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Abstract. Let Ω be a bounded open domain in Rn with smooth boundary ∂Ω. Let
X = (X1,X2,··· ,Xm) be a system of general Grushin type vector fields defined on Ω
and the boundary ∂Ω is non-characteristic for X. For ∆X =∑m

j=1 X2
j , we denote λk as

the k-th eigenvalue for the bi-subelliptic operator ∆2
X on Ω. In this paper, by using the

sharp sub-elliptic estimates and maximally hypoelliptic estimates, we give the optimal
lower bound estimates of λk for the operator ∆2

X .

Key Words: Eigenvalues, degenerate elliptic operators, sub-elliptic estimate, maximally hypo-
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1 Introduction and main results

Let X = (X1,X2,··· ,Xm) be the system of general Grushin type vector fields, which is
defined on an open domain W in Rn (n≥2).

Let J=(j1,··· , jk), 1≤ ji≤m be a multi-index, X J=Xj1 Xj2 ···Xjk , we denote |J|=k be the
length of J, if |J|=0, then X J = id. We introduce following function space (cf. [18, 21, 23]):

H2
X(W)={u∈L2(W)|X Ju∈L2(W), |J|≤2}.

It is well known that H2
X(W) is a Hilbert space with norm ‖u‖2

H2
X(W)=∑|J|≤2‖X Ju‖2

L2(W)
.

Assume the vector fields X=(X1,X2,··· ,Xm) satisfy Hörmander’s condition :

Definition 1.1 (cf. [2,12]). We say that X=(X1,X2,··· ,Xm) satisfies the Hörmander’s con-
dition in W if there exists a positive integer Q, such that for any |J|= k≤Q, X together
with all k-th repeated commutators

XJ =[Xj1 ,[Xj2 ,[Xj3 ,··· ,[Xjk−1 ,Xjk ]···]]]

∗Corresponding author. Email addresses: chenhua@whu.edu.cn (H. Chen), hongge chen@whu.edu.cn (H. G.
Chen), wangjunfang@whu.edu.cn (J. F. Wang), zhangnana@whu.edu.cn (N. N. Zhang)

http://www.global-sci.org/ata/ 66 c©2019 Global-Science Press

OPEN ACCESS

DOI https://doi.org/10.4208/ata.OA-0002 | Generated on 2024-12-19 05:19:54



H. Chen, H. G. Chen, J. F. Wang and N. N. Zhang / Anal. Theory Appl., 35 (2019), pp. 66-84 67

span the tangent space at each point of W. Here Q is called the Hörmander index of X in
W, which is defined as the smallest positive integer for the Hörmander’s condition to be
satisfied.

For any bounded open subset Ω⊂⊂W, we define the subspace H2
X,0(Ω) to be the

closure of C∞
0 (Ω) in H2

X(W). Since ∂Ω is smooth and non characteristic for X, we know
that H2

X,0(Ω) is well defined and also a Hilbert space. In this case, we also say that X
satisfies the Hörmander’s condition on Ω with Hörmander index 1≤Q<+∞. Thus X
is a finitely degenerate system of vector fields on Ω and the finitely degenerate elliptic
operator ∆X =∑m

i=1 X2
i is a sub-elliptic operator.

The degenerate elliptic operator ∆X has been studied by many authors, e.g.,
Hörmander [11], Jerison and Sánchez-Calle [13], Métivier [17], Xu [23]. More results for
degenerate elliptic operators can be found in [2–6] and [9, 10, 12, 14].

In this paper, we study the following eigenvalues problem for bi-subelliptic operators
in H2

X,0(Ω): {
∆2

Xu=λu in Ω,
u=0, Xu=0 on ∂Ω,

(1.1)

where X will be the following general Grushin type vector fields (see (1.5) and (1.7) be-
low). In this case we know that for each j, Xj is formally skew-adjoint, i.e., X∗j =−Xj.
Then there exists a sequence of discrete eigenvalues {λj}j≥1 for the problem (1.1), which
satisfying 0<λ1≤λ2≤λ3≤···≤λk ··· and λk→+∞ as k→+∞ (see Proposition 2.5 below).

In the classical case, if X = (∂x1 ,··· ,∂xn), then ∆2
X = ∆2 is the standard bi-harmonic

operator. In this case our problem is motivated from the following classical clamped
plate problem, namely ∆2u=λu in Ω,

u=
∂u
∂ν

=0 on ∂Ω,
(1.2)

where ∆=∂2
x1
+∂2

x2
+···+∂2

xn
, ∂u

∂ν denotes the derivative of u with respect to the outer unit
normal vector ν on ∂Ω.

For the eigenvalues of the clamped plate problem (1.2), Agmon [1] and Pleijel [20]
showed the following asymptotic formula

λk∼
16π4

(Bnvol(Ω))
4
n

k
4
n as k→+∞, (1.3)

where Bn denotes the volume of the unit ball in Rn. In 1985, Levine and Protter [15]
proved that

1
k

k

∑
i=1

λi≥
n

n+4
16π4

(Bnvol(Ω))
4
n

k
4
n . (1.4)
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Later in 2012, Cheng and Wei [7] showed that the eigenvalues of the bi-harmonic operator
satisfy

1
k

k

∑
i=1

λi≥
n

n+4
16π4

(Bnvol(Ω))
4
n

k
4
n

+

(
n+2

12(n+4)
− 1

1152n2(n+4)

)
vol(Ω)

