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Abstract. Metallic bowtie-shaped nanostructures are very interesting objects in op-
tics, due to their capability of localizing and enhancing electromagnetic fields in the
vicinity of their central neck. In this article, we investigate the electrostatic plasmonic
resonances of two-dimensional bowtie-shaped domains by looking at the spectrum of
their Poincaré variational operator. In particular, we show that the latter only consists
of essential spectrum and fills the whole interval [0,1]. This behavior is very different
from what occurs in the counterpart situation of a bowtie domain with only close-to-
touching wings, a case where the essential spectrum of the Poincaré variational opera-
tor is reduced to an interval σess strictly containing in [0,1]. We provide an explanation
for this difference by showing that the spectrum of the Poincaré variational operator of
bowtie-shaped domains with close-to-touching wings has eigenvalues which densify
and eventually fill the remaining parts of [0,1]\σess as the distance between the two
wings tends to zero.
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1 Introduction

Surface plasmons are strongly localized electromagnetic fields that result from electron
oscillations on the surface of metallic particles. Typically, this resonant behavior occurs
when the real parts of the dielectric coefficients of the particles are negative and when
their size is comparable to or smaller than the wavelength of the excitation. For instance,
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this is the case of gold or silver nanoparticles, 20-50nm in diameter, when they are illu-
minated in the frequency range of visible light.

The ability to confine, enhance and control electromagnetic fields in regions of space
smaller than or of the order of the excitation wavelength has stirred considerable inter-
est in surface plasmons over the last decade, as it opens the door to a large number of
applications in the domains of nanophysics, near-field microscopy, bio-sensing, nano-
lithography and quantum computing, to name a few.

A great deal of the mathematical work about plasmons has focused on the so-called
electrostatic case, where the Maxwell system is reduced to a Helmholtz equation and in
the asymptotic limit when the particle diameter is small compared to the frequency ω
of the incident wave. After proper rescaling, the study amounts to that of a conduction
equation of the form

div
(

ε(ω)−1(x)∇u(x))
)
=0, (1.1)

complemented with appropriate boundary or radiation conditions; see [6, 7] for a math-
ematical justification. The electric permittivity ε(ω) in (1.1) takes different forms in the
dielectric ambient medium and inside the particle; in the latter situation, it is usually
modeled by a Drude-Lorentz law of the form:

ε(ω)= ε0

(
1−

ω2
p

ω2+iωγ

)
,

where ε0 is the electric permittivity of the vacuum and where ωp and γ respectively de-
note the plasma frequency and the conductivity of the medium; see [6–8,27,38,39]. In the
case of metals such as gold and silver, experimental data show that, for frequencies in the
range 200−700 µm, Re(ε(ω))< 0, while the rate Im(ε(ω)) of dissipation of electrostatic
energy is small. In this context, (1.1) gets close to a two-phase conduction equation with
sign-changing coefficients and it loses its elliptic character.

In the above electrostatic approximation, the plasmonic resonances of a particle D
embedded in a homogeneous medium of permittivity ε0 are precisely associated with
values of the permittivity ε inside the particle for which (1.1) ceases to be well-posed. If
the shape of the particle is sufficiently smooth, one may represent the solution u to (1.1)
via layer potentials and then characterize plasmon resonances as values of the contrast

ε+ε0
2(ε−ε0)

which are eigenvalues of the associated Neumann-Poincaré integral operator K∗D;
see [6, 38].

Due to their key role in various physical contexts, the spectral properties of the
Neumann-Poincaré operator have been the focus of numerous investigations [2, 4, 13,
15, 16]. When the inclusion D is smooth (say with C1,α boundary), K∗D is a compact op-
erator and so its spectrum σ(K∗D) consists in a sequence of eigenvalues that accumulates
to 0 [34]. When D is merely Lipschitz, K∗D may no longer be compact and σ(K∗D) may
contain essential spectrum–a fact that has motivated several analytical and numerical
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studies [30,31,33,42]. This behavior has been understood quite precisely in the particular
case where D is a planar domain with corners: in their recent work [43], K.-M. Perfekt
and M. Putinar have characterized this essential spectrum to be

σess(K
∗
D)= [λ−,λ+], λ+=−λ−=

1
2

(
1− α

π

)
,

where α is the most acute angle of D. In [18], an alternative proof of this result is given and
a connection between σess(K∗D) and the elliptic corner singularity functions that describe
the field u around the corners is established.

The main purpose of the present work is to study the spectrum of bowtie-shaped
domains in 2d (see Figure 1 below). Metallic bowtie antennas have been the subject of
extensive experimental studies, as they can produce remarkably large enhancement of
electric fields near their corners and particularly in the area of their central neck, which
makes them quite interesting in various applications, see for instance [9,19, 20,24,25,37].

In utter rigor, a bowtie-shaped domain D is not Lipschitz regular, since ∂D does not
behave as the graph of a Lipschitz function in the neighborhood of the central point. To
avoid the tedious issue of introducing a proper definition of the Poincaré-Neumann oper-
ator in this context, we take another point of view for characterizing the well-posedness
of (1.1) and thereby the plasmonic resonances of D: following the seminal work [34], we
work at the level of the so-called Poincaré variational operator TD; see Section 2.3.2. For
a Lipschitz domain, a simple transformation relates the spectra of K∗D and TD:

σ(K∗D)=1/2−σ(TD) and σess(K
∗
D)=1/2−σess(TD),

see for instance [18]. In the context of a bowtie-shaped domain D, we prove that the
spectrum σ(TD) consists only of essential spectrum and fills the whole interval [0,1]:

σ(TD)=σess(TD)= [0,1],

see Theorem 4.1.
It is also interesting to compare the spectrum of the Poincaré variational operator

TD of a ”true” (non Lipschitz) bowtie-shaped antenna D with that of ”quasi” (Lipschitz)
bowtie-shaped inclusion Dδ–a version of D where the two wings of the bowtie are sepa-
rated by a small distance δ>0 (see Fig. 2 below). The theory about the essential spectrum
of the Neumann-Poincaré operator of planar domains with corners devised in [43] ap-
plies in the latter case, with the conclusion that the essential spectrum of the Neumann-
Poincaré operator K∗Dδ

of Dδ is an interval [−λ+,λ+]b [−1/2,1/2], where λ+ only de-
pends on the value of the angle(s) of each sector and is independent of δ. We show that
as δ→ 0, σ(K∗Dδ

) cannot reduce to its essential spectrum and must contain eigenvalues
in the range [−1/2,λ−]∪[λ+,1/2]. These eigenvalues become denser and denser in that
set as δ→ 0. This phenomenon was already observed in [32] (see also [41], pp. 378–
379) for the related problem of finding the spectrum of the effective permittivity of a
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composite made of square inclusions of a metamaterial embedded in a dielectric back-
ground medium. See in particular the computations reported in [32] and the associated
movies [29] which show how eigenvalues become denser as the distance between the
corners of the square inclusions tends to 0. The spectrum considered in [32] is closely
related to ours: see [13] that studies the homogenization limit of the spectrum of the
Neumann-Poincaré operator.

The present article is organized as follows. The setting and notations are described in
Section 2, where some background material about plasmonic resonances and the Poincaré
variational operator is briefly recalled. In Section 3, we construct corner singularity func-
tions that describe the behavior of solution to the transmission problem (1.1) near the
central neck of a bowtie-shaped domain D when the permittivity inside D is negative.
Contrarily to the case of connected planar domains with corners (see [11, 12, 18]) these
functions always lie outside the energy space H1. In Section 4, we use these singular
functions to prove that the spectrum of TD is composed only of essential spectrum and
occupies the whole interval [0,1]. In Sections 5 and 6, we relate this behavior to that of the
spectrum of a near-bowtie shaped domain Dδ, as δ→ 0. This article ends with the short
Appendix recalling some material about Weyl sequences.

2 The Poincaré variational operator of a bowtie-shaped
plasmonic antenna

2.1 Generalities about plasmonic resonances

Let Ω⊂ R2 denote a bounded open set with smooth boundary, containing the origin.
Throughout the article, a point x ∈R2 shall be indifferently represented in terms of its
Cartesian coordinates x=(x1,x2) or its polar coordinates with origin 0, as x=(r,θ). Also,
for ρ>0, we denote by Bρ (resp. Bρ(x)) the open ball with center 0 (resp. x) and radius ρ.

Let DbΩ be an open set, representing an inclusion in Ω; for the moment, no particular
assumption is made about the regularity of D. As we have hinted at in the introduction,
the plasmonic resonances of the inclusion D are described in terms of the conduction
equation for the voltage potential u:

{ −div(a(x)∇u(x))= f in Ω,
u(x)=0 on ∂Ω,

(2.1)

where f is a source in H−1(Ω) and the conductivity a(x) is piecewise constant:

a(x)=
{

k∈C, x∈D,
1, x∈Ω\D.

(2.2)

Classical results from the theory of elliptic PDE’s show that when k∈C\R−, the Eq. (2.1)
has a unique solution u∈H1

0(Ω), which satisfies:

||u||H1
0 (Ω)≤C(k)|| f ||H−1(Ω),
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where the constant C(k)> 0 depends on k. In the above relation and throughout this
article, the space H1

0(Ω) is equipped with the following inner product and associated
norm

〈u,v〉H1
0 (Ω)=

∫

Ω
∇u·∇vdx and ||u||H1

0 (Ω)=

(∫

Ω
|∇u|2dx

)1/2

.

