Lemma 2.1(3), there exist $\varepsilon > 0$, $\delta > 0$, such that $e(1, x; \varepsilon, \delta) = 1$ if $x \in K$, and $e(1, x; \varepsilon, \delta) \le 2$ if $x \in$ $[0, 1)\backslash K$.

In the case that $x \in [0, 1/2] \setminus K$, if $(k, \ell) = (1, 2)$, then $x(2) = (x + 2)/6 \subseteq K$; if $(k, l) = (4, 5)$, then $x(4) = (x + 4)/6 \subseteq K$. Using the symmetry (Lemma 4.2), we know that the conditions of Lemma 2.4 hold for $q = 1$. Thus $\sigma(1) \le (\sqrt{5} + 1)/2$.

If $\gamma > (\sqrt{5} + 1)/12$, then $6\gamma > \sigma(1)$. Thus, it suffices to show it is impossible that $\gamma \leq (\sqrt{5}+1)/12$ and $e(1)=2$. In fact, if this holds, then from Lemma 3.1,

$$
4\sin^2\left(\frac{\pi(\ell-k)}{6}\right) \le \left(\frac{2\gamma}{6-\gamma}\right)^2 + \left(\frac{2\gamma}{1-\gamma}\right)^2
$$

$$
\le \left(\frac{(\sqrt{5}+1)/6}{6-(\sqrt{5}+1)/12}\right)^2 + \left(\frac{(\sqrt{5}+1)/6}{1-(\sqrt{5}+1)/12}\right)^2 \le 0.56 < 4\sin^2\left(\frac{\pi}{6}\right),
$$

which contradicts with $k \neq \ell$.

4.2 The case $b = 5$

Proposition 4.2. *Assume b* = 5 *and* $e(1) = 2$ *. Then* $\sigma(1) < 5\gamma$ *.*

Proof. If $\gamma > 2/5$, then $5\gamma > 2 = e(1) \ge \sigma(1)$. Thus we may assume that $\gamma \le \frac{2}{5}$. From $e(1) = 2$, there exist $0 \le k < \ell < 5$ such that $(k, \ell) \in E(1, x^*)$. Now we will show that $x^* \in (3/20, 7/20)$ and $(k, \ell) = (3, 4)$.

In fact, from $(k, \ell) \in E(1, x^*)$ and Lemma 3.1,

$$
\left|\sin\left(2\pi\frac{x^*+k}{b}\right)-\sin\left(2\pi\frac{x^*+\ell}{b}\right)\right|\leq \frac{2\gamma}{5-\gamma}\leq \frac{2\times\frac{2}{5}}{5-\frac{2}{5}}=\frac{4}{23},
$$

$$
4\sin^2\left(\frac{\pi(\ell-k)}{5}\right)\leq \left(\frac{2\gamma}{1-\gamma}\right)^2+\left(\frac{2\gamma}{5-\gamma}\right)^2\leq \left(\frac{2\times\frac{2}{5}}{1-\frac{2}{5}}\right)^2+\left(\frac{2\times\frac{2}{5}}{5-\frac{2}{5}}\right)^2<2.
$$

Assume that $\ell - k \neq \pm 1 \mod 5$. Then $\ell - k \in \{2, 3\}$. Thus $4 \sin^2 (\pi (k - \ell)/5) \geq 1$ $4\sin^2\left(2\pi/5\right) > 3.618$, a contradiction. Thus $\ell - k = \pm 1 \mod 5$. Since $\ell > k$, we have $\ell - k = 1$ or $\ell - k = 4$.