I(Ω)

n
n+2

4π4

(Bnvol(Ω))
2
n

k
2
n

+

(
1

576n(n+4)
− 1

27648n2(n+2)(n+4)

)(
vol(Ω)

I(Ω)

)2

,

where I(Ω) is the moment of inertia of Ω.
Next, we consider the situation for the bi-subelliptic operators ∆2

X. Before we state
our results, we need the following concepts:

Definition 1.2. If X satisfies the Hörmander’s condition in W with the Hörmander index
Q≥1. Then for each 1≤ j≤Q and x∈W, we denote Vj(x) as the subspace of the tangent
space Tx(W) spanned by the vector fields XJ with |J|≤ j. We say the system of the vector
fields X satisfies Métivier’s condition on Ω if the dimension of Vj(x) is constant vj in a
neighborhood of each x∈Ω, and in this case the Métivier index is defined as

v=
Q

∑
j=1

j(vj−vj−1), here v0=0.

As it well-known that under the Métivier’s condition, we can get the asymptotic es-
timate for the eigenvalues of sub-elliptic operator −∆X (cf. [17]). However, for most
degenerate vector fields X, the Métivier’s condition will be not satisfied. Thus we need
to introduce the following generalized Métivier index.

Definition 1.3. If X satisfies the Hörmander’s condition in W with the Hörmander index
Q≥1. Then for each 1≤ j≤Q and x∈W, we denote Vj(x) as the subspace of the tangent
space Tx(W) spanned by the vector fields XJ with |J|≤ j. We denote that

v(x)=
Q

∑
j=1

j(vj(x)−vj−1(x)), with v0(x)=0,

where vj(x) is the dimension of Vj(x). Then we define

ṽ=maxx∈Ωv(x),

as the generalized Métivier index. It is obvious that ṽ = v if X satisfies the Métivier’s
condition on Ω.
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Recently, in case of X to be some special Grushin vector fields Chen and Zhou [8]
obtained lower bound estimates of eigenvalues for the bi-subelliptic operator ∆2

X. In this
paper, we shall study the similar problem for more general Grushin type vector fields X.
In the first part of this paper, we shall study the bi-subelliptic operators ∆2

X in case of

X=(∂x1 ,··· ,∂xn−1 , f (x̄)∂xn), (1.5)

where f (x̄)=∑|α|≤saα x̄α is a multivariate polynomial of x̄ with order s, x̄=(x1,··· ,xn−1),
α=(α1,··· ,αn−1)∈Zn−1

+ , |α|=α1+···+αn−1, aα are constants. We suppose that
(H1): If f (x̄) has a unique zero point at origin x̄=0 in Ω only, and there exists a unique
multi-index α0 with |α0|= s0 ≤ s, satisfying ∂α0

x̄ f (x̄)|x̄=0 6= 0 and ∂α
x̄ f (x̄)|x̄=0 = 0 for any

|α|< |α0|.
Thus we have the following result.

Theorem 1.1. Let X=(∂x1 ,··· ,∂xn−1 , f (x̄)∂xn), x̄=(x1,x2,··· ,xn−1). Under the condition (H1)
above, X satisfies the Hörmander’s condition with its Hörmander index Q=s0+1, and the gener-
alized Métivier index of X is ṽ=Q+n−1. Suppose λj is the j-th eigenvalue of the problem (1.1),
then for all k≥1,

k

∑
j=1

λj≥C(Q)k1+ 4
ṽ−C2(Q)

C1(Q)
k, (1.6)

where

C(Q)=
AQ

C1(Q)n2(n+Q+3)

(
(2π)n

Qωn−1|Ω|n

) 4
n+Q−1

(n+Q−1)
n+Q+3
n+Q−1 ,

and

AQ =

{
min{1,n

3−Q
2 }, Q≥2,

n, Q=1.

Here C1(Q),C2(Q) are the constants in Proposition 2.3 below, ωn−1 is the area of the unit sphere
in Rn, and |Ω|n is the volume of Ω.

Remark 1.1. (1) Since kλk≥
k
∑

j=1
λj, then Theorem 1.1 shows that the eigenvalues λk satisfy

λk≥C(Q)k
4
ṽ−C2(Q)

C1(Q)
, for all k≥1.

(2) If Q≥ 1, we can deduce from Definition 1.3 that n+Q−1≤ ṽ≤ nQ. Thus in our
case in Theorem 1.1 ṽ=n+Q−1 is the smallest. That means the lower bound estimates
(1.6) will be optimal.

(3) If f (x̄)=1 in Theorem 1.1, then Q=1, ∆2
X=∆2 is the standard bi-harmonic operator.

Then C1(Q)=1, C2(Q)=0 and C(Q)= 16π4n
n+4

(
ωn−1|Ω|n

n

)−4/n
. Thus the result of Theorem

1.1 will be the same to the result of (1.4) in Levine and Protter [15].
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In the second part, we shall study the bi-subelliptic operators ∆2
X for more general

cases, namely

X=(∂x1 ,··· ,∂xn−p , f1(x̄(p))∂xn−p+1 ,··· , fp(x̄(p))∂xn), (1.7)

where x̄(p)=(x1,··· ,xn−p),

f j(x̄(p))=∑|α|≤sj
ajα x̄α

(p), (1≤ j≤ p<n),

are multivariate polynomials of x̄(p) with order sj. Thus X is more general Grushin type
degenerate vector fields with p degenerate directions. We suppose that

(H2) : For each j,1≤ j≤p<n, if f j(x̄(p)) has a unique zero point at origin x̄(p)=0 in Ω only,
and there exists a unique multi-index α0j with |α0j|=s0j≤sj, satisfying ∂

α0j
x̄(p)

f j(x̄(p))|x̄(p)=0 6=
0 and ∂α

x̄(p)
f j(x̄(p))|x̄(p)=0=0 for any |α|< |α0j|.