Our main purpose is to describe the quasistatic plasmonic resonances of D; these are
defined as the values k∈C of the conductivity inside D such that there exists a bounded
sequence fn of sources in H−1(Ω) - say || fn||H−1(Ω)=1 - such that there exists a sequence
un of associated voltage potentials, solution to (2.1), which blows up: ||un||H1

0 (Ω)→∞ as
n→∞.

Remark 2.1. In our setting, the considered inclusion D is embedded in a large (yet
bounded) ”hold-all” domain Ω and not in the free space R2 as is customary in the study
of the Neumann-Poincaré operator (see e.g., [16, 34]). This is only a matter of simplicity,
since we intend to focus on the properties of D and not on those of its surrounding envi-
ronment. The present study could easily be adapted to the case where Ω=R2, by using
weighted Sobolev spaces instead of H1

0(Ω) as energy space.

2.2 The Poincaré variational operator and its connection with the
Neumann-Poincaré operator in the case of a Lipschitz inclusion

2.2.1 The Poincaré variational operator and the conduction equation

Following the lead of the seminal work [34], a convenient tool in our study of the plas-
monic resonances of D is the Poincaré variational operator TD : H1

0(Ω)→H1
0(Ω), defined

as follows: for u∈H1
0(Ω), TDu is the unique function in H1

0(Ω) such that:

∀v∈H1
0(Ω),

∫

Ω
∇(TDu)·∇vdx=

∫

D
∇u·∇vdx. (2.3)

The link between TD and the conduction equation (2.1) is the following: a simple calcu-
lations shows that u∈H1

0(Ω) satisfies (2.1) if and only if:

(βId−TD)u=βg, where β :=
1

1−k
, (2.4)

and where g is obtained from f via the Riesz representation theorem

∀v∈H1
0(Ω),

∫

Ω
∇g·∇vdx= 〈 f ,v〉H−1(Ω),H1

0 (Ω).

In the same spirit, the Poincaré variational operator offers a convenient characterization
of the plasmonic resonances of D:
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Proposition 2.1. Let k∈C, k 6=1 and let the conductivity a(x)∈L∞(Ω) be defined as (2.2).
The following statements are equivalent:

1. There exists a sequence un∈H1
0(Ω) such that

||div(a∇un)||H−1(Ω)=1 and ||un||H1
0 (Ω)→∞. (2.5)

2. The conductivity k inside D is such that β := 1
1−k belongs to the spectrum σ(TD) of

TD.

Proof. Let us first assume that β= 1
k−1 is in σ(TD). By the Weyl criterion–see Theorem A.2

in Appendix–there exists a sequence un∈H1
0(Ω) such that:

||un||H1
0 (Ω)=1 and ||TDun−βun||H1

0 (Ω)
n→∞−−−→0.

Up to making a small perturbation of the un, one may additionnally assume that ||TDun−
βun||H1

0 (Ω) 6=0 for all n. Now, let

vn :=
1

(k−1)||TDun−βun||H1
0 (Ω)

un,

obviously, ||vn||H1
0 (Ω)→∞ as n→∞, while the definition of TD implies:

||div(a∇vn)||H−1(Ω)= sup
w∈H1

0 (Ω),
||w||

H1
0 (Ω)

=1

∫

Ω
a(x)∇vn ·∇wdx

=(k−1) sup
w∈H1

0 (Ω),
||w||

H1
0 (Ω)

=1

∫

Ω
∇(TDvn−βvn)·∇wdx

=1.

Hence, the sequence vn satisfies (2.5).
Conversely, if there exists a sequence un∈H1

0(Ω) such that (2.5) holds, a similar argu-
ment allows to construct a Weyl sequence for TD and the value β= 1

1−k , so that β belongs
to σ(TD). This concludes the proof.

We may therefore look for the plasmonic resonances of the inclusion DbΩ by search-
ing for the values of the conductivity k∈C inside D such that β= 1

1−k∈σ(TD). This remark
motivates the study of the spectrum σ(TD).
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2.2.2 Structure of the spectrum of the Poincaré variational operator of a Lipschitz
regular inclusion

In this section, we assume D to be Lipschitz regular; for further purpose, we also allow
D to consist of several connected components: D =

⋃N
i=1 Di, i = 1,··· ,N. The following

proposition outlines the general structure of the spectrum σ(TD); see [13] for a proof.

Proposition 2.2. The operator TD is bounded, self-adjoint, with operator norm ||TD||=1.
Moreover,

(i) Its spectrum σ(TD) is contained in the interval [0,1].

(ii) The eigenspace associated to the eigenvalue 0 is:

Ker(TD)={u∈H1
0(Ω), ∃ci∈R, u= ci in Di, i=1,··· ,N}.

(iii) The value 1 belongs to σ(TD) and the associated eigenspace is:

Ker(Id−TD)={u∈H1
0(Ω), u=0 in Ω\Dδ};

and Ker(Id−TD) can be identified with H1
0(D).

(iv) The space H1
0(Ω) has the orthogonal decomposition:

H1
0(Ω)=Ker(TD)⊕Ker(Id−TD)⊕HD, (2.6)

where HD, the ”non trivial” part of σ(TD), is the closed subspace of H1
0(Ω) defined

by

HD =
{

u∈H1
0(Ω), ∆u=0 in D∪(Ω\D)

and
∫

∂Di

∂u+

∂ν
ds=0, i=1,··· ,N

}
. (2.7)

In the above proposition, we have denoted by ν the unit normal vector to the Lipschitz
boundary ∂D pointing outward D; for a.e. x∈ ∂D and for any smooth enough function
w, the traces w± and normal derivatives ∂w±

∂ν of w are respectively defined by:

w±(x)= lim
t→0
t>0

w(x±tν(x)) and
∂w±

∂ν
(x)= lim

t→0
t>0

∇w(x±tν(x))·ν(x).

Note that these identities have to be considered in the weaker sense of traces–in H1/2(∂D)
and H−1/2(∂D) respectively–if less regularity is assumed on w, as is the case in (2.7).
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2.2.3 Connection with the Neumann-Poincaré operator when D is Lipschitz

In this section again, we assume D to be Lipschitz regular. As we have mentioned in
the introduction, the operator TD has then close connections with the Neumann-Poincaré
operator K∗D : H−1/2(∂D)→H−1/2(∂D) of the inclusion D, which we now briefly recall.

Let P(x,y) denote the Poisson kernel associated to Ω, defined by

P(x,y)=G(x,y)+Rx(y), x,y∈Ω, x 6=y,

where G(x,y) is the Green function in the two-dimensional free space:

G(x,y)=
1

2π
log|x−y|,

and for a given x∈Ω, Rx(y) is the smooth solution to

{
∆yRx(y)=0, y∈Ω,
Rx(y)=−G(x,y), y∈∂Ω,

see for instance [5]. Thence, the single layer potential SD ϕ of a function ϕ∈ L2(∂D) is
defined by

SD ϕ(x)=
∫

∂D
P(x,y)ϕ(y)ds(y), x∈D∪(Ω\D).

It is well-known [26, 45] that SD ϕ belongs to the space D defined by

D :=
{

u∈H1
0(Ω), ∆u=0 in D∪(Ω\D)

}
,

notice that D is slightly larger than its subspace HD defined in (2.7) (they differ by a
finite-dimensional space). Additionally, the definition of SD extends to potentials ϕ ∈
H−1/2(∂D) [40] and the induced mapping SD : H−1/2(∂D)→D is an isomorphism [16].

The normal derivatives of the single layer potential across ∂D satisfy the Plemelj jump
conditions

∂SD ϕ

∂ν

±
=

(
±1

2
Id+K∗D

)
ϕ, (2.8)

where K∗D : L2(∂D)→L2(∂D) is the Neumann-Poincaré operator of D, defined by

K∗D ϕ(x)=
∫

∂D

∂P
∂νx

(x,y)ϕ(y)ds(y),

whose definition makes sense for Lipschitz domains [21, 45]. In turn, K∗D extends as an
operator H−1/2(∂D)→H−1/2(∂D); see [40].
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Eventually, the Poincaré variational operator TD : D→ D and the Neumann-Poincaré
operator K∗D : H−1/2(∂D)→H−1/2(∂D) are related as:

RD =−SD◦K∗D◦S−1
D , where RD :=TD−

1
2

Id,

see [16, 34]. In particular, the spectra of TD and K∗D are equal, up to a constant shift:

σ(K∗D)=1/2−σ(TD) and σess(K
∗
D)=1/2−σess(TD),

and the plasmonic resonances of D may be equivalently studied from the vantage of TD
or K∗D.

2.3 The case of a bowtie-shaped antenna

2.3.1 Presentation of the physical setting

From now on and in the remaining of this article, we assume that D is shaped as a bowtie
(and hence is not Lipschitz): D=D1∪D2 is the reunion of two connected domains whose
boundaries are smooth except at 0 and there exist r0>0 and 0<α<π such that:

D1∩Br0 ={(rcosθ,rsinθ), 0< r< r0, −α/2≤ θ≤α/2},
D2∩Br0 ={(rcosθ,rsinθ), 0< r< r0, π−α/2≤ θ≤π+α/2},

see Fig. 1. We refer to D1 and D2 as the ”wings” of the bowtie (after all, ”bowtie” trans-
lates as ”nœud papillon” in French).