Let *κ* = 2/2. We will show that inequality (4.2) in Lemma 4.1 does not hold. In fact, if (4.2) holds, then

$$
1.38 < 4\sin^2\left(\frac{\pi}{5}\right) = 4\sin^2\left(\frac{\pi(k-\ell)}{5}\right)
$$
\n
$$
= \left|\sin\left(2\pi\frac{x^*+k}{5}\right) - \sin\left(2\pi\frac{x^*+\ell}{5}\right)\right|^2 + \left|\cos\left(2\pi\frac{x^*+k}{5}\right) - \cos\left(2\pi\frac{x^*+\ell}{5}\right)\right|^2
$$
\n
$$
\leq \left(\frac{4}{23}\right)^2 + \left(2 \times \frac{\sqrt{2}}{2} \times \frac{2}{5} + \frac{2 \times (2/5)^2}{1 - \frac{2}{5}}\right)^2 < \left(\frac{4}{23}\right)^2 + (1.1)^2 < 1.3,
$$

a contradiction. Thus the inequality (4.1) in Lemma 4.1 holds. Let $y^* = \pi(2x^* + k + \ell)/5$. We have

$$
\begin{aligned} \left|2\cos(y^*)\sin\left(\frac{\pi}{5}\right)\right| &= \left|2\cos(y^*)\sin\left(\frac{\pi(\ell-k)}{5}\right)\right| \\ &= \left|\sin\left(2\pi\frac{x^*+k}{5}\right) - \sin\left(2\pi\frac{x^*+\ell}{5}\right)\right| \\ &\leq \frac{2\times\frac{2}{5}\times\sqrt{1-(\frac{\sqrt{2}}{2})^2}}{5} + \frac{2\times(\frac{2}{5})^2}{5\times(5-\frac{2}{5})} < 0.128. \end{aligned}
$$

Thus

$$
|\cos(y^*)| \le \frac{0.128}{2\sin(\pi/5)} < 0.11 < \cos\left(\frac{23\pi}{50}\right).
$$

 $\text{Since } y^* \in \big[0,8\pi/5\big]$, we have $y^* \in \big(23\pi/50,27\pi/50\big) \cup \big(73\pi/50,77\pi/50\big).$

- **Case 1.** $y^* \in (23\pi/50, 27\pi/50)$. In this case, $2x^* + k + \ell \in (23/10, 27/10)$. If $\ell k = 1$, then $x^* + k \in (13/20, 17/20)$, which contradicts the fact that $x^* \in [0, 1/2)$ and *k* is a nonnegative integer. If $\ell - k = 4$, then $2x^* + 2k + 4 \ge 4 > 27/10$, which also contradicts the fact that $x^* \in [0, 1/2)$ and *k* is a nonnegative integer.
- **Case 2.** $y^* \in (73\pi/50, 77\pi/50)$. In this case, $2x^* + k + \ell \in (73/10, 77/10)$. If $\ell k = 1$, then $x^* + k \in (63/20, 67/20)$. Thus $(k, \ell) = (3, 4)$ and $x^* \in (3/20, 7/20)$. If $\ell - k =$ 4, then $x^* + k \in (33/20, 37/20)$, which also contradicts the fact that $x^* \in [0, 1/2)$ and *k* is a nonnegative integer.

Thus, in the case that $\gamma \in (0, 2/5]$, if $0 \le k < \ell < 5$ satisfying $(k, \ell) \in E(1, x^*)$, then $x^* \in (3/20, 7/20)$ and $(k, \ell) = (3, 4)$.

From above arguments, $e(1, x) = 1$ if $x \in [0, 3/20] \cup [7/20, 1/2]$. Using the fact that $e(1, x) = e(1, 1 - x)$, we have $e(1, x) = 1$ if $x \in [1/2, 13/20] \cup [17/20, 1]$.

Let $K = [0, 3/20] \cup [7/20, 13/20] \cup [17/20, 1]$. Then $e(1, K) = 1$ and $e(1, [0, 1)) \le 2$. From Lemma 2.1, there exist $\varepsilon, \delta > 0$, such that $e(1, x; \varepsilon, \delta) = 1$ if $x \in K$, and $e(1, x; \varepsilon, \delta) \leq 2$ if $x \in [0,1) \backslash K$.

