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Abstract. In this paper, a weak type (1,1) estimate is established for the higher order
commutator introduced by Christ and Journé which is defined by

T[a1,··· ,al ] f (x)=p.v.
∫

Rd
K(x−y)

( l

∏
i=1

mx,yai

)
· f (y)dy,

where K is the standard Calderón-Zygmund convolution kernel on Rd(d ≥ 2) and
mx,yai =

∫ 1
0 ai(sx+(1−s)y)ds.
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1 Introduction

Suppose that K is the standard Calderón-Zygmund convolution kernel on Rd\{0}, (d≥
2), which means that K satisfies the following conditions:

|K(x)|≤C|x|−d,
∫

R<|x|<2R
K(x)dx=0 holds for all R>0, (1.1a)

|K(x−y)−K(x)|≤C|y|δ|x|−d−δ for some 0<δ≤1 if |x|>2|y|. (1.1b)

In 1987, Christ and Journé [5] introduced a higher dimensional commutator associated
with K and ai∈L∞(Rd) (i=1,··· ,l) by

T[a1,··· ,al ] f (x)=p.v.
∫

Rd
K(x−y)

( l

∏
i=1

mx,yai

)
· f (y)dy, f ∈S(Rd),
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where S(Rd) denotes the Schwartz class and

mx,yai =
∫ 1

0
ai((1−t)x+ty)dt=

∫ 1

0
ai(tx+(1−t)y)dt.

Note that T[a1,··· ,al ] f (x) can be seen as a higher dimensional generalization of the fol-
lowing commutator

p.v.
∫

R

l

∏
i=1

(Ai(x)−Ai(y)
x−y

) f (y)
x−y

dy,

which is the famous Calderón commutator discussed in [3] and is related to the study of
the Cauchy integral, boundary value problem of elliptic equation on non-smooth domain
(see e.g., [4, 10, 15]).

Observe that the kernel K(x−y) is smooth but mx,yai has no smoothness about vari-
able x and y if ai ∈ L∞(Rd). Therefore the standard Calderón-Zygmund theory cannot
be applied directly. Christ and Journé [5] proved that T[a1,··· ,al ] is bounded on Lp(Rd)
(1<p<∞) when ai∈L∞(Rd) (i=1,··· ,l). In 1995, Hofmann [14] gave the weighted Lp(Rd)
(1< p<∞) boundedness of T[a1,··· ,al ], when the kernel K(x)=Ω(x/|x|)|x|−d. Recently,
there are renew interests on this singular integral of Christ-Journé type since it has some
direct applications in the mixing flows problem (see e.g., [2, 13]). In 2015, A. Seeger,
C. Smart and B. Street [19] further studied the commutator of Christ-Journé type and
established some multilinear estimates. Later, the second author of the present paper es-
tablished all multilinear estimates of the higher Calderón commutator (see [16]). For the
endpoint case p=1, the weak type (1,1) estimate seems to be difficulty and the previous
result is only known for the first order commutator. In 2012, Grafakos and Honzı́k [12]
proved that the commutator T[a] is of weak type (1,1) for d=2. Later, Seeger [18] showed
that T[a] is also of weak type (1,1) for all d≥2. In [6], the authors established weighted
Lp boundedness of T[a] for Ap weight with d≥2 and weighted weak type (1,1) bound-
edness for power weight |x|α(−2 < α < 0) with d = 2 (later we extended this result to
general A1 weight for all d≥ 2 in [8]). However, the weak type (1,1) estimate for the
higher order commutator seems to be unexplored and may be very difficult since the
kernel involves with more than two rough factors ∏l

i=1 mx,yai under the condition that
all ai ∈ L∞(Rd)(i = 1,··· ,l). In this paper, we try to give a weak type (1,1) estimate for
T[a1,··· ,al ] with some restricted condition of ai. Our main result is as follows.

Theorem 1.1. Suppose K satisfies (1.1a) and (1.1b) for d≥2. Let a1∈ L∞(Rd). Assume ai, âi∈
L1(Rd), i=2,··· ,l. Then there exists a constant C>0 such that

m({x∈Rd : |T[a1,··· ,al ] f (x)|>λ})≤Cλ−1‖a1‖∞

( l

∏
i=2
‖âi‖1

)
‖ f ‖1

for all λ>0 and f ∈L1(Rd).
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Remark 1.1. By using Fourier inversive formula, it is easy to see that the condition a,
â∈ L1(Rd) implies a∈ L∞(Rd). To remove this kind of restricted condition, some new
ideas may be needed.