Remark 2.2. We have assumed D to be smooth except at the contact point 0 between the
wings D1 and D2. Our analysis remains valid if D1 and D2 have additional corners (for

↵

2

D1D2

⌦

r0

0

Figure 1: Setting of the bowtie-shaped domain presented in Section 2.3.

Remark 2.2. We have assumed D to be smooth except at the contact point 0 between the
wings D1 and D2. Our analysis remains valid if D1 and D2 have additionnal corners (for in-
stance if they are shaped as triangles, as is often the case in actual physical devices). Indeed,
as we show below, it is the contact point between the two wings that carries the worst singu-
larity and determines the width of the essential spectrum of the Poincaré variational operator
of D.

2.3.2 The Poincaré variational operator of a bowtie-shaped antenna

The bowtie-shaped domain D of Section 2.3 fails to be Lipschitz regular, since it does not arise
as the subgraph of a Lipschitz function in the vicinity of the point 0. Rather than defining and
studying an adapted Neumann-Poincaré operator (see [3] however for a related construc-
tion), we base our study of the well-posedness of (2.1) on the Poincaré variational operator,
whose definition (2.3) naturally makes sense in the case of domains like D.

Since the set D is not Lipschitz regular, some care is in order about the definition of the
attached functional spaces. We denote by H1(D) is the set of functions on D which are restric-
tions to D of functions in H1(R2) and by H1

0(D) the closure of C∞
c (D) in H1

0(Ω). Also, H̃1(D)
is the set of functions u∈H1(D) whose extension to Ω by 0 is in H1

0(Ω). Let us recall that,
if ObΩ is a Lipschitz domain H̃1(O)= H1

0(O); see [28]. Unfortunately, the bowtie-shaped
domain D is not Lipschitz, but this property nevertheless holds, as we now prove:

Lemma 2.1. Let D be a bowtie as described in Section 2.3.1. Then H̃1(D)=H1
0(D).

Proof. On the one hand, any smooth function in C∞
c (D) can be extended by 0 to a function in

H1
0(Ω), so that by density, H1

0(D)⊂ H̃1(D) (this inclusion actually holds true in the case of a
general domain D).

On the other hand, to show the reverse inclusion, let u∈H̃1(D); given the particular shape
of D, one may write u=u1+u2, for some u1,u2∈H1(D) with Supp(u1)⊂D1 and Supp(u2)⊂D2.
Since D1 is a Lipschitz domain, u1 ∈ H̃1(D1) = H1

0(D1) and u1 arises as the limit in H1
0(Ω)

of a sequence of functions u1,n ∈ C∞
c (D1); hence u1 ∈ H1

0(D). Similarly, u2 ∈ H1
0(D), so that

H̃1(D)⊂H1
0(D).

8

Figure 1: Setting of the bowtie-shaped domain presented in Section 2.3.
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instance if they are shaped as triangles, as is often the case in actual physical devices).
Indeed, as we show below, it is the contact point between the two wings that carries
the worst singularity and determines the width of the essential spectrum of the Poincaré
variational operator of D.

2.3.2 The Poincaré variational operator of a bowtie-shaped antenna

The bowtie-shaped domain D of Section 2.3 fails to be Lipschitz regular, since it does not
arise as the subgraph of a Lipschitz function in the vicinity of the point 0. Rather than
defining and studying an adapted Neumann-Poincaré operator (see [3] however for a
related construction), we base our study of the well-posedness of (2.1) on the Poincaré
variational operator, whose definition (2.3) naturally makes sense in the case of domains
like D.

Since the set D is not Lipschitz regular, some care is in order about the definition of
the attached functional spaces. We denote by H1(D) is the set of functions on D which
are restrictions to D of functions in H1(R2) and by H1

0(D) the closure of C∞
c (D) in H1

0(Ω).
Also, H̃1(D) is the set of functions u∈ H1(D) whose extension to Ω by 0 is in H1

0(Ω).
Let us recall that, if ObΩ is a Lipschitz domain H̃1(O)=H1

0(O); see [28]. Unfortunately,
the bowtie-shaped domain D is not Lipschitz, but this property nevertheless holds, as we
now prove:

Lemma 2.1. Let D be a bowtie as described in Section 2.3.1. Then H̃1(D)=H1
0(D).

Proof. On the one hand, any smooth function in C∞
c (D) can be extended by 0 to a function

in H1
0(Ω), so that by density, H1

0(D)⊂H̃1(D) (this inclusion actually holds true in the case
of a general domain D).

On the other hand, to show the reverse inclusion, let u∈ H̃1(D); given the particular
shape of D, one may write u= u1+u2, for some u1,u2∈H1(D) with Supp(u1)⊂D1 and
Supp(u2)⊂D2. Since D1 is a Lipschitz domain, u1 ∈ H̃1(D1) = H1

0(D1) and u1 arises as
the limit in H1

0(Ω) of a sequence of functions u1,n∈C∞
c (D1); hence u1∈H1

0(D). Similarly,
u2∈H1

0(D), so that H̃1(D)⊂H1
0(D).

The main spectral properties of TD are described in the following proposition, which
is an echo of Proposition 2.2 in the case of the bowtie-shaped domain D. The proof
is essentially that of Proposition 3.2 in [13], except for a technical point that we make
precise.

Proposition 2.3. The operator TD is bounded, self-adjoint, with operator norm ||TD||=1.
Moreover,

(i) Its spectrum σ(TD) is contained in the interval [0,1].

(ii) The eigenspace associated to the eigenvalue 0 is:

Ker(TD)={u∈H1
0(Ω), ∃c∈R, u= c in D}.
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(iii) The value 1 belongs to σ(TD) and the associated eigenspace is

Ker(Id−TD)={u∈H1
0(Ω), u=0 in Ω\D},

therefore, in light of Lemma 2.1, Ker(Id−TD) is naturally identified with H1
0(D).

(iv) The space H1
0(Ω) decomposes as

H1
0(Ω)=Ker(TD)⊕Ker(Id−TD)⊕HD,

where HD is the closed subspace of H1
0(Ω) defined by

HD =

{
u∈H1

0(Ω), ∆u=0 in D∪(Ω\D) and
∫

∂D1∪∂D2

∂u+

∂ν
ds=0

}
. (2.9)

Proof. (i): It is a straightforward consequence of the self-adjointness of TD and of the fact
that ||TD||=1.
(ii): By definition, a function u∈H1

0(Ω) belongs to Ker(TD) if and only if

∀v∈H1
0(Ω),

∫

D
∇u·∇vdx=0.

Let u∈Ker(TD); then
∫

D |∇u|2dx=0, so that u is constant on D1 and on D2: there exist c1,
c2∈R such that u= ci on Di, i=1,2. Moreover, since u∈H1

0(Ω), the trace u|` of u on the
one-dimensional subset ` :={x=(x1,x2)∈Ω, x2=0} belongs to H

1
2 (`). However, by the

definition of u and D, there exists r0>0 such that:

u|`(x)=c1 if x=(x1,0) with −r0<x1<0 and u|`(x)=c2 if x=(x1,0) with 0<x1<r0.

This implies that c1=c2. Conversely, if u∈H1
0(Ω) satisfies u=c on D for some c∈R, then

u∈Ker(TD).
(iii): This follows from a similar argument.
(iv): A function u∈H1

0(Ω) is orthogonal to Ker(TD) if and only if

∀v∈Ker(TD),
∫

Ω
∇u·∇vdx=0. (2.10)

Using first test functions v∈C∞
c (Ω\D), we obtain that ∆u=0 in Ω\D. Now using arbitrary

functions v∈H1
0(Ω) take a constant value inside D and integrating by parts yields the

subsequent condition: ∫

∂D1∪∂D2

∂u+

∂n
ds=0. (2.11)

Eventually, one proves in a similar way that u∈H1
0(Ω) is orthogonal to Ker(Id−TD) if

and only if ∆u=0 in D.
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Remark 2.3. • Rigorously speaking, the definition of the normal derivative ∂u+

∂ν as an
element in H−1/2(∂D) in (2.9) is not so straightforward in the present context, since
D fails to be Lipschitz. It is possible to define this notion nevertheless, but we shall
not require this in the present article; for our purpose, we may understand (2.11) in
the sense that (2.10) holds for any function v∈H1

0(Ω) such that v≡1 on D.

• Interestingly, from the vantage of the eigenspaces of TD, D behaves as if it were a
connected domain (compare Proposition 2.3 with its the counterpart Proposition 2.2
in the Lipschitz case). This peculiarity highlights one specificity of bowtie-shaped
domains.

3 Corner singularity functions for a bowtie

In this section we characterize the local behavior of solutions to the equation

div(a∇u)=0, where a(x) is given by (2.2), (3.1)

in the vicinity of the contact point x=0 of the two wings of the bowtie D.
When k takes a positive real value, this question pertains to the theory of elliptic

corner singularity, to which a great deal of literature is devoted, see e.g., [22,23,28,35,36].
In a nutshell, for a two-phase transmission problem of the form (3.1) featuring a piecewise
smooth inclusion with corners, u is expected to decompose as the sum of a regular and
of a singular part u=ureg+using, where ureg has at least H2 regularity, whereas using is H1

but not H2 regular. Moreover, in the neighborhood of a corner, the latter function takes
the following form in polar coordinates:

using(r,θ)=Crη ϕ(θ).