If *x* ∈ (3/20, 1/4), we have *x*(3) = (*x* + 3)/5 ∈ (7/20, 13/20) ⊆ *K*. If *x* ∈ [1/4, 7/20), we have $x(4) = (x+4)/5 \in [17/20,1) \subseteq K$. From Lemma 2.4, we have $\sigma(1) \leq (\sqrt{5} +$ $1)/2.$ √

If *γ* > ($\gamma > (\sqrt{5} + 1)/10$, then $5\gamma > \sigma(1)$. Thus, it suffices to show it is impossible that $\gamma \leq (\sqrt{5}+1)/10$ and $e(1)=$ 2. In fact, if this holds, then from Lemma 3.1,

$$
4\sin^2\left(\frac{\pi(\ell-k)}{5}\right) \le \left(\frac{2\gamma}{5-\gamma}\right)^2 + \left(\frac{2\gamma}{1-\gamma}\right)^2
$$

$$
\le \left(\frac{(\sqrt{5}+1)/5}{5-(\sqrt{5}+1)/10}\right)^2 + \left(\frac{(\sqrt{5}+1)/5}{1-(\sqrt{5}+1)/10}\right)^2 < 0.9348 < 4\sin^2\left(\frac{\pi}{5}\right),
$$

which contradicts with $k \neq \ell$.

 \Box

4.3 The case $b = 4$

Proposition 4.3. *Assume that* $b = 4$ *and* $e(1) = 2$ *. Then* $\sigma(1) < 4\gamma$ *.*

Proof. If $\gamma > \frac{1}{2}$, then $4\gamma > 2 = e(1) \geq \sigma(1)$. Thus we may assume that $\gamma \leq \frac{1}{2}$. From $e(1) = 2$, there exist $0 \le k < \ell < 4$ such that $(k, \ell) \in E(1, x^*)$. Now we will show that $x^* \in (9/25, 1/2]$ and $(k, \ell) = (2, 3)$.

In fact, from $(k, \ell) \in E(1, x^*)$ and Lemma 3.1,

$$
\left|\sin\left(2\pi\frac{x^*+k}{4}\right)-\sin\left(2\pi\frac{x^*+\ell}{4}\right)\right|\leq \frac{2\gamma}{4-\gamma}\leq \frac{2\times\frac{1}{2}}{4-\frac{1}{2}}=\frac{2}{7}.\tag{4.6}
$$

Let $\kappa = \frac{1}{3}$. We will show that the inequality (4.2) in Lemma 4.1 does not hold. In fact, if (4.2) holds, then

$$
2 = 4 \sin^2\left(\frac{\pi}{4}\right) \le 4 \sin^2\left(\frac{\pi(k-\ell)}{4}\right)
$$

= $\left|\sin\left(2\pi \frac{x^* + k}{4}\right) - \sin\left(2\pi \frac{x^* + \ell}{4}\right)\right|^2 + \left|\cos\left(2\pi \frac{x^* + k}{4}\right) - \cos\left(2\pi \frac{x^* + \ell}{4}\right)\right|^2$

$$
\le \left(\frac{2}{7}\right)^2 + \left(2 \times \frac{1}{3} \times \frac{1}{2} + \frac{2 \times (1/2)^2}{1 - \frac{1}{2}}\right)^2 < \left(\frac{2}{7}\right)^2 + \left(\frac{4}{3}\right)^2 < 2.
$$

A contradiction. Thus (4.1) in Lemma 4.1 holds. Let $y^* = \pi(2x^* + k + \ell)/4$. We have

$$
\left|2\cos(y^*)\sin\left(\frac{\pi}{4}\right)\right| \leq \left|2\cos(y^*)\sin\left(\frac{\pi(\ell-k)}{4}\right)\right|
$$

= $\left|\sin\left(2\pi\frac{x^*+k}{4}\right) - \sin\left(2\pi\frac{x^*+\ell}{4}\right)\right|$

$$
\leq \frac{2 \times \frac{1}{2} \times \sqrt{1 - (\frac{1}{3})^2}}{4} + \frac{2 \times (\frac{1}{2})^2}{4 \times (4 - \frac{1}{2})} = \frac{\sqrt{2}}{6} + \frac{1}{28} < 0.28.
$$

Thus $|\cos(y^*)|$ ≤ 0.28/ $\sqrt{2}$ < 0.2 < cos(43π/100). Since y^* ∈ [0,3π/2], we have y^* ∈ $(43\pi/100, 57\pi/100) \cup (143\pi/100, 3\pi/2).$