When the dimension d=2, Grafakos and Honzı́k [12] used the TT∗ method to show
that the first order commutator T[a] is of weak type (1,1). In [18], Seeger used the microlo-
cal decomposition of the kernel and the Littlewood-Paley decomposition of a. However
it seems to be difficult to use these ideas from [12] and [18] to deal with the higher order
commutator which involves more than two rough factors. In the present paper, we add
some restricted condition âi∈L1(Rd) for i=2,··· ,l. So we can make a modified Calderón-
Zygmund decomposition of a function with some parameters come from a2,··· ,al , but
those bounds in the Calderón-Zygmund decomposition are independent of these param-
eters (see Lemma 2.1). Applying this kind of Calderón-Zygmund decomposition, the
kernel essentially has only one rough kernel under the restricted condition âi ∈ L1(Rd)
for i= 2,··· ,l. Then using some idea from [7, 9, 17, 18], we may get the weak type (1,1)
bound for the higher order commutator.

This paper is organized as follows. In Section 2, we complete the proof of Theorem 1.1
based on some lemmas, their proofs will be given in Section 3 and Section 4. Throughout
this paper, the letter C stands for a positive constant which is independent of the essential
variables and not necessarily the same one in each occurrence. A.B means A≤CB for
some constant C. A≈B means that A.B and B.A. For a set E⊂Rd, we denote Lebesgue
measure of E by |E| or m(E). Denote by F f and f̂ the Fourier transform of f , which is
defined by

F f (ξ)=
∫

Rd
e−i〈x,ξ〉 f (x)dx.

Z+ denote the set of all nonnegative integers and Zd
+ = Z+×···×Z+. [x] denotes the

integer part of x.

2 Proof of Theorem 1.1: setup

In this section we give the proof of Theorem 1.1 based on some lemmas, their proofs will
be given in Section 3 and Section 4, respectively.

Using the inversive Fourier formula under the condition that ai, âi∈L1(Rd), i=2,··· ,l,
we write each term

mx,yai =
1

(2π)d

∫ 1

0

∫
Rd

âi(ηi)eisi〈ηi ,x〉ei(1−si)〈y,ηi〉dηidsi.
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Therefore by Fubini’s theorem, we have

T[a1,··· ,al ] f (x)=
1

(2π)(l−1)d
p.v.

∫
Rd

K(x−y)mx,ya1 · f (y)

×
(∫∫

[0,1]l−1×(Rd)l−1

l

∏
i=2

âi(ηi)eisi〈x,ηi〉ei(1−si)〈y,ηi〉d~sd~η
)

dy

=
∫∫

El
u~η,~s(x)(T[a1]W~η,~s f )(x)d~ηd~s, (2.1)

where

El =[0,1]l−1×(Rd)l−1, u~η,~s(x)=(2π)−(l−1)d
l

∏
i=2

âi(ηi)eisi〈x,ηi〉,

d~η=dη2 ···dηl , W~η,~s(y)=
l

∏
i=2

ei(1−si)〈y,ηi〉 and d~s=ds2 ···dsn.

In the following, we try to make a Calderón-Zygmund decomposition of W~η,~s f with the
underlying cubes independent of ~η,~s.

Lemma 2.1. Let f ∈ L1(Rd) and λ > 0. Set Ωλ = {x ∈Rd : M( f )(x)> λ} where M is the
Hardy-Littlewood maximal operator. Then we have the following conclusions:

(i) Ωλ =
⋃

Q, Q’s are disjoint dyadic cubes. Let Q be the collection of all these cubes.
(ii) m(Ωλ). 1

λ‖ f ‖1.
(iii) f W~η,~s = g~η,~s+b~η,~s.
(iv) b~η,~s =∑

Q
b~η,~s

Q , suppb~η,~s
Q ⊂Q,

∫
b~η,~s

Q =0, ‖b~η,~s
Q ‖1.λ|Q|, ‖b~η,~s‖1.‖ f ‖1.

(v) ‖g~η,~s‖2
2.λ‖ f ‖1.