Thus we have

Theorem 1.2. Under the condition (H2) above, the vector fields X satisfies the Hörmander’s
condition with its Hörmander index Q=max{s01,s02,··· ,s0p}+1, and the generalized Métivier
index ṽ=n+∑

p
j=1 s0j. Suppose λj is the j-th eigenvalue of the problem (1.1), then for all k≥1,

k

∑
j=1

λj≥ Ĉ(Q)k1+ 4
ṽ−C4(Q)

C3(Q)
k, (1.8)

where

Ĉ(Q)=
2n

5C3(Q)n
6+ṽ

2

 ṽ

ωn−1

p
∏
j=1

(s0j+1)


4+ṽ

ṽ (
(2π)n

|Ω|n

) 4
ṽ

,

where ṽ=n+∑
p
j=1 s0j, C3(Q) and C4(Q) are the corresponding sub-elliptic estimate constants in

Proposition 2.4, ωn−1 is the area of the unit sphere in Rn, |Ω|n is the volume of Ω.

Remark 1.2. Since kλk≥∑k
j=1 λj, then Theorem 1.2 shows that the eigenvalues λk satisfy

λk≥ Ĉ(Q)k
4
ṽ−C4(Q)

C3(Q)
, for all k≥1.

Our paper is organized as follows. In Section 2, we introduce some preliminaries
about subelliptic estimates and discreteness of the Dirichlet eigenvalues for the operator
−∆2

X. In Section 3, we prove Theorem 1.1. Finally, we prove Theorem 1.2 in Section 4.
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2 Preliminaries

Proposition 2.1. Let the system of vector fields X=(X1,··· ,Xm) satisfies the Hörmander’s
condition on Ω with its Hörmander index Q≥1, then the following estimate∥∥∥|∇| 2

Q u
∥∥∥2

L2(Ω)
≤C(Q)‖∆Xu‖2

L2(Ω)+C̃(Q)‖u‖2
L2(Ω) (2.1)

holds for all u∈C∞
0 (Ω), where ∇=(∂x1 ,··· ,∂xm), |∇|

2
Q is a pseudo-differential operator

with the symbol |ξ|
2
Q , the constants C(Q)>0, C̃(Q)≥0 depending on Q.

Proof. Refer to [12] and [21], the subelliptic operator ∆X =∑m
i=1 X2

i satisfies the following
sub-elliptic estimate for any u∈C∞

0 (Ω),

‖u‖(2ε)≤C1‖∆Xu‖L2(Ω)+C2‖u‖L2(Ω),

with ε= 1
Q , where ‖u‖(2ε) is the Sobolev norm of order 2ε. On the other hand, we have

‖u‖( 2
Q )=

(∫
n
(1+|ξ|2)

2
Q |û(ξ)|2dξ

) 1
2

≥
(∫

n
|ξ|

4
Q |û(ξ)|2dξ

) 1
2

=
∥∥∥|∇| 2

Q u
∥∥∥

L2(n)
=
∥∥∥|∇| 2

Q u
∥∥∥

L2(Ω)
.

By using the Cauchy-Schwarz inequality we get the following estimate∥∥∥|∇| 2
Q u
∥∥∥2

L2(Ω)
≤C(Q)‖∆Xu‖2

L2(Ω)+C̃(Q)‖u‖2
L2(Ω).

Thus, we complete the proof.

Proposition 2.2. (cf. [19, 21] and [22]) Let the system of vector fields X = (X1,··· ,Xm)

satisfies the Hörmander’s condition on Ω, then the operator ∆X =
m
∑

i=1
X2

i is maximally

hypo-elliptic, i.e., there exists a constant C>0, such that for any u∈C∞
0 (Ω) we have the

following maximally hypo-elliptic estimate

∑
|α|≤2
‖Xαu‖2

L2(Ω)≤C(‖∆Xu‖2
L2(Ω)+‖u‖

2
L2(Ω)),

where α=(α1,··· ,αm) is a multi-index with |α|=α1+···+αm and Xα =Xα1
1 ···X

αm
m .
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Proposition 2.3. Let X = (∂x1 ,··· ,∂xn−1 , f (x̄)∂xn), x̄ = (x1,x2,··· ,xn−1). Here f (x̄) is a
multivariate polynomial and satisfies the condition (H1) above. Then X satisfies the
Hörmander’s condition with its Hörmander index Q≥ 1, and we can deduce the fol-
lowing sub-elliptic estimate

n−1

∑
j=1
‖∂2

xj
u‖2

L2(Ω)+
∥∥∥|∂xn |

2
Q u
∥∥∥2

L2(Ω)
≤C1(Q)‖∆Xu‖2

L2(Ω)+C2(Q)‖u‖2
L2(Ω), (2.2)

for all u∈C∞
0 (Ω), where |∂xn |

2
Q is a pseudo-differential operator with the symbol |ξn|

2
Q ,

C1(Q)>0, C2(Q)≥0 are constants depending on Q.