If $y^* \in (43\pi/100, 57\pi/100)$, then $2x^* + k + \ell \in (43/25, 57/25)$. In this case, we have $k + \ell = 2$ so that $(k, \ell) = (0, 2)$ and $x^* \in [0, 7/50)$. If $y^* \in (143\pi/100, 3\pi/2]$, then $2x^* + k + \ell \in (143/25, 6]$. In this case, we have $k + \ell = 5$ so that $(k, \ell) = (2, 3)$ and *x* [∗] ∈ (9/25, 1/2].

In the case that $\gamma \leq \frac{1}{2}$, we have $(0, 2) \notin E(1, x)$ for all $x \in [0, \frac{1}{2}]$. In fact, assume that $(0, 2) \in E(1, x)$. Then there exist $\mathbf{k} = \{k_n\}_{n=1}^{\infty}$ and $\mathbf{l} = \{\ell_n\}_{n=1}^{\infty}$, such that $S(x, \mathbf{k})$ – $S(x,1) = 0$, where $k_1 = 0, \ell_1 = 2$.

Let
$$
x_n = (x + 4k_2 + \dots + 4^{n-1}k_n)/4^n
$$
, $y_n = (x + 2 + 4\ell_2 + \dots + 4^{n-1}\ell_n)/4^n$. Then
\n
$$
|\cos(2\pi x_1) - \cos(2\pi y_1) + \gamma(\cos(2\pi x_2) - \cos(2\pi y_2))|
$$
\n
$$
= \left| -\sum_{n=3}^{\infty} \gamma^{n-1} \left(\cos(2\pi x_n) - \cos(2\pi y_n) \right) \right|
$$
\n
$$
\leq 2 \sum_{n=2}^{\infty} \gamma^n \leq \frac{2\gamma^2}{1 - \gamma} \leq \frac{2 \times (\frac{1}{2})^2}{1 - \frac{1}{2}} = 1.
$$

Notice that

$$
\cos(2\pi x_2) - \cos(2\pi y_2) = \cos\left(\frac{\pi x}{8} + \frac{k_2 \pi}{2}\right) - \cos\left(\frac{\pi (x+2)}{8} + \frac{\ell_2 \pi}{2}\right)
$$

= $-2\sin\left(\frac{\pi (x+1)}{8} + \frac{(k_2 + \ell_2)\pi}{4}\right)\sin\left(-\frac{\pi}{8} + \frac{(k_2 - \ell_2)\pi}{4}\right) \ge -2\sin\frac{3\pi}{8}.$

Thus

$$
\cos(2\pi x_1) - \cos(2\pi y_1) \le 1 - \gamma \big(\cos(2\pi x_2) - \cos(2\pi y_2) \big) \le 1 + \sin \frac{3\pi}{8} < 1.93.
$$

From the inequality (4.6), we have

$$
4 = 4\sin^2\left(\frac{2\pi}{4}\right) = 4\sin^2\left(\frac{\pi(\ell - k)}{4}\right)
$$

= $|\sin(2\pi x_1) - \sin(2\pi y_1)|^2 + |\cos(2\pi x_1) - \cos(2\pi y_1)|^2$
< $(\frac{2}{7})^2 + 1.93^2 < 3.81.$

A contradiction. Thus, in the case that $\gamma \leq 1/2$, if $0 \leq k < \ell < 4$ satisfying $(k, \ell) \in$ *E*(1, *x*^{*}), then $x^* \in (9/25, 1/2]$ and $(k, l) = (2, 3)$.

From the above arguments, $e(1, x) = 1$ if $x \in [0, 9/25]$. Using the fact that $e(1, x) =$ $e(1, 1-x)$, we have $e(1, x) = 1$ if $x \in [16/25, 1]$.

Let $K = [0, 9/25] \cup [16/25, 1]$. Then $e(1, K) = 1$ and $e(1, [0, 1)) \le 2$. From Lemma 2.1, there exist $\varepsilon, \delta > 0$, such that $e(1, x; \varepsilon, \delta) = 1$ if $x \in K$, and $e(1, x; \varepsilon, \delta) \le 2$ if $x \in [0, 1) \setminus K$.