In this expression, C is a multiplicative constant, η ∈ (0,1] and ϕ is a piecewise smooth
function; both η and ϕ depend on the geometry of the wedge and of the contrast in
conductivities.

In the present section, we investigate the local behavior of the non trivial solutions
to (3.1) in the case of a bowtie-shaped domain D, when k takes negative values. More
precisely, let the conductivity a be defined by:

a(θ) :=

{
k, if |θ|< α

2
or |π−θ|< α

2
,

1, otherwise.

We search for a solution to (3.1) in the whole space R2. More specifically, we are interested
in finding some solutions to (3.1) in the sense of distributions which do not belong to the
energy space H1

loc(R
2). These solutions will be the key ingredient in the construction

of generalized eigenfunctions of TD carried out in Section 4. Considering the symmetry
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of the geometric configuration with respect to the horizontal axis, it is enough to search
for solutions u to one of the following two problems set on the upper half-space Π+ :={

x=(x1,x2)∈R2, x2>0
}

:

{
div(a∇u)=0 in Π+,
u(x)=0 on ∂Π+,

(3.2a)




div(a∇u)=0 in Π+,
∂u
∂n

(x)=0 on ∂Π+.
(3.2b)

Indeed, assume that uD is a solution to (3.2a) in the sense of distributions and define

u(x1,x2)=

{
uD(x1,x2), if x2≥0,
−uD(x1,−x2), if x2<0,

a.e. x=(x1,x2)∈R2.

Then it is easily seen that u is a solution to (3.1) in the sense of distributions. Likewise, if
uN is a solution to (3.2b), then

u(x1,x2) :=
{

uN(x1,x2), if x2≥0,
uN(x1,−x2), if x2<0,

solves (3.1).
Let us first search for a solution to (3.2a) under the form u(r,θ) = riξ ϕ(θ) for some

ξ>0 and some function ϕ(θ), which is 2π-periodic. Simple calculations show that (3.2a)
implies:

(a(θ)ϕ′(θ))′−ξ2a(θ)ϕ(θ)=0

and so ϕ has the form:

ϕ(θ)=





a1cosh(ξθ)+b1sinh(ξθ), 0< θ<
α

2
,

a2cosh(ξθ)+b2sinh(ξθ),
α

2
< θ<π− α

2
,

a3cosh(ξθ)+b3sinh(ξθ), π− α

2
< θ<π,

for some constants aj, bj, j=1,2,3 to be determined. Now expressing the transmission and
boundary conditions in (3.2a) yields a homogeneous linear system for the coefficients aj,
bj. Existence of a non-trivial solution to (3.2a) requires that the determinant of this system
should vanish. A straightforward calculation shows that the latter determinant is the
following polynomial of order 2 in k:

dD(k)=cosh2(ξα/2)sinh[ξ(π−α)]k2+cosh2[ξ(π−α)]sinh(ξα)k

+sinh2(ξα/2)sinh[ξ(π−α)], (3.3)
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in which ξ acts as a parameter. The roots of dD(k) are:

kD,+(ξ)=
−(cosh[ξ(π−α)]−1)sinh(ξα)

2cosh2(ξα/2)sinh[ξ(π−α)]
and kD,−(ξ)=

−(cosh[ξ(π−α)]+1)sinh(ξα)

2cosh2(ξα/2)sinh[ξ(π−α)]
.

(3.4)
Likewise, there exists a solution to (3.2b) of the form u= riξ ϕ(θ) provided the following
determinant vanishes:

dN(k)=sinh2(ξα/2)sinh[ξ(π−α)]k2+cosh2[ξ(π−α)]sinh(ξα)k

+cosh2(ξα/2)sinh[ξ(π−α)]. (3.5)

Its roots are:

kN,+(ξ)=
−(cosh[ξ(π−α)]−1)sinh(ξα)

2sinh2(ξα/2)sinh[ξ(π−α)]
and kN,−(ξ)=

−(cosh[ξ(π−α)]+1)sinh(ξα)

2sinh2(ξα/2)sinh[ξ(π−α)]
.

It is easy to check that kD,+ is a smooth function on R+, that limξ→0+ kD,+(ξ)= 0, while
limξ→+∞ kD,+(ξ)=−1. In addition, we may rewrite:

kD,+(ξ)=

(
−cosh[ξ(π−α)]−1

sinh[ξ(π−a)]

)
tanh(ξα/2),

and check that as functions of ξ>0, the first term in the above right-hand side is negative
and decreasing, while the second is positive and increasing. We conclude that kD,+(ξ) is
a decreasing function that maps (0,∞) into (0,−1).

On the other hand, kN,− is a smooth function on R+, limξ→0+ kN,−(ξ) = −∞,
limξ→+∞ kN,−(ξ)=−1 and it holds:

kN,−(ξ)=
(
−cosh[ξ(π−α)]+1

sinh[ξ(π−a)]

)
tanh−1(ξα/2).

As functions of ξ>0, the first term in the above right-hand side is negative and increasing,
while the second is positive and decreasing. It follows that kN,− is a strictly increasing
function of ξ that maps (0,∞) into (−∞,−1).

Thus, for any−1<k<0 (resp. −∞<k<−1) there exists a unique ξ such that k=kD,+(ξ)
(resp. k= kN,−(ξ)). We also note that kD,± and kN,± are even functions of ξ∈R, so that if
u= riξ ϕ(θ) is a singular solution, so is r−iξ ϕ(θ).

We summarize our findings in a technical lemma:

Lemma 3.1. For any k<0, k 6=−1, there exists ξ>0 and a 2π-periodic function ϕ∈H1
#(0,2π)

such that the function u defined by

u(x1,x2)=Re(riξ ϕ(θ))∈L∞(Ω) (3.6)

is a solution of (3.1) in the sense of distributions. In addition, the function ϕ in (3.6) solves

(a(θ)ϕ′(θ))′−ξ2a(θ)ϕ(θ)=0.
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Remark 3.1. • One can check that kN,−(ξ)< kN,+(ξ)<−1< kD,−(ξ)< kD,+(ξ)<0 for
all ξ>0.

• In the case where k > 0, the same procedure yields solutions of (3.1) of the form
u(r,θ)=rξ ϕ(θ) for some 0<ξ<1 and ϕ∈H1

#(0,2π); such functions are in H1
loc(R

2)\
H2

loc(R
2).

4 Characterization of the spectrum of TD

In this section, we now proceed to the identification of the spectrum of TD.

Theorem 4.1. The operator TD has only essential spectrum and

σ(TD)= [0,1].

Proof. Using Proposition 2.3 and the fact that σess(TD) is closed, it is enough to show
that any number β ∈ (0,1), β 6= 1

2 lies in the essential spectrum of TD. The proof relies
on the same ingredients as that of Theorem 2 in [18] and we reproduce it for the sake of
completeness.
Step 1: Using the singular solutions u to the transmission problem (3.1) (see Lemma 3.1)
calculated in the previous section, we aim at constructing a singular Weyl sequence for
the operator TD and the value β, namely, a sequence of functions uε ∈H1

0(Ω) satisfying
the following properties (see Appendix):





||uε||H1
0 (Ω)=1,

(βId−TD)uε→0 strongly in H1
0(Ω),

uε→0 weakly in H1
0(Ω).

(4.1)

To this end, let ρ< r0
2 ; we introduce two smooth cut-off functions χ1,χ2 : R+→ [0,1] such

that for some constant C>0, the following relations hold:

χ1(s)=0 for |s|≤1, χ1(s)=1 for |s|≥2, |χ′1(s)|≤C for s≥0, (4.2a)
χ2(s)=1 for |s|≤ρ, χ2(s)=0 for |s|≥2ρ, |χ′2(s)|≤C for s≥0. (4.2b)

For ε>0 small enough, we set χε
1(r)=χ1(

r
ε ) and define

uε(x)= sεχ
ε
1(r)χ2(r)u(x), x∈Ω, (4.3)

where the normalization constant sε is chosen so that ||uε||H1
0 (Ω)=1.

Step 2: We estimate the constant sε. To this end, we decompose
∫

Ω
|∇uε|2dx= s2

ε (J1,ε+mε+ J2), (4.4)
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where

J1,ε =
∫

B2ε\Bε

|∇uε|2dx=
∫

B2ε\Bε

|u∇χε
1+χε

1∇u|2dx,

mε =
∫

Bρ\B2ε

|∇uε|2dx=
∫

Bρ\B2ε

|∇u|2dx,

and
J2=

∫

B2ρ\Bρ

|∇uε|2dx=
∫

B2ρ\Bρ

|χ2∇u+u∇χ2|2dx.

Let us first estimate J1,ε, using the explicit form (3.6) for u and a change in polar coordi-
nates:

J1,ε =
∫ 2ε

ε

∫ 2π

0

(∣∣∣1
ε

riξ+r−iξ

2
ϕ(θ)χ′1

( r
ε

)
+iξ

riξ−r−iξ

2r
ϕ(θ)χ1

( r
ε

)∣∣∣
2

+
∣∣∣ r

iξ+r−iξ

2r
ϕ′(θ)χ1

( r
ε

)∣∣∣
2)

rdrdθ

≤C
ε2

∫ 2ε

ε

∫ 2π

0
rdrdθ+C

∫ 2ε

ε

∫ 2π

0

1
r

drdθ,

≤C.