Proof. From the Plancherel’s formula, we have∥∥∥|∂xn |
2
Q u
∥∥∥2

L2(Ω)
=
∥∥∥|ξn|

2
Q û
∥∥∥2

L2(Rn)
≤
∥∥∥|ξ| 2

Q û
∥∥∥2

L2(Rn)

=
∥∥∥|∇| 2

Q u
∥∥∥2

L2(Rn)
=
∥∥∥|∇| 2

Q u
∥∥∥2

L2(Ω)
. (2.3)

Also, from the maximally hypo-elliptic estimate of Proposition 2.2 we can deduce that

n−1

∑
j=1
‖∂2

xj
u‖2

L2(Ω)≤ ∑
|α|≤2
‖Xαu‖2

L2(Ω)≤C(‖∆Xu‖2
L2(Ω)+‖u‖

2
L2(Ω)). (2.4)

Combining (2.1), (2.3) and (2.4) we can deduce that

n−1

∑
j=1
‖∂2

xj
u‖2

L2(Ω)+
∥∥∥|∂xn |

2
Q u
∥∥∥2

L2(Ω)
≤C1(Q)‖∆Xu‖2

L2(Ω)+C2(Q)‖u‖2
L2(Ω).

Thus, we complete the proof.

Proposition 2.4. Let X = (∂x1 ,··· ,∂xn−p , f1(x̄(p))∂xn−p+1 ,··· , fp(x̄(p))∂xn), x̄(p) =
(x1,x2,··· ,xn−p). Here f j(x̄(p)) (for 1≤ j ≤ p < n) are multivariate polynomials which
satisfying the condition (H2) above. Then X satisfies the Hörmander’s condition with
its Hörmander index Q≥1, and we get the following sub-elliptic estimate

n−p

∑
i=1
‖∂2

xi
u‖2

L2(Ω)+
p

∑
j=1

∥∥∥∥|∂xn−p+j |
2

s0j+1 u
∥∥∥∥2

L2(Ω)

≤C3(Q)‖∆Xu‖2
L2(Ω)+C4(Q)‖u‖2

L2(Ω), (2.5)

for all u∈ C∞
0 (Ω), where |∂xj |

2
r is a pseudo-differential operator with the symbol |ξ j|

2
r ,

and the constants C3(Q)>0, C4(Q)≥0 depending on Q.
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Proof. We consider the system of vector fields X̃ =(∂x1 ,··· ,∂xn−p , f j(x̄(p))∂xn−p+j) (for 1≤
j≤ p < n) defined on the projection Ωx′j

of Ω on the direction x′j = (x1,··· ,xn−p,xn−p+j).
Similar to Proposition 2.3, for all j (1≤ j≤ p), we have

n−p

∑
i=1
‖∂2

xi
u‖2

L2(Ωx′j
)+

∥∥∥∥|∂xn−p+j |
2

s0j+1 u
∥∥∥∥2

L2(Ωx′j
)

≤ Ĉ1(Q)‖∆X̃u‖2
L2(Ωx′j

)+Ĉ2(Q)‖u‖2
L2(Ωx′j

).

Then for all j (1≤ j≤ p), we have

n−p

∑
i=1
‖∂2

xi
u‖2

L2(Ω)+

∥∥∥∥|∂xn−p+j |
2

s0j+1 u
∥∥∥∥2

L2(Ω)

≤ Ĉ1(Q)‖∆X̃u‖2
L2(Ω)+Ĉ2(Q)‖u‖2

L2(Ω). (2.6)

By using the Cauchy-Schwarz inequality and Proposition 2.2, there exists a constant C3>0
such that

‖∆X̃u‖2
L2(Ω)≤C3 ∑

|α|≤2
‖Xαu‖2

L2(Ω)≤C3C(‖∆Xu‖2
L2(Ω)+‖u‖

2
L2(Ω)),

where C is given in Proposition 2.2. Finally, we get the following sub-elliptic estimate
from (2.6)

n−p

∑
i=1
‖∂2

xi
u‖2

L2(Ω)+
p

∑
j=1

∥∥∥∥|∂xn−p+j |
2

s0j+1 u
∥∥∥∥2

L2(Ω)

≤C3(Q)‖∆Xu‖2
L2(Ω)+C4(Q)‖u‖2

L2(Ω).

Thus, we complete the proof.

Next, for the Dirichlet eigenvalues problem (1.1), we have

Proposition 2.5. The Dirichlet eigenvalues problem (1.1) has a sequence of discrete eigen-
values {λj}j≥1, which satisfying 0<λ1≤λ2≤λ3≤ ··· ≤λk ··· and λk→+∞ as k→+∞.
Also, the corresponding eigenfunctions {φk(x)}k≥1 constitute an orthonormal basis of
L2(Ω) and an orthogonal basis of H2

X,0(Ω).

The proof of Proposition 2.5 depends the following lemma:

Lemma 2.1. If u∈H2
X,0(Ω), then for 1≤ j≤m, Xju∈H1

X,0(Ω).

Proof. Since u∈H2
X,0(Ω), we have Xi(Xju)∈L2(Ω) for any 1≤ i, j≤m, and (Xju)∈L2(Ω).

That implies Xju∈H1
X(Ω). Now, u∈H2

X,0(Ω), then there exists a sequence ϕi ∈C∞
0 (Ω)

which converges to u in H2
X,0(Ω). That means Xj ϕi→Xju in H1

X(Ω). Observe that Xj ϕi∈
H1

X,0(Ω) and H1
X,0(Ω) is a Hilbert space, thus we have Xju∈H1

X,0(Ω).