In the case that *x* ∈ (9/25, 1/2), we have *x*(3) = (*x* + 3)/4 ∈ [16/25, 1] ⊆ *K*. From Lemma 2.4, we have $\sigma(1) \le (\sqrt{5} + 1)/2$.

If $\gamma > (\sqrt{5} + 1)/8$, then $4\gamma > \sigma(1)$. Thus, it suffices to show it is impossible that $\gamma \leq (\sqrt{5}+1)/8$ and $e(1)=2$. In fact, if this holds, then from Lemma 3.1,

$$
4\sin^2\left(\frac{\pi(\ell-k)}{4}\right) \le \left(\frac{2\gamma}{4-\gamma}\right)^2 + \left(\frac{2\gamma}{1-\gamma}\right)^2
$$

$$
\le \left(\frac{(\sqrt{5}+1)/4}{4-(\sqrt{5}+1)/8}\right)^2 + \left(\frac{(\sqrt{5}+1)/4}{1-(\sqrt{5}+1)/8}\right)^2 < 1.897 < 4\sin^2\left(\frac{\pi}{4}\right),
$$

which contradicts with $k \neq \ell$.

 \Box

4.4 The case $b = 3$

Proposition 4.4. *Assume b* = 3 *and* $e(1) = 2$ *. Then* $\sigma(1) < 3\gamma$ *.*

Proof. If $\gamma > 2/3$, then $3\gamma > 2 = e(1) > \sigma(1)$. Thus we may assume that $\gamma < 2/3$. From $e(1) = 2$, there exist $0 \le k < \ell < 3$ such that $(k, \ell) \in E(1, x^*)$.

Let $y^* = \pi(2x^* + k + \ell)/3$. From $(k, \ell) \in E(1, x^*)$ and Lemma 3.1,

$$
2|\cos(y^*)| \left|\sin\left(\frac{\pi(\ell-k)}{3}\right)\right|
$$

= $|\sin\left(2\pi\frac{x^*+k}{3}\right) - \sin\left(2\pi\frac{x^*+\ell}{3}\right)|$
 $\leq \frac{2\gamma}{3-\gamma} \leq \frac{4/3}{3-2/3} = \frac{4}{7}.$

Thus $|\cos(y^*)| \leq 4/(7)$ √ $\overline{3}$ < cos(39π/100). Hence y^* ∈ (39π/100,61π/100). Since *y*^{*} ∈ [0,4π/3], we have 2*x*^{*} + *k* + ℓ ∈ (117/100, 183/100). Thus (*k*, ℓ) = (0, 1) and *x* [∗] ∈ (17/200, 83/200).

From above arguments, $e(1, x) = 1$ if $x \in [0, 17/200] \cup [83/200, 1/2]$. Using the fact that $e(1, x) = e(1, 1 - x)$, $e(1, x) = 1$ if $x \in [1/2, 117/200] \cup [183/200, 1]$.

Let *K*₁ = $\left[0, 17/200\right]$ ∪ $\left[83/200, 117/200\right]$ ∪ $\left[183/200, 1\right]$. From Lemma 2.1, there exist $\varepsilon > 0$, $\delta > 0$, such that $e(1, x; \varepsilon, \delta) = 1$ if $x \in K_1$, and $e(1, x; \varepsilon, \delta) \le 2$ if $x \in [0, 1) \setminus K_1$.

If *x* ∈ (17/200,51/200), we have *x*(0) = *x*/3 ∈ (17/600,17/200) ⊆ *K*₁.