In the above equation and throughout the proof, C is a generic constant independent of
ε, which may change from one line to the next.

The integral J2 does not depend on ε and since u is smooth on B2ρ\Bρ, it is bounded
by some constant C>0.

Finally, since u does not belong to H1
0(Ω) (recall from (3.6) that its gradient blows up

like r−1 as r→0), it follows that
mε

ε→0−−→∞. (4.5)

Let us note for further reference that the behavior of mε as ε→0 may be estimated more
precisely:

mε =
∫ ρ

2ε

∫ 2π

0

(
ξ2
∣∣∣∣
riξ−r−iξ

2r
ϕ(θ)

∣∣∣∣
2

+
1
r2

∣∣∣∣
riξ+r−iξ

2
ϕ′(θ)

∣∣∣∣
2)

rdrdθ,

≤C
∫ ρ

2ε

∫ 2π

0

1
r

drdθ,

and so there exists a constant C>0 such that

mε≤C|logε|. (4.6)

Recalling (4.4), we obtain

1= s2
ε mε

(
1+

J1,ε+ J2

mε

)
,
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so that there exists a constant C>0 such that

1
C

m−
1
2

ε ≤ sε≤Cm−
1
2

ε . (4.7)

Step 3: We show that uε is a Weyl sequence for the operator TD and the value β. To this
end, we estimate

||βuε−TDuε||H1
0 (Ω)= sup

v∈H1
0 (Ω),

||v||
H1

0 (Ω)
=1

J(v), where J(v) :=
∫

Ω
∇(βuε−TDuε)·∇vdx.

Recall from (2.4) the alternative expression for J(v)

J(v)=β
∫

Ω\D
∇uε ·∇vdx+(β−1)

∫

D
∇uε ·∇vdx

=β
∫

Ω
a(x)∇uε ·∇vdx,

with

a(x)=





1, if x∈Ω\D,

1− 1
β

, if x∈D.

Inserting the expression (4.3) of uε in the definition of J(v) yields after elementary calcu-
lations:

J(v)=sεβ
∫

Ω\D
∇u·∇(χε

1χ2v)dx+sε(β−1)
∫

D
∇u·∇(χε

1χ2v)dx

+sεβ
∫

Ω\D
u∇(χε

1χ2)·∇vdx+sε(β−1)
∫

D
u∇(χε

1χ2)·∇vdx

−sεβ
∫

Ω\D
v∇u·∇(χε

1χ2)dx−sε(β−1)
∫

D
v∇u·∇(χε

1χ2)dx.

Since u satisfies (3.1) and since the test function χε
1χ2v has compact support in Bρ\Bε, the

sum of the first two integrals in the right-hand side of the above identity vanishes, so that

J(v)=βsε(J3,ε(v)+ J4,ε(v)), (4.8)

where we have defined:

J3,ε(v)=
∫

Ω
au∇(χε

1χ2)·∇vdx−
∫

B2ρ\Bρ

av∇u·∇χ2dx and J4,ε(v)=−
∫

B2ε\Bε

av∇u·∇χε
1dx.

(4.9)
Similar calculations to those involved in the estimate (4.7) show that

|J3,ε(v)|

≤C||v||H1
0 (Ω)

(
1
ε2

∫ 2ε

0

∫ 2π

0
|u|2|χ′1|2rdrdθ+

∫ 2ρ

ρ

∫ 2π

0

(
|u|2|χ′2|2+|∇u|2|χ2|2

)
rdrdθ

)
, (4.10)

OPEN ACCESS

DOI https://doi.org/10.4208/ata.OA-0011 | Generated on 2025-03-11 05:35:59



102 E. Bonnetier et al. / Anal. Theory Appl., 35 (2019), pp. 85-116

and so

J3,ε(v)≤C||v||H1
0 (Ω). (4.11)

To estimate the remaining term J4,ε(v), we further decompose

J4,ε(v)=
∫

B2ε\Bε

av∇u·∇χε
1dx+

∫

B2ε\Bε

a(v−v)∇u·∇χε
1dx, (4.12)

where v := 1
|B2ε|
∫

B2ε
v(x)dx. The first integral in the above right-hand side reduces to

∫

B2ε\Bε

av∇u·∇χε
1dx=

v
ε

∫ 2ε

ε

∫ 2π

0
a(θ)χ′1

( r
ε

)
iξ

riξ−r−iξ

2r
ϕ(θ)rdrdθ

=
v
ε

∫ 2π

0
a(θ)ϕ(θ)dθ

∫ 2ε

ε
iξ

riξ−r−iξ

2
χ′(

r
ε
)dr,

=0,

where we have used the fact that ϕ∈H1
#(0,2π) is a solution to the equation:

(a(θ)ϕ′(θ))′−ξ2a(θ)ϕ(θ)=0,

so that it satisfies
∫ 2π

0 a(θ)ϕ(θ)dθ=0. Hence, returning to (4.12), it follows that

|J4,ε(v)|≤
(∫

B2ε\Bε

a2|∇u·∇χε|2 dx
) 1

2
(∫

B2ε

|v−v|2dx
) 1

2

.

The following Poincaré-Wirtinger inequality
∫

B2ε

|v−v|2dx≤Cε2
∫

B2ε

|∇v|2dx,

where the constant C is independent of ε, yields

|J4,ε(v)|≤Cε||v||H1
0 (Ω)

(∫ 2π

0
a(θ)2|ϕ(θ)|2 dθ

)1/2
(∫ 2ε

ε

∣∣∣∣iξ
riξ−r−iξ

2r

∣∣∣∣
2 1

ε2 χ′1
( r

ε

)2
rdr

)1/2

≤C||v||H1
0 (Ω)

(∫ 2ε

ε

dr
r

)1/2

≤C||v||H1
0 (Ω).

We conclude from (4.8), (4.10) and the above estimate that

|J(v)|≤Csε||v||H1
0 (Ω).

OPEN ACCESS

DOI https://doi.org/10.4208/ata.OA-0011 | Generated on 2025-03-11 05:35:59



E. Bonnetier et al. / Anal. Theory Appl., 35 (2019), pp. 85-116 103

Since sε→0 (see (4.7) and (4.5)), this proves that

||βuε−TDuε||H1
0 (Ω)

ε→0−−→0,

and so uε is a Weyl sequence for TD and the value β.
Step 4: Finally, we show that uε is a singular Weyl sequence for TD and the value β,
namely that uε→ 0 weakly in H1

0(Ω). Since uε has unit norm in H1
0(Ω), it is enough to

prove that uε→0 strongly in L2(Ω), which follows easily from (4.3), from the bounded-
ness of χε

1, χ2 and u in L∞(Ω) and from the fact that sε→0 (viz. (4.7)).

5 Comparison with the bowtie with close-to-touching wings

It is interesting to compare the spectral properties of the Poincaré variational operator of
D to that of a (Lipschitz) domain Dδ =D1,δ∪D2,δ with only close-to-touching wings. Let
us introduce

D1,δ =(δ/2,0)+D1, D2,δ =(−δ/2,0)+D2,

where the parameter δ>0 is sufficiently small so that DδbΩ; see Fig. 2.
The corresponding Poincaré variational operator TDδ

: H1
0(Ω)−→H1

0(Ω) is now de-
fined by

∀v∈H1
0(Ω),

∫

Ω
∇(TDδ

u)·∇vdx=
∫

Dδ

∇u·∇vdx.

Since Dδ is Lipschitz regular, the study of the spectrum σ(TDδ
) falls into the framework

of Sections 2.2.2 and 2.2.3 and Proposition 2.2 holds in this case.
More precisely, both domains D1,δ and D2,δ have a piecewise smooth boundary with

a finite number of angles. Hence, the results of K.-M. Perfekt and M. Putinar [43] apply:

Since sε→0 (see (4.7) and (4.5)), this proves that

||βuε−TDuε||H1
0 (Ω)

ε→0−−→0,

and so uε is a Weyl sequence for TD and the value β.

Step 4: Finally, we show that uε is a singular Weyl sequence for TD and the value β, namely
that uε→ 0 weakly in H1

0(Ω). Since uε has unit norm in H1
0(Ω), it is enough to prove that

uε→0 strongly in L2(Ω), which follows easily from (4.3), from the boundedness of χε
1, χ2 and

u in L∞(Ω), and from the fact that sε→0 (viz. (4.7)).

5 Comparison with the bowtie with close-to-touching wings

It is interesting to compare the spectral properties of the Poincaré variational operator of D
to that of a (Lipschitz) domain Dδ = D1,δ∪D2,δ with only close-to-touching wings. Let us
introduce

D1,δ = (δ/2,0)+D1, D2,δ = (−δ/2,0)+D2,

where the parameter δ>0 is sufficiently small so that DδbΩ; see Figure 2.

0

D1,�D2,�

�

2

Figure 2: The bowtie with close-to-touching wings.

The corresponding Poincaré variational operator TDδ
: H1

0(Ω)−→H1
0(Ω) is now defined

by

∀v∈H1
0(Ω),

∫

Ω
∇(TDδ

u)·∇vdx =
∫

Dδ

∇u·∇vdx.