OPEN ACCESS

DOI https://doi.org/10.4208/ata.OA-0002 | Generated on 2024-12-19 05:19:54



74 H. Chen, H. G. Chen, J. F. Wang and N. N. Zhang / Anal. Theory Appl., 35 (2019), pp. 66-84

Proof of Proposition 2.5. We know that the definition domain of ∆2
X is

dom(∆2
X)={u∈H2

X,0(Ω)|∆2
Xu∈L2(Ω)}.

Thus, for Xj to be formally skew-adjoint, then for any function u ∈ C∞
0 (Ω) and v ∈

dom(∆2
X), we have∫

Ω
u∆2

Xvdx=
∫

Ω
v∆2

Xudx

=
∫

Ω
v∆X(∆Xu)dx=

m

∑
j=1

∫
Ω

v·X2
j (∆Xu)dx.

Since v ∈ H2
X,0 ⊂ H1

X,0(Ω), and from the result of Lemma 2.1, Xjv ∈ H1
X,0(Ω). Then the

equation above gives∫
Ω

u∆2
Xvdx=−

m

∑
j=1

∫
Ω

Xjv·Xj(∆Xu)dx=
m

∑
j=1

∫
Ω

X2
j v·(∆Xu)dx,

that gives the following Green formula:∫
Ω

u∆2
Xvdx=

∫
Ω

∆Xu·∆Xvdx, for u∈H2
X,0(Ω), v∈dom(∆2

X). (2.7)

On the other hand, for u∈H2
X,0(Ω),

‖u‖2
H2

X
=‖u‖2

L2(Ω)+
m

∑
i=1
‖Xiu‖2

L2(Ω)+
m

∑
i,j=1
‖XiXju‖2

L2(Ω).

Thus we have

‖u‖H2
X
≥‖u‖L2(Ω)+

m

∑
j=1
‖X2

j u‖L2(Ω)≥‖∆Xu‖L2(Ω). (2.8)

By maximally hypoellipticity of ∆X (also see Proposition 2.2 above), we have following
estimate for any u∈H2

X,0(Ω),

‖u‖2
H2

X
= ∑
|α|≤2
‖Xαu‖2

L2(Ω)≤C(‖∆Xu‖2
L2(Ω)+‖u‖

2
L2(Ω)). (2.9)

Furthermore, the Poincaré inequality gives

‖u‖2
L2(Ω)≤C1‖Xu‖2

L2(Ω)≤C1|(∆Xu,u)|≤C1‖∆Xu‖L2(Ω) ·‖u‖L2(Ω).

Thus for any 0<ε<1 there is Cε >0, such that

‖∆Xu‖L2(Ω) ·‖u‖L2(Ω)≤Cε‖∆Xu‖2
L2(Ω)+ε‖u‖2

L2(Ω).
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That means from (2.9) that there exists C2>0, such that

‖u‖2
H2

X
≤C2‖∆Xu‖2

L2(Ω). (2.10)

Hence from (2.8) and (2.10) one has for any u∈H2
X,0(Ω),

‖∆Xu‖≤‖u‖H2
X
≤C3‖∆Xu‖. (2.11)

Thus we define that
[u,ϕ]=(∆Xu,∆X ϕ), (2.12)

then [·,·] is another inner product, and H2
X,0(Ω) with this inner product is complete.

Now, we choose u,v∈dom(∆2
X), then

(∆2
Xu,v)=(∆Xu,∆Xv)=(∆2

Xv,u).

Hence, ∆2
X is symmetric operator in dom(∆2

X). Also

(∆2
Xu,u)=(∆Xu,∆Xu)≥0,

which implies that ∆2
X is positive in dom(∆2

X).
Next, for any given f∈L2(Ω) and any ϕ∈H2

X,0(Ω), we define a functional f (ϕ)=( f ,ϕ).
Since

|( f ,ϕ)|≤‖ f ‖L2(Ω) ·‖ϕ‖L2(Ω)≤‖ f ‖L2(Ω) ·‖ϕ‖H2
X(Ω),

then the functional ( f ,ϕ) is a continuous linear functional on Hilbert space H2
X,0(Ω). By

Riesz representation theorem, there exists a unique u∈H2
X,0(Ω) such that

( f ,ϕ)= [u,ϕ]=(∆Xu,∆X ϕ).

Thus the Green formula (2.7) gives that

(∆2
Xu,ϕ)=(∆Xu,∆X ϕ)=( f ,ϕ) (2.13)

holds for any ϕ∈C∞
0 (Ω). That implies ∆2

Xu= f , i.e., u∈dom(∆2
X). This proves the existence

of the resolvent operator R :=(∆2
X)
−1, and R f =u.

On the other hand, if we choose ϕ=u in (2.13), then (R f , f )=(u, f )=‖∆Xu‖2
L2(Ω)

≥0.
R is positive in L2(Ω). Meanwhile we have

‖R f ‖2
L2(Ω)=‖u‖

2
L2(Ω)≤C‖ f ‖L2(Ω)‖R f ‖L2(Ω),

this implies that R is bounded in L2(Ω). In order to prove the operator R is self-adjoint,
it suffices to prove that R is symmetric, i.e.,

(R f ,g)=( f ,Rg) for all f ,g∈L2(Ω).
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Let R f =u, Rg=v, and choosing ϕ=v in (2.13), we obtain

(∆Xu,∆Xv)=( f ,Rg).