All the explicit constants that appear in (i)-(v) above are independent of ~η,~s.

Proof. We first make a Whitney decomposition of the set Ωλ. Then there exists a family
of dyadic closed cubes {Qj}j (e.g., see [11]) such that

(a) Ωλ =
⋃

Qj and Qj’s have disjoint interior.
(b)
√

d·l(Qj)≤dist(Qj,Ωc
λ)≤4

√
d·l(Qj), where l(Qj) denotes the side’s length of Qj.

By the weak type (1,1) of M, we have

m(Ωλ).
1
λ
‖ f ‖1. (2.2)

We write f W~η,~s = g~η,~s+b~η,~s, where

g~η,~s = f W~η,~sχΩc
λ
+∑

Q

( 1
|Q|

∫
Q

f (x)W~η,~s(x)dx
)

χQ,

b~η,~s =∑
Q

{
f W~η,~s− 1

|Q|

∫
Q

f (x)W~η,~s(x)dx
}

χQ =:∑
Q

b~η,~s
Q .
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So, b~η,~s
Q is supported in Q and

∫
b~η,~s

Q = 0. Let tQ denote the cube with t times the side
length of Q and the same center. We now claim that

1
|Q|

∫
Q
| f (x)|dx.λ. (2.3)

In fact, by the Whitney decomposition’s property (b) we have 9
√

dQ∩Ωc
λ 6=∅. Thus by

the definition of Ωc
λ, there exists x0∈9

√
dQ such that M f (x0)≤λ. Using the property of

the maximal function, we have 1
|9
√

dQ|

∫
9
√

dQ | f (x)|dx.λ. Hence we conclude that

1
|Q|

∫
Q
| f (x)|dx≤ 1

|Q|

∫
9
√

dQ
| f (x)|dx.λ.

For b~η,~s
Q and b~η,~s, by (2.2) and (2.3) we have

‖b~η,~s
Q ‖1≤2

∫
Q
| f (x)|dx.λ|Q|, ‖b~η,~s‖1.‖ f ‖1+λm(Ωλ).‖ f ‖1.

Note that | f (x)|≤λ almost everywhere in Ωc
λ. Using this fact, (2.2) and (2.3), we have

‖g~η,~s‖2
2.λ‖ f ‖1+λ2m(Ωλ).λ‖ f ‖1.

Thus, we complete the proof.

Now we set up the proof of Theorem 1.1 with a series of lemmas. We only focus on
dimension d≥2. By using scaling arguments, we may assume ‖a1‖∞=‖âi‖1=1, i=2,··· ,l.

By (2.1) and the property (iii) in Lemma 2.1, we obtain∣∣{x : |T[a1,··· ,al ] f (x)|>λ}
∣∣≤m

({
x :
∣∣∣∫∫

El
u~η,~s(x)T[a1]g~η,~s(x) d~ηd~s

∣∣∣>λ/2
})

+m
({

x :
∣∣∣∫∫

El
u~η,~s(x)T[a1]b~η,~s(x) d~ηd~s

∣∣∣>λ/2
})

.

Hence, using Chebyshev’s inequality, the fact T[a1] is bounded on L2(Rd) with bound
C‖a1‖∞ (see [5]) and the property (iv) in Lemma 2.1, we get∣∣∣{x∈Rd :

∫∫
El

u~η,~s(x)T[a1]g~η,~s(x)d~ηd~s|>λ/2
}∣∣∣

.λ−2
∥∥∥∫∫

El
u~η,~s(x)T[a1]g~η,~s(x)d~ηd~s

∥∥∥2

2

.λ−2
(∫∫

El

( l

∏
i=2
|âi(ηi)|

)
‖T[a1]g~η,~s(x)‖2 d~ηd~s

)2

.λ−2
(∫∫

El

( l

∏
i=2
|âi(ηi)|

)
‖a1‖∞‖g~η,~s‖2 d~ηd~s

)2

.λ−1‖ f ‖1.
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Define E∗=
⋃

Q∈Q2200Q. Then we have

m
({

x :
∣∣∣∫∫

El
u~η,~s(x)T[a1]b~η,~s(x) d~ηd~s

∣∣∣>λ/2
})

≤m(E∗)+m
({

x∈ (E∗)c :
∣∣∣∫∫

El
u~η,~s(x)T[a1]b~η,~s(x) d~ηd~s

∣∣∣>λ/2
})

.