Since Dδ is Lipschitz regular, the study of the spectrum σ(TDδ
) falls into the framework of

Sections 2.2.2 and 2.2.3, and Proposition 2.2 holds in this case.
More precisely, both domains D1,δ and D2,δ have a piecewise smooth boundary with a

finite number of angles. Hence, the results of K.-M. Perfekt and M. Putinar [43] apply:
the essential spectrum of the associated Poincaré variational operator TDδ

(and that of the

16

Figure 2: The bowtie with close-to-touching wings.
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the essential spectrum of the associated Poincaré variational operator TDδ
(and that of the

Neumann-Poincaré operator K∗D) is completely determined by the most acute angle α on
the boundary of D1,δ and D2,δ. In our context, this takes the form:

σess(TDδ
)=
[ α

2π
,1− α

2π

]
, σess(K

∗
Dδ
)=

[
−π−α

2π
,
π−α

2π

]
.

Hence, the close-to-touching corners of Dδ are qualitatively less singular than the bowtie
feature of D, which is associated to an essential spectrum σ(TD)= [0,1]. A similar phe-
nomenon was already noticed in the article [17], investigating the regularity of solutions
to (2.1) in the case of the domains D and Dδ for a value k> 0 of the conductivity. In the
close-to-touching case, the singular part of the solution uδ to (2.1) behaves like rη at the
vertices, with η≥2/3 independently of the value of k and of the angle α. For the touching
case (i.e., in the case of D), u behaves also like rη at the contact point, but η can be made
as close to 0 as desired by choosing k sufficiently close to 0 or +∞.

Our aim is now to show that, as δ→ 0, the spectrum σ(TDδ
) converges to a limiting

set which is exactly the spectrum σ(TD)= [0,1] of the limiting physical situation. To this
end, we study the limit spectrum

lim
δ→0

σ(TDδ
) :=

{
β∈R, ∃δn ↓0, βn∈σ(TDδn

), βn→β
}

(5.1)

of the sequence of operators TDδ
.

Our analysis relies on the following abstract result for self-adjoint operators, which is
part of the statement of Lemma 2.8 in [1].

Theorem 5.1. Let H be a Hilbert space and Sδ :H→H denote a sequence of self-adjoint operators,
with spectrum σ(Sδ). Assume that the operators Sδ converge pointwise to a limiting operator S,
with spectrum σ(S), in the sense that

∀u∈H, lim
δ→0
||Sδu−Su||→0. (5.2)

Then,

lim
δ→0

σ(Sδ)⊃σ(S), (5.3)

where the left-hand set denotes the limit spectrum of the sequence of operators Sδ.

Remark 5.1. The statement in [1] is more general; in this reference, the result is proved
under the additional assumption that the operators Sδ and S are compact, but this hy-
pothesis is not necessary for the version presented in Theorem 5.1.

We now prove

Proposition 5.1. The operators TDδ
converge pointwise to TD as δ→0, in the sense that

∀u∈H1
0(Ω), lim

δ→0
||TDδ

u−TDu||H1
0 (Ω)=0.
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Proof. Fix u∈H1
0(Ω) and consider

||TDδ
u−TDu||2H1

0 (Ω)
=
∫

Ω
|∇TDδ

u−∇TDu|2dx

=
∫

Dδ

∇u·∇(TDδ
u−TDu)dx−

∫

D
∇u·∇(TDδ

u−TDu)dx

=
∫

Ω
(1Dδ
−1D)∇u·∇(TDδ

u−TDu)dx

≤
(∫

Ω
(1Dδ
−1D)|∇u|2dx

)1/2

||TDδ
u−TDu||H1

0 (Ω).

The Lebesgue Dominated Convergence Theorem shows that the first integral on the
right-hand side tends to 0 as δ→0, which proves the Proposition.

Combining Proposition 5.1, Theorem 5.1 and the fact that the spectrum of each TDδ
is

contained in [0,1] (see Proposition 2.2), we obtain:

Corollary 5.1. The limiting spectrum (5.1) of the operators TDδ
is exactly that of the

Poincaré variational operator of the bowtie antenna D:

lim
δ→0

σ(TDδ
)=σ(TD)= [0,1].

This result deserves a few additional comments. As we have mentioned, the essential
spectrum of TDδ

is exactly the interval [ α
2π ,1− α

2π ] independently of δ, whereas the above
corollary shows that in the limit δ→0, the spectrum σ(TDδ

) must densify so as to occupy
the whole interval [0,1]. The only possible way for this to happen is that for δ sufficiently
small TDδ

must develop eigenvalues in the intervals [0, α
2π ) and (1− α

2π ,1], which become
denser as δ→0. Let us point out that such a densification phenomenon has been observed
in different physical contexts; see [31, 32] and [14].

6 Another approach to the limit spectrum of bowties with
close-to-touching wings

The purpose of this section is to provide an alternative proof of the fact that σ(TDδ
) con-

tains eigenvalues if the distance between the wings is sufficiently small. This fact is in-
deed contained in Corollary 5.1, but the forthcoming proof is more direct and sheds light
on the behavior of the eigenfunctions of TDδ

. The main result of this section is the follow-
ing:

Theorem 6.1. For δ>0 small enough, the operator TDδ
has eigenvalues in the range

(
1− α

2π ,1
)

and in the range
(
0, α

2π

)
, i.e., outside the essential spectrum σess(TDδ

).
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Proof. Recalling the orthogonal decomposition (2.6), let us denote by β−δ and β+
δ the lower

and upper bounds of the spectrum of TDδ
deprived of the trivial eigenvalues 0 and 1, i.e.,

β−δ = inf
σ(TDδ

)\{0,1}
and β+

δ = sup
σ(TDδ

)\{0,1}
.

Relying on a spectral representation for the operator TDδ
:HDδ

→HDδ
(see e.g., [44]), these

bounds are given by the Rayleigh quotients:

β−δ = min
w∈H1

0 (Ω)

w⊥Ker(TDδ
)

∫
Dδ
|∇w|2dx∫

Ω |∇w|2dx
and β+

δ = max
w∈H1

0 (Ω)

w⊥Ker(Id−TDδ
)

∫
Dδ
|∇w|2dx∫

Ω |∇w|2dx
. (6.1)

Let us now pick a value β/∈[ α
π ,1− α

π ], so that β lies outside the essential spectrum σess(TDδ
)

for any δ> 0. Our aim is to prove that there exists a sequence of functions Zδ ∈H1
0(Ω)

which is orthogonal to Ker(TDδ
) (resp. to Ker(Id−TDδ

)) such that:

β= lim
δ→0

∫
Dδ
|∇Zδ|2dx∫

Ω |∇Zδ|2dx
.

Let k= 1− 1
β be the conductivity associated to β (see Section 2.3.2). We take on the con-

struction of uε carried out in Section 4: let u denote the function supplied by Lemma
3.1:

u(x)=Re(riξ)ϕ(θ), (6.2)

where ξ satisfies

dD(ξ)=0 or dN(ξ)=0,

according to (3.3) and (3.5).
Let 0<ρ be sufficiently small and let χ1, χ2 be the cut-off functions defined as in (4.2);

for 0< ε<ρ, we define:

uε(x)sεχ1

( r
ε

)
χ2(r)u(x).

As in (4.3), the normalization constant sε is chosen so that ||uε||H1
0 (Ω)=1. Recall from (4.6)

that there exists a constant C>0 such that:

sε≤C
1

|log(ε)| 12
. (6.3)

The calculations performed in Section 4 have revealed that the sequence uε satisfies

lim
ε→0
||(βI−TD)uε||H1

0 (Ω)=0. (6.4)
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Recalling (2.3), this implies in particular that

β= lim
ε→0

∫
D |∇uε|2dx∫
Ω |∇uε|2dx

= lim
ε→0

∫

D
|∇uε|2dx. (6.5)

Let us next turn to the configuration Dδ; for a small parameter ε>0 to be specified later,
we define a function vδ,ε by:

vδ,ε(x1,x2)=





uε

(
x1+

δ

2
,x2

)
, if x1<−

δ

2
,

uε

(
x1−

δ

2
,x2

)
, if x1>

δ

2
,

uε(0,x2), otherwise.