Since the left hand side is symmetric in u and v, we conclude that the right side is sym-
metric in f and g. That implies that R is symmetric. Also, we know that the operator
R−1 :=∆2

X is a self-adjoint on dom(∆2
X).

Similarly, we can prove that the inverse operator (∆2
X+α·id)−1 exists and is bounded

for any α≥0. We see that−α is a regular value of ∆2
X, hence spec(∆2

X)⊂(0,+∞). Moreover,
we can deduce that R : L2(Ω)→H2

X,0(Ω) is continuous, this is because that

‖R f ‖2
H2

X
≤C(‖∆X(R f )‖2

L2(Ω))≤C( f ,R f )≤C‖ f ‖L2(Ω)‖R f ‖L2(Ω)≤C‖ f ‖L2(Ω)‖R f ‖H2
X(Ω).

By using the subelliptic estimate, we know that H2
X,0 can be continuously embedded into

the standard Sobolev space H
2
Q (Ω), and H

2
Q (Ω) can be compactly embedded into L2(Ω).

Hence R is a compact operator from L2(Ω) to L2(Ω). By spectral theory we know that R
has positive discrete eigenvalues µi, µ1≥µ2≥···≥µk≥··· and µk→0 as k→+∞; and the
corresponding eigenfunctions φi of R form an orthonormal basis of L2(Ω), namely

Rφi =µiφi.

That means the eigenfunctions {φi}i≥1 will be the orthogonal basis of H2
X,0(Ω). Finally

we let λi = µ−1
i , then λi are the Dirichlet eigenvalues of ∆2

X which will be discrete and
satisfying 0<λ1≤λ2≤···≤λk≤···, and λk→+∞ as k→+∞. The proof of Proposition
2.5 is completed.

3 Proof of Theorem 1.1

Lemma 3.1 (cf. [3, 16]). For the system of vector fields X=(X1,··· ,Xm), if {φj}k
j=1 are the set

of orthonormal eigenfunctions corresponding to the eigenvalues {λj}k
j=1. Define

Φ(x,y)=
k

∑
j=1

φj(x)φj(y).

Then for Φ̂(z,y) = (2π)−n/2∫
Rn Φ(x,y)e−ix·zdx to be the partial Fourier transformation of

Φ(x,y) with respect to the x-variable, we have∫
Ω

∫
Rn

∣∣∣Φ̂(z,y)
∣∣∣2dzdy= k and

∫
Ω

∣∣∣Φ̂(z,y)
∣∣∣2dy≤ (2π)−n|Ω|n.
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Lemma 3.2 (cf. [8]). Let f be a real-valued function defined on Rn with 0≤ f ≤M1, and for
Q∈N+, ∫

Rn

(
n−1

∑
j=1

z2
j +|zn|

2
Q

)2

f (z)dz≤M2.

Then ∫
Rn

f (z)dz≤ (QM1ωn−1)
4

n+Q+3

n+Q−1

(
n(n+Q+3)

AQ

) n+Q−1
n+Q+3

M
n+Q−1
n+Q+3
2 ,

where ωn−1 is the area of the unit sphere in Rn, and

AQ =

{
min{1,n

3−Q
2 }, Q≥2,

n, Q=1.

Proof of Theorem 1.1. From the results of Proposition 2.5, let {λk}k≥1 be a sequence of the
eigenvalues for the problem (1.1), and {φk(x)}k≥1 be the corresponding eigenfunctions,
then {φk(x)}k≥1 constitute an orthogonal basis of H2

X,0(Ω).
Let

Φ(x,y)=
k

∑
j=1

φj(x)φj(y),

by Cauchy-Schwarz inequality we have

∫
Rn

∫
Ω

(
n−1

∑
j=1

z2
j +|zn|

2
Q

)2 ∣∣∣Φ̂(z,y)
∣∣∣2 dydz

≤n
∫

Rn

∫
Ω

(
n−1

∑
j=1

z4
j +|zn|

4
Q

)∣∣∣Φ̂(z,y)
∣∣∣2 dydz. (3.1)

Next, by using integration-by-parts, we have

k

∑
j=1

λj =
k

∑
j=1

∫
Ω

λjφj(x)·φj(x)dx=
k

∑
j=1

∫
Ω

∆2
Xφj(x)·φj(x)dx

=
k

∑
j=1

∫
Ω

X(∆Xφj(x))·Xφj(x)dx=
k

∑
j=1

∫
Ω

∆Xφj(x)·∆Xφj(x)dx

=
∫

Ω

∫
Ω

k

∑
j=1

∣∣∆Xφj(x)φj(y)
∣∣2dxdy=

∫
Ω

∫
Ω
|∆XΦ(x,y)|2 dxdy. (3.2)
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Then by using Plancherel’s formula and Proposition 2.3, we have

∫
Rn

∫
Ω

(
n−1

∑
j=1

z2
j +|zn|

2
Q

)2 ∣∣∣Φ̂(z,y)
∣∣∣2 dydz

≤n
∫

Rn

∫
Ω

(
n−1

∑
j=1

z4
j +|zn|

4
Q

)∣∣∣Φ̂(z,y)
∣∣∣2 dydz

=n
∫

n

∫
Ω

(
n−1

∑
j=1
|∂2

xj
Φ(x,y)|2+

∣∣∣|∂xn |
2
Q Φ(x,y)

∣∣∣2)dydx

=n
∫

Ω

∫
Ω

(
n−1

∑
j=1
|∂2

xj
Φ(x,y)|2+

∣∣∣|∂xn |
2
Q Φ(x,y)

∣∣∣2)dydx

≤n
[

C1(Q)
∫

Ω

∫
Ω
|∆XΦ(x,y)|2dxdy+C2(Q)

∫
Ω

∫
Ω
|Φ(x,y)|2dxdy

]
. (3.3)

Thus from (3.2) and Lemma 3.1 above, we can deduce that

∫
n

∫
Ω

(
n−1

∑
j=1

z2
j +|zn|

2
Q

)2 ∣∣∣Φ̂(z,y)
∣∣∣2 dydz≤n

(
C1(Q)

k

∑
j=1

λj+C2(Q)k

)
.