If *x* ∈ [51/200, 83/200), we have *x*(1) = (*x* + 1)/3 ∈ (251/600, 283/600) ⊆ *K*₁. √ √

From Lemma 2.4, we have $\sigma(1) \leq ($ 5 + 1)/2. Thus, if *γ* > ($(5+1)/6$, then $3\gamma >$ $\sigma(1)$. √

Now we will show: if $\gamma \leq ($ $(\overline{5} + 1)/6$ and $(k, \ell) = (0, 1)$, then $x^* \in (23/200, 77/200)$. In fact, from $(k, \ell) \in E(1, x^*)$ and Lemma 3.1,

$$
2\left|\sin\left(\frac{\pi(k-\ell)}{3}\right)\cos(y^*)\right|
$$

=
$$
\left|\sin\left(2\pi\frac{x^*+k}{3}\right)-\sin\left(2\pi\frac{x^*+\ell}{3}\right)\right|
$$

$$
\leq \frac{2\gamma}{3-\gamma} \leq \frac{(\sqrt{5}+1)/3}{3-(\sqrt{5}+1)/6} \leq 0.4384.
$$

 $\text{Thus } |\cos(y^*)| ≤ 0.4384/\sqrt{3} < \cos(0.41\pi)$. Hence $y^* ∈ (0.41\pi, 0.59\pi)$. By the definition of *y*^{*}, we have $2x^* + k + \ell \in (1.23, 1.77)$. Combining this with $(k, \ell) = (0, 1)$, we have *x*^{*} ∈ (23/200, 77/200). √

Now we will show: if $\gamma \leq ($ $(5+1)/6$ and $x \in (23/200, 1/8]$, then $(0, 1) \notin E(1, x)$.

In fact, assume that $(0, 1) \in E(1, x)$. Then from Lemma 3.1,

$$
3 = 4\sin^2\left(\frac{\pi}{3}\right)
$$

= $\left|\cos\left(2\pi\frac{x+0}{3}\right) - \cos\left(2\pi\frac{x+1}{3}\right)\right|^2 + \left|\sin\left(2\pi\frac{x+0}{3}\right) - \sin\left(2\pi\frac{x+1}{3}\right)\right|^2$
 $\leq \left(\sqrt{3}\sin\left(\pi\frac{2x+1}{3}\right)\right)^2 + \left(\frac{2\gamma}{3-\gamma}\right)^2$
 $\leq \left(\sqrt{3}\sin\frac{5\pi}{12}\right)^2 + \left(\frac{(\sqrt{5}+1)/3}{3-(\sqrt{5}+1)/6}\right)^2 \leq 2.9913.$

A contradiction. If $x \in [3/8, 77/200)$, then $0 \leq \sin((2x+1)\pi/3) \leq \sin(7\pi/12) =$ $\sin(5\pi/12)$. Thus, using the same argument, we can see that: if $\gamma \le (\sqrt{5}+1)/6$ and $x \in [3/8, 77/200)$, then $(0, 1) \notin E(1, x)$. √

From the above arguments, in the case that $\gamma \leq 0$ $(5+1)/6$, if $0 \leq k < \ell < 3$ satisfying $(k, \ell) \in E(1, x^*)$, then $x^* \in (1/8, 3/8)$ and $(k, \ell) = (0, 1)$.

Let *K*₂ = [0,1/8]∪[3/8,5/8]∪[7/8,1]. From Lemma 2.1, there exist ε,δ > 0, such that $e(1, x; \varepsilon, \delta) = 1$ if $x \in K_2$, and $e(1, x; \varepsilon, \delta) \leq 2$ if $x \in [0, 1) \setminus K_2$.

In the case that $x \in (1/8, 3/8)$, we have $x(0) = x/3 \in (1/24, 1/8) \subseteq K_2$, and $x(1) =$ $(x+1)/3 ∈ (3/8, 11/24) ⊆ K₂.$ From Lemma 2.3, *σ*(1) ≤ $\sqrt{2}$. √ √ √

If *γ* > 2/3, then $3\gamma >$ $\alpha \geq \sigma(1)$. Thus, it suffices to show that if $\gamma \leq$ 2/3, then it is impossible that $e(1) = 2$. In fact, assume that there exists $x \in \left(\frac{1}{8}\right)$ $rac{1}{8}$, $rac{3}{8}$ $\frac{3}{8}$) satisfying $(0, 1) \in E(1, x)$. From Lemma 2.1, we know that there exist $\mathbf{k} = \{k_n\}_{n=1}^{\infty}$ and $\mathbf{l} = \{\ell_n\}_{n=1}^{\infty}$ such that $S(x, \mathbf{k}) - S(x, \mathbf{l}) = 0$, where $k_1 = 0$, $\ell_1 = 1$.