(6.6)

Note that, by construction, vδ,ε∈H1
0(Ω) and:

∫

Dδ

|∇vδ,ε|2dx=
∫

D
|∇uε|2dx. (6.7)

Additionally, in view of (6.2), we have
∫

Ω
|∇vδ,ε|2dx

=
∫

x1<− δ
2

∣∣∣∇uε

(
x1+

δ

2
,x2

)∣∣∣
2
dx+

∫

x1>
δ
2

∣∣∣∇uε

(
x1−

δ

2
,x2

)∣∣∣
2
dx+

∫

|x1|< δ
2

∣∣∣∂x2 uε(0,x2)
∣∣∣
2
dx

=
∫

Ω
|∇uε|2dx+s2

ε

∫

|x1|< δ
2

∣∣∣∂x2

[
χ1

( x2

ε

)
χ2(x2)u(0,x2)

]∣∣∣
2
dx. (6.8)

We now estimate the last integral in the above expression; to this end,
∫

|x1|< δ
2

∣∣∣∂x2

(
χ1

( x2

ε

)
χ2(x2)u(0,x2)

)∣∣∣
2
dx

≤ δ

ε2

∫ 2ε

ε

∣∣∣χ′1
( x2

ε

)
χ2(x2)cos(ξ log|x2|

)∣∣∣
2
dx2

+δ
∫ 2ρ

ρ

∣∣∣χ1

( x2

ε

)
χ′2(x2)cos(ξ log|x2|)

∣∣∣
2
dx2

+δ
∫ 2ρ

ε

ξ2

x2
2

∣∣∣χ1

( x2

ε

)
χ2(x2)sin(ξ log|x2|)

∣∣∣
2
dx2

≤C
δ

ε
, (6.9)

where the constant C> 0 is independent of δ and ε. Combining (6.7), (6.8) and (6.9), we
find that

∫
Dδ
|∇vδ,ε|2dx∫

Ω |∇vδ,ε|2dx
=

∫
D |∇uε|2dx

∫
Ω |∇uε|2dx+ s2

ε δ
ε Bε,δ

,
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where Bε,δ is uniformly bounded with respect to ε and δ. Finally, choosing ε=δ and using
(6.5) and (6.3), it follows that the function wδ :=vδ,δ satisfies

∣∣∣∣∣β−
∫

Dδ
|∇wδ|2dx∫

Ω |∇wδ|2dx

∣∣∣∣∣≤
C
|logδ| →0 as δ→0. (6.10)

On a different note, it will be useful for further purpose to notice that wδ is somehow
”close” to uδ. More precisely, the following result will come in handy:

Lemma 6.1. The following convergence holds:

||uδ−wδ||H1
0 (Ω)→0 as δ→0.

The proof of Lemma 6.1 is technical and is postponed to the end of this section.
To summarize: we have constructed a series of ”test” functions wδ ∈ H1

0(Ω) whose
energy ratio converges to the desired value β as δ→ 0. To use these functions in the
variational principles (6.1), we now construct from wδ a new series of functions Zδ ∈
H1

0(Ω) which satisfy the orthogonality conditions Zδ⊥Ker(TDδ
) or Zδ⊥Ker(Id−TDδ

). To
achieve this, we separate both cases.
Case 1: 1− α

π <β<1.
Let Wδ denote the orthogonal projection of wδ on Ker(Id−TDδ

)=H1
0(Dδ) and let Zδ=

wδ−Wδ. We also define the function:

Uδ(x)=1{x1<0}(x)Wδ

(
x1−

δ

2
,x2

)
+1{x1>0}(x)Wδ

(
x1+

δ

2
,x2

)
.

Obviously, ||Uδ||H1
0 (Ω)= ||Wδ||H1

0 (Ω). Also, since Wδ ∈H1
0(Dδ), there exists a sequence of

smooth functions (Wn,δ)n≥1 with compact support inside Dδ such that Wn,δ→Wδ strongly
in H1

0(Ω). It is then easy to check that the functions

Un,δ(x) :=1{x1<0}(x)Wn,δ

(
x1−

δ

2
,x2

)
+1{x1>0}(x)Wn,δ

(
x1+

δ

2
,x2

)

are smooth with compact support inside D and that they satisfy Un,δ→Uδ strongly in
H1

0(Ω). It follows that Uδ∈H1
0(D).

Now, at first using (6.8), (6.9) and the orthogonality of Wδ and Zδ yields:

1+o(1)=
∫

Ω
|∇wδ|2dx=

∫

Ω
|∇Wδ|2dx+

∫

Ω
|∇Zδ|2dx

=
∫

Dδ

|∇Wδ|2dx+
∫

Ω
|∇Zδ|2dx,

where o(1)→0 as δ→0. Also, from (6.10), using again (6.8) and (6.9), we infer:

β+o(1)=
∫

Dδ

|∇wδ|2dx=
∫

Dδ

|∇Wδ|2dx+
∫

Dδ

|∇Zδ|2dx+2
∫

Dδ

∇Wδ ·∇Zδdx

=
∫

Dδ

|∇Wδ|2dx+
∫

Dδ

|∇Zδ|2dx,
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since ∫

Dδ

∇Wδ ·∇Zδdx=
∫

Ω
∇(TDδ

Wδ)·∇Zδdx=
∫

Ω
∇Wδ ·∇Zδdx=0.

Hence, our purpose is now to prove that ||Wδ||H1
0 (Ω)→0 as δ→0.

To this end, we first observe that, on the one hand, since Wδ∈Ker(Id−TDδ
),

∫

Ω
∇((TDδ

−βId)wδ)·∇Wδdx

=
∫

Ω
∇wδ ·∇((TDδ

−βId)Wδ)dx

=(1−β)
∫

Ω
∇wδ ·∇Wδdx

=(1−β)||Wδ||2H1
0 (Ω)

. (6.11)

On the other hand, recalling (6.6) with ε=δ, a change of variables yields:
∫

Ω
∇(TDδ

wδ)·∇Wδdx=
∫

Dδ

∇wδ ·∇Wδdx

=
∫

D
∇uδ ·∇Uδdx=

∫

Ω
∇(TDuδ)·∇Uδdx, (6.12)

and also, since Wδ and Uδ are supported in Dδ and in D respectively,
∫

Ω
∇wδ ·∇Wδdx=

∫

Dδ

∇wδ ·∇Wδdx=
∫

Ω
∇uδ ·∇Uδdx. (6.13)

Combining (6.12) and (6.13) thus implies:
∫

Ω
∇((TDδ

−βId)wδ)·∇Wδdx=
∫

Ω
∇((TD−βId)uδ)·∇Uδdx

≤||(TD−βId)uδ||H1
0 (Ω)||Uδ||H1

0 (Ω)

=||(TD−βId)uδ||H1
0 (Ω)||Wδ||H1

0 (Ω).

Combining this estimate with (6.11) and in view of (6.4), we obtain

(1−β)||Wδ||H1
0 (Ω)≤||(TD−βId)uδ||H1

0 (Ω)= o(1) as δ→0.

Since β 6=1, we conclude that ||Wδ||H1
0 (Ω)→0, as expected.

This together with (6.10) finally implies:

β= lim
δ→0

∫
Dδ
|∇wδ|2dx∫

Ω |∇wδ|2dx
= lim

δ→0

∫
Dδ
|∇Zδ|2dx∫

Ω |∇Zδ|2dx
,
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and so, since Zδ⊥Ker(Id−TDδ
):

β+
δ = max

w∈H1
0 (Ω)

w⊥Ker(Id−TDδ
)

∫
Dδ
|∇w|2dx∫

Ω |∇w|2dx
≥β+o(1), (6.14)

which is the desired result.
Case 2: 0<β< α

π .
Recalling (6.10), we again decompose wδ =Wδ+Zδ, where Wδ now denotes the or-

thogonal projection of wδ on Ker(TDδ
), so that in particular ∇Wδ = 0 inside Dδ. Again,

our aim is to prove that Wδ→0 strongly in H1
0(Ω) as δ→0.

This follows from the chain of inequalities:

||Wδ||2H1
0 (Ω)

=
∫

Ω
∇Wδ ·∇(wδ−Zδ)dx

=
∫

Ω
∇Wδ ·∇wδdx

=
1
β

∫

Ω
∇((βI−TDδ

)uδ)·∇Wδdx+
∫

Ω
∇(wδ−uδ)·∇Wδdx+

1
β

∫

Ω
∇TDδ

uδ ·∇Wδdx

≤ 1
β
||(βI−TDδ

)uδ||H1
0 (Ω)||Wδ||H1

0 (Ω)+||uδ−wδ||H1
0 (Ω)||Wδ||H1

0 (Ω)

+
1
β

∣∣∣∣
∫

Dδ

∇wδ ·∇Wδdx
∣∣∣∣,

and so:
||Wδ||H1

0 (Ω)≤
1
β
||(βI−TDδ

)uδ||H1
0 (Ω)+||uδ−wδ||H1

0 (Ω).

It thus follows from (6.4) and Lemma 6.1 that ||Wδ||H1
0 (Ω)→0, so that

lim
δ→0

∫
Dδ
|∇wδ|2dx∫

Ω |∇wδ|2dx
= lim

δ→0

∫
Dδ
|∇Zδ|2dx

s
∫

Ω |∇Zδ|2dx
=β,

which yields, since Zδ⊥Ker(TDδ
),

min
w∈H1

0 (Ω)

w⊥Ker(TDδ
)

∫
Dδ
|∇w|2dx∫

Ω |∇w|2dx
≤β+o(1). (6.15)

We conclude from (6.14) and (6.15) that for δ > 0 small enough, TDδ
necessarily has

eigenvalues in the range [1− α
π ,1) and in the range (0, α

π ), i.e., outside the essential spec-
trum.

We eventually prove the missing link in the above discussion.
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Proof of Lemma 6.1. By definition, uδ has compact support inside B2ρ, while wδ has com-
pact support in the stadium

Sδ :=B2ρ

(
− δ

2
,0
)
∪Lδ∪B2ρ

( δ

2
,0
)

, where Lδ :=
{

x=(x1,x2)∈Ω, |x1|<
δ

2
, |x2|<2ρ

}
.

Denote
H−δ =

{
x∈B2ρ\Lδ, x1<0

}
and H+

δ =
{

x∈B2ρ\Lδ, x1>0
}

.