Next, we choose

f (z)=
∫

Ω

∣∣∣Φ̂(z,y)
∣∣∣2 dy, M1=(2π)−n|Ω|n, M2=n

(
C1(Q)

k

∑
j=1

λj+C2(Q)k

)
.

Then from the result of Lemma 3.2, we know that for any k≥1,

k

≤Qωn−1(2π)−n|Ω|n
n+Q−1

(
n(n+Q+3)

(2π)−n|Ω|nQAQωn−1

) n+Q−1
n+Q+3

(
n

(
C1(Q)

k

∑
j=1

λj+C2(Q)k

)) n+Q−1
n+Q+3

.

This means, for any k≥1,
k

∑
j=1

λj≥ C̃(Q)k1+ 4
ṽ−C2(Q)

C1(Q)
k,

with

C̃(Q)=
AQ

C1(Q)n2(n+Q+3)

(
(2π)n

Qωn−1|Ω|n

) 4
n+Q−1

(n+Q−1)
n+Q+3
n+Q−1 .

The proof of Theorem 1.1 is completed.
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4 Proof of Theorem 1.2

Lemma 4.1. Let f be a real-valued function defined on Rn with 0≤ f ≤M1, and for p,q∈N+,

∫
Rn

(
n−p

∑
i=1

z2
i +

p

∑
j=1
|zn−p+j|

2
s0j+1

)2

f (z)dz≤M2.

Then

∫
Rn

f (z)dz≤
ωn−1

p
∏
j=1

(s0j+1)

ṽ

(
5n

4+ṽ
2

2n

) ṽ
4+ṽ

M
4

4+ṽ
1 M

ṽ
4+ṽ
2 ,

where ṽ=n+∑
p
j=1 s0j, ωn−1 is the area of the unit sphere in Rn.

Proof. First, we choose R such that

∫
Rn

(
n−p

∑
i=1

z2
i +

p

∑
j=1
|zn−p+j|

2
s0j+1

)2

g(z)dz=M2,

where

g(z)=


M1,

n−p
∑

i=1
z2

i +
p
∑

j=1
|zn−p+j|

2
s0j+1 ≤R2,

0,
n−p
∑

i=1
z2

i +
p
∑

j=1
|zn−p+j|

2
s0j+1 >R2.

Then (n−p

∑
i=1

z2
i +

p

∑
j=1
|zn−p+j|

2
s0j+1

)2

−R4

( f (z)−g(z))≥0.

Hence we have

R4
∫

Rn
( f (z)−g(z))dz≤

∫
Rn

(
n−p

∑
i=1

z2
i +

p

∑
j=1
|zn−p+j|

2
s0j+1

)2

( f (z)−g(z))dz≤0.

That means ∫
Rn

f (z)dz≤
∫

Rn
g(z)dz. (4.1)

Now we have

M2=
∫

Rn

(
n−p

∑
i=1

z2
i +

p

∑
j=1
|zn−p+j|

2
s0j+1

)2

g(z)dz=M1

∫
B̃R

(
n−p

∑
i=1

z2
i +

p

∑
j=1
|zn−p+j|

2
s0j+1

)2

dz,
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where

B̃R =

{
z∈Rn,

n−p

∑
i=1

z2
i +

p

∑
j=1
|zn−p+j|

2
s0j+1 ≤R2

}
.

Next, we change the variables as follows,

zi = z′i (i=1,2,··· ,n−p), zn−p+j = sgn(z′n−p+j)|z′n−p+j|s0j+1, (j=1,2,··· ,p).

Then we have the following determinant of Jacobian,∣∣∣∣det
(∂(z1,··· ,zn)

∂(z′1,··· ,z′n)

)∣∣∣∣= p

∏
j=1

(s0j+1)|z′n−p+j|s0j .

Hence

M2=M1

∫
B̃R

(
n−p

∑
i=1

z2
i +

p

∑
j=1
|zn−p+j|

2
s0j+1

)2

dz

=M1

p

∏
j=1

(s0j+1)
∫

BR

|z|4
p

∏
j=1
|zn−p+j|s0j dz

≥M1

p

∏
j=1

(s0j+1)
∫

AR

|z|4
p

∏
j=1
|zn−p+j|s0j dz,

where

BR ={z∈Rn, |z|≤R}, AR =

{
z∈Rn, |zj|≤

R√
n

, j=1,··· ,n
}

.

By a direct calculation, we have∫
AR

|z|4
p

∏
j=1
|zn−p+j|s0j dz

≥
∫

AR

|z1|4
p

∏
j=1
|zn−p+j|s0j dz

=2
∫ R√

n

0
|z1|4dz1×

p

∏
j=1

(
2
∫ R√

n

0
|zn−p+j|s0j dzn−p+j

)
×
(

2
∫ R√

n

0
1dz

)n−p−1

=
2n

5
1

p
∏
j=1

(s0j+1)
n−

n+4+
p
∑

j=1
s0j

2 R
n+4+

p
∑

j=1
s0j
=

2n

5
1

p
∏
j=1

(s0j+1)
n−

4+ṽ
2 R4+ṽ.