By the property (ii) in Lemma 2.1, the set E∗ satisfies

m(E∗).m(Ωλ).λ−1‖ f ‖1.

Thus, to finish the proof of Theorem 1.1, it suffices to show

m
({

x∈ (E∗)c :
∣∣∣∫∫

El
u~η,~s(x)T[a1]b~η,~s(x) d~ηd~s

∣∣∣>λ/2
})
.
‖ f ‖1

λ
. (2.4)

Denote Qk = {Q ∈ Q : l(Q) = 2k} and let B
~η,~s
k = ∑

Q∈Qk

b~η,~s
Q . Then b~η,~s can be rewritten as

b~η,~s= ∑
j∈Z

B
~η,~s
j . Let ψ be a radial C∞ function such that ψ(ξ)=1 for |ξ|≤1, ψ(ξ)=0 for |ξ|≥2

and 0≤ψ(ξ)≤1 for all ξ∈Rd. Define φ(x)=ψ(x)−ψ(2x). Then supp φ⊂{x : 1
2≤|x|≤2}

and ∑j φj(x)= 1 for all x∈Rd\{0}, where φj(x)=φ(2−jx). Now we define the operator
Tj[a1] as

Tj[a1] f (x)=
∫

Rd
φj(x−y)K(x−y)mx,ya1 · f (y)dy. (2.5)

Then T[a1]=∑
j

Tj[a1]. For simplicity, we set Kj(x)=φj(x)K(x). We write

T[a1]b~η,~s(x)= ∑
n∈Z

∑
j∈Z

Tj[a1]B
~η,~s
j−n.

Note that Tj[a1]B
~η,~s
j−n(x)=0 for x∈(E∗)c and n<100. Therefore we only consider n≥100.

Here we should point out that the number 100 is not very important. In fact, it is sufficient
to consider large n once we choose the set E∗ as large as we want. Write

m
({

x∈ (E∗)c :
∣∣∣∫∫

El
u~η,~s(x)T[a1]b~η,~s(x) d~ηd~s

∣∣∣>λ/2
})

=m
({

x∈ (E∗)c :
∣∣∣∫∫

El
u~η,~s(x) ∑

n≥100
∑
j∈Z

Tj[a1]B
~η,~s
j−n(x) d~ηd~s

∣∣∣>λ/2
})

.

Hence, to finish the proof of of Theorem 1.1, it suffices to verify the following estimate:

m
({

x∈Rd :
∣∣∣∫∫

El
u~η,~s(x) ∑

n≥100
∑
j∈Z

Tj[a1]B
~η,~s
j−n(x)d~ηd~s

∣∣∣>λ/2
})
.
‖ f ‖1

λ
. (2.6)
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2.1 Some key estimates

Some important estimates play a key role in the proof of (2.6). We present them by some
lemmas, which will be proved in Section 3 and Section 4. The first estimate tells us that
the operator Tj[a1] can be approximated by an operator Tn

j [a1] in measure, which is de-
fined below.

Let lτ(n) = τδ−1n+2, where τ > 1
n > 0 and 0< τδ−1 < 1 will be chosen later. As we

mention before, we only need to consider sufficient larger n, so the constant τ could
be chosen as small as want and it will be chosen at the end of this paper. Let η be a
nonnegative, radial C∞ function which is supported in {|x|≤1} and satisfies

∫
Rd η(x)dx=

1. Set ηi(x)=2−idη(2−ix). Define the operator Pt by Pt f (x)=ηt∗ f (x). Set

Kn
j (x)=Pj−lτ(n)Kj(x).

Since Kj(x) is supported in {2j−1≤ |x| ≤ 2j+1} and ηj−lτ(n)(x) is supported in {|x| ≤
2j−lτ(n)}, we see that Kn

j (x) is supported in {2j−2≤|x|≤2j+2}. Therefore

|Kn
j (x)|.2−jdχ{2j−2≤|x|≤2j+2} (2.7)

and similarly for multi-indices α,

|∂αKn
j (x)|.2−jd+(lτ(n)−j)|α|χ{2j−2≤|x|≤2j+2}. (2.8)

Let ρn be a smooth, nonnegative function such that ρn(s)=1 on [2−τn,1−2−τn], supp ρn⊂