Using that |Sδ\B2ρ|→0 as δ→0 and the uniform boundedness of uδ and wδ ”far” from 0,
one has first:

||uδ−wδ||2H1
0 (Ω)

=
∫

Sδ

|∇uδ−∇wδ|2dx,

=
∫

Lδ

|∇uδ−∇wδ|2dx+
∫

B2ρ\Lδ

|∇uδ−∇wδ|2dx+o(1),

=:I−δ + I+δ + IL
δ +o(1),

where we have introduced the following three integrals (recalling the definition (6.6) of
wδ):

I−δ :=
∫

H−δ

∣∣∣∇uδ(x1,x2)−∇uδ

(
x1+

δ

2
,x2

)∣∣∣
2
dx, I+δ :=

∫

H+
δ

∣∣∣∇uδ(x1,x2)−∇uδ

(
x1−

δ

2
,x2

)∣∣∣
2
dx,

IL
δ :=

∫

Lδ

|∇uδ(x1,x2)−∇uδ(0,x2)|2dx.

We now prove that I−δ , I+δ and IL
δ vanish as δ→0.

• Proof of the convergence I−δ →0: A simple calculation yields:

I−δ =
∫

H−δ ∩B3δ

∣∣∣∇uδ(x1,x2)−∇uδ

(
x1+

δ

2
,x2

)∣∣∣
2
dx

+
∫

H−δ \B3δ

∣∣∣∇uδ(x1,x2)−∇uδ

(
x1+

δ

2
,x2

)∣∣∣
2
dx,

=:J1
δ + J2

δ .

At first, for x∈B3δ, one has uδ(x)= sδχ1(
r
δ )u(x) and so:

∂uδ

∂xi
(x1,x2)= sδ

(
1
δ

xi

r
χ′1
( r

δ

)
u(x)+

iξxi

2r2 χ1

( r
δ

)
(riξ−r−iξ)ϕ(θ)

)
, i=1,2. (6.16)

Now using Taylor’s formula yields:

J1
δ ≤Cδ2

(∫

H−δ ∩B3δ

∫ 1

0

∣∣∣∣
∂2uδ

∂x2
1

(
x1+t

δ

2
,x2

)∣∣∣∣
2

dtdx+
∫

H−δ ∩B3δ

∫ 1

0

∣∣∣∣
∂2uδ

∂x1∂x2

(
x1+t

δ

2
,x2

)∣∣∣∣
2

dtdx

)
,

≤Cδ2s2
δ

∫

H−δ ∩B3δ

∫ 1

0

(
1
δ4 +

1
δ2r2

t
+

1
r4

t

)(∣∣∣χ1

( rt

δ

)∣∣∣
2
+
∣∣∣χ′1
( rt

δ

)∣∣∣
2
+
∣∣∣χ′′1
( rt

δ

)∣∣∣
2)

dtdx,
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where we have denoted by (rt,θt) the polar representation of the point with Cartesian
coordinates (x1+t δ

2 ,x2). Using that χ1(
rt
δ ) vanishes for rt≤δ, it follows:

J1
δ ≤Cδ2s2

δ

∫

H−δ ∩B3δ

1
δ4 dx,

and so J1
δ converges to 0 as δ→0, owing to the estimate (6.3) on sδ.

Let us now deal with the integral J2
δ . Using the same calculation as above yields:

J2
δ ≤Cδ2

(∫

H−δ \B3δ

∫ 1

0

∣∣∣∣
∂2uδ

∂x2
1

(
x1+t

δ

2
,x2

)∣∣∣∣
2

dtdx+
∫

H−δ \B3δ

∫ 1

0

∣∣∣∣
∂2uδ

∂x1∂x2

(
x1+t

δ

2
,x2

)∣∣∣∣
2

dtdx

)
,

and since for x∈Ω\B3δ, one has uδ(x)= sδu(x)χ2(r), it follows:

∂uδ

∂xi
(x)= sδ

iξxi

2r2 (r
iξ−r−iξ)ϕ(θ)χ2(r)+

xi

r
χ′2(r)u(x) for x∈Ω\B3δ, (6.17)

so that:

J2
δ ≤Cδ2s2

δ

∫

B2ρ\B3δ

∫ 1

0

∣∣∣∣
1
r2

t

∣∣∣∣
2

dx,

where, again, (rt,θt) are the polar coordinates of (x1+t δ
2 ,x2). We now remark that, by an

elementary calculation:

r2
t ≥

r2

2
− δ2

2
,

so that, switching to polar coordinates:

J2
δ ≤Cδ2s2

δ

∫ 2ρ

3δ

rdr
(r2−δ2)2 ≤Cs2

δ,

whence J2
δ→0. This completes the proof of that fact that I−δ →0 as δ→0.

• The proof that I+δ →0 is completely similar.
• Proof of the convergence IL

δ → 0: Using a similar decomposition as in the case for
I−δ , we get:

IL
δ =

∫

Lδ∩B3δ

|∇uδ(x1,x2)−∇uδ(0,x2)|2dx+
∫

Lδ\B3δ

|∇uδ(x1,x2)−∇uδ(0,x2)|2dx,

=:K1
δ+K2

δ .

Using the expression (6.16) for the gradient of uδ inside B3δ, it comes:

K1
δ =

∫

Lδ∩B3δ

∣∣∣∣
∫ 1

0

∂2uδ

∂x2
1
(tx1,x2)x1dt

∣∣∣∣
2

dx+
∫

Lδ∩B3δ

∣∣∣∣
∫ 1

0

∂2uδ

∂x1∂x2
(tx1,x2)x1dt

∣∣∣∣
2

dx

≤Cs2
δ

∫

H−δ ∩B3δ

∫ 1

0

(
1
δ4 +

1
δ2r2

t
+

1
r4

t

)(∣∣∣χ1

( rt

δ

)∣∣∣
2
+
∣∣∣χ′1
( rt

δ

)∣∣∣
2
+|χ′′1

( rt

δ

)∣∣∣
2)
|x1|2dtdx,
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where we have now denoted by (rt,θt) the polar coordinates of (tx1,x2). Since χ1(
rt
δ ),

χ′1(
rt
δ ) and χ′′1 (

rt
δ ) vanish identically for rt≤δ, we obtain:

K1
δ≤Cs2

δ

∫

Lδ∩B3δ

|x1|2
δ4 dx,

and it follows as previously that K1
δ→0 as δ→0. Likewise, using (6.17), we get:

K2
δ =

∫

Lδ\B3δ

∣∣∣∣
∫ 1

0

∂2uδ

∂x2
1
(tx1,x2)x1dt

∣∣∣∣
2

dx+
∫

Lδ\B3δ

∣∣∣∣
∫ 1

0

∂2uδ

∂x1∂x2
(tx1,x2)x1dt

∣∣∣∣
2

dx

≤Cs2
δ

∫

Lδ\B3δ

∫ 1

0

1
|rt|4
|x1|2dtdx,

where (rt,θt) are the polar coordinates of (tx1,x2). We now use the fact that, for x∈Lδ\B3δ

and t∈ (0,1),

r2
t = t2x2

1+x2
2 = r2+(t2−1)x2

1≥ r2− δ2

4
.

Hence, switching to polar coordinates,

K2
δ≤Cs2

δ

∫

Lδ\B3δ

|x1|2
(r2−δ2)2 dx≤Cδ2s2

δ

∫

Lδ\B3δ

1
(r2−δ2)2 dx

≤Cδ2s2
δ

∫ 2ρ

3δ

r
(r2−δ2)2 dr≤Cs2

δ,

which completes the proof of the fact that K2
δ→0 as δ→0 and so that IL

δ →0.
Putting things together, we have proved that ||uδ−wδ||2H1

0 (Ω)
= I−δ + I+δ + IL

δ +o(1) con-
verges to 0 as δ→0, which is the expected conclusion.

Appendix: The spectrum of an operator and the Weyl criterion

For the reader’s convenience, we recall in this appendix the Weyl criterion, one of the
main tools used in the present article; see for instance [44], Chap. VII or [10] for a more
complete presentation.

Let T : H→H be a bounded self-adjoint operator on a Hilbert space H. As is well-
known, the spectrum σ(T) of T is the set of real numbers λ such that (λId−T) does not
have a bounded inverse. The discrete spectrum σdisc(T) of T is the subset of the λ∈σ(T)
such that both the following conditions hold:

(i) λ is isolated in σ(T), i.e., there exists ε>0 such that σ(T)∩(λ−ε,λ+ε)={λ},

(ii) λ is an eigenvalue of T with finite multiplicity.
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The complement of σdisc(T) in σ(T) is a closed set called the essential spectrum of T and is
denoted by σess(T).

The Weyl criterion offers a convenient characterization of the spectrum and essential
spectrum in terms of Weyl sequences:

Theorem A.2. Let T : H→H be a bounded, self-adjoint operator on a Hilbert space H. Then,

• A number λ∈R belongs to the spectrum σ(T) if and only if there exists a sequence un∈H
such that:

||un||=1 and ||λun−Tun|| n→∞−−−→0.

Such a sequence is called a Weyl sequence for T associated to the value λ.

• λ∈R belongs to the essential spectrum σess(T) if and only if there exists a Weyl sequence
un for λ such that un→0 weakly in H; such a sequence is called a singular Weyl sequence
for T and λ.
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