Then we have
M2≥

2n M1

5
n−

4+ṽ
2 R4+ṽ. (4.2)
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From the definition of g(z), we know that∫
Rn

g(z)dz=M1

∫
B̃R

dz=M1

p

∏
j=1

(s0j+1)
∫

BR

p

∏
j=1
|zn−p+j|s0j dz

≤M1

p

∏
j=1

(s0j+1)
∫

BR

|z|
p
∑

j=1
s0j

dz=M1

p

∏
j=1

(s0j+1)
∫ R

0
ωn−1r

n−1+
p
∑

j=1
s0j

dr

=

M1ωn−1

p
∏
j=1

(s0j+1)

n+
p
∑

j=1
s0j

R
n+

p
∑

j=1
s0j
=

M1ωn−1

p
∏
j=1

(s0j+1)

ṽ
Rṽ. (4.3)

From (4.1), (4.2) and (4.3), we obtain

∫
Rn

f (z)dz≤
∫

Rn
g(z)dz≤

ωn−1

p
∏
j=1

(s0j+1)

ṽ

(
5n

4+ṽ
2

2n

) ṽ
4+ṽ

M
4

4+ṽ
1 M

ṽ
4+ṽ
2 ,

where ṽ=n+∑
p
j=1 s0j. Lemma 4.1 is proved.

Proof of Theorem 1.2. Let {λk}k≥1 be a sequence of the eigenvalues for the problem (1.1),
{φk(x)}k≥1 be the corresponding eigenfunctions. Then {φk(x)}k≥1 constitute an orthog-
onal basis of H2

X,0(Ω).
Let Φ(x,y)=∑k

j=1 φj(x)φj(y). Thus, by using the Cauchy-Schwarz inequality, we have

∫
Rn

∫
Ω

(
n−p

∑
j=1

z2
j +

p

∑
j=1
|zn−p+j|

2
s0j+1

)2 ∣∣∣Φ̂(z,y)
∣∣∣2 dydz

≤n
∫

Rn

∫
Ω

(
n−p

∑
j=1

z4
j +

p

∑
j=1
|zn−p+j|

4
s0j+1

)∣∣∣Φ̂(z,y)
∣∣∣2 dydz. (4.4)

Similar to the result of (3.2), we obtain that

k

∑
j=1

λj =
∫

Ω

∫
Ω
|∆XΦ(x,y)|2 dxdy. (4.5)

Then by using Plancherel’s formula and Proposition 2.4, we have

∫
Rn

∫
Ω

(
n−p

∑
j=1

z2
j +

p

∑
j=1
|zn−p+j|

2
s0j+1

)2 ∣∣∣Φ̂(z,y)
∣∣∣2 dydz

≤n
∫

Rn

∫
Ω

(
n−p

∑
j=1

z4
j +

p

∑
j=1
|zn−p+j|

4
s0j+1

)∣∣∣Φ̂(z,y)
∣∣∣2 dydz
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=n
∫

Rn

∫
Ω

(
n−p

∑
j=1
|∂2

xj
Φ(x,y)|2+

p

∑
j=1

∣∣∣∣|∂xn−p+j |
2

s0j+1 Φ(x,y)
∣∣∣∣2
)

dydx

=n
∫

Ω

∫
Ω

(
n−p

∑
j=1
|∂2

xj
Φ(x,y)|2+

p

∑
j=1

∣∣∣∣|∂xn−p+j |
2

s0j+1 Φ(x,y)
∣∣∣∣2
)

dydx

≤n
[

C3(Q)
∫

Ω

∫
Ω
|∆XΦ(x,y)|2dxdy+C4(Q)

∫
Ω

∫
Ω
|Φ(x,y)|2dxdy

]
.

Thus from (4.5) and Lemma 3.1 above, we can deduce that

∫
Rn

∫
Ω

(
n−p

∑
j=1

z2
j +

p

∑
j=1
|zn−p+j|

2
s0j+1

)2 ∣∣∣Φ̂(z,y)
∣∣∣2 dydz≤n

(
C3(Q)

k

∑
j=1

λi+C4(Q)k

)
.

Finally, we choose

f (z)=
∫

Ω
|Φ̂(z,y)|2dy, M1=(2π)−n|Ω|n, M2=n

(
C3(Q)

k

∑
i=1

λi+C4(Q)k

)
.

Then from the Lemma 4.1, we have for any k≥1,

k≤
ωn−1

p
∏
j=1

(s0j+1)

ṽ
((2π)−n|Ω|n)

4
4+ṽ

(
5n

4+ṽ
2

2n

) ṽ
4+ṽ
(

n

(
C3(Q)

k

∑
j=1

λj+C4(Q)k

)) ṽ
4+ṽ

.

This means, for any k≥1,
k

∑
j=1

λj≥ Ĉ(Q)k1+ 4
ṽ−C4(Q)

C3(Q)
k,

where ṽ=n+∑
p
j=1 s0j, and

Ĉ(Q)=
2n

5C3(Q)n
6+ṽ

2

 ṽ

ωn−1

p
∏
j=1

(s0j+1)


4+ṽ

ṽ (
(2π)n

|Ω|n

) 4
ṽ

.

The proof of Theorem 1.2 is completed.
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