Let $x_n = (x + 3k_2 + \dots + 3^{n-1}k_n)/3^n$, $y_n = (x + 1 + 3\ell_2 + \dots + 3^{n-1}\ell_n)/3^n$. We have

$$
\left|\cos(2\pi x_1)-\cos(2\pi y_1)+\gamma(\cos(2\pi x_2)-\cos(2\pi y_2))\right|
$$

=
$$
\left|-\sum_{n=3}^{\infty}\gamma^{n-1}(\cos(2\pi x_n)-\cos(2\pi y_n))\right|\leq 2\sum_{n=2}^{\infty}\gamma^n\leq \frac{2\gamma^2}{1-\gamma}.
$$

Notice that

$$
\cos(2\pi x_2) - \cos(2\pi y_2)
$$

= $\cos\frac{2\pi(x+3k_2)}{9} - \cos\frac{2\pi(x+1+3\ell_2)}{9}$
 $\ge \cos\left(\frac{2\pi x}{9} + \frac{2\pi}{3}\right) - \cos\left(\frac{2\pi x}{9} + \frac{2\pi}{9}\right)$
= $-2\sin\left(\frac{2\pi x}{9} + \frac{4\pi}{9}\right)\sin\left(\frac{2\pi}{9}\right) \ge -2\sin\left(\frac{2\pi}{9}\right) > -1.3.$

 \Box

Thus cos(2*πx*1) − cos(2*πy*1) ≤ 2*γ* ²/(1 − *γ*) + 1.3*γ*. Hence

$$
3 = 4 \sin^2 \left(\frac{\pi}{3}\right) = \left|\cos(2\pi x_1) - \cos(2\pi y_1)\right|^2 + \left|\sin(2\pi x_1) - \sin(2\pi y_1)\right|^2
$$

\n
$$
\leq \left(\frac{2\gamma^2}{1-\gamma} + 1.3\gamma\right)^2 + \left(2\left|\cos\left(\frac{\pi(2x+1)}{3}\right)\right| \sin\left(\frac{\pi}{3}\right)\right)^2
$$

\n
$$
\leq \left(\frac{2 \times (\sqrt{2}/3)^2}{1-\sqrt{2}/3} + 1.3 \times \frac{\sqrt{2}}{3}\right)^2 + \left(\sqrt{3} \cos\left(\frac{5\pi}{12}\right)\right)^2 < 2.3140.
$$

A contradiction.

Acknowledgements

The authors would like to thank Professor Weixiao Shen for helpful suggestions.

References

- [1] K. Baránski, B. Bárány and J. Romanowska, On the dimension of the graph of the classical Weierstrass function, Adv. Math., 265 (2014), 32–59.
- [2] G. H. Hardy, Weierstrass's non-differentiable function, Trans. Am. Math. Soc., 17 (1916), 301–325.
- [3] T. Y. Hu and K. S. Lau, Fractal dimensions and singularities of the Weierstrass type functions, Trans. Amer. Math. Soc., 335 (1993), 649–655.
- [4] J. L. Kaplan, J. Mallet-Paret and J. A. Yorke, The Lyapunov dimension of a nowhere differentiable attracting torus, Ergod. Theory Dyn. Syst., 4 (1984), 261–281.
- [5] G. Keller, An elementary proof for the dimension of the graph of the classical Weierstrass function, Ann. Inst. Henri Poincaré Probab. Stat., 53 (2017), 169-181.
- [6] F. Ledrappier, On the dimension of some graphs, Contemp. Math., 135 (1992), 285–293.
- [7] W. Shen, Hausdorff dimension of the graphs of the classical Weierstrass functions, Math. Z., 289 (2018), 223–266.
- [8] M. Tsujii, Fat Solenoidal attractors, Nonlinearity, 14 (2001), 1011–1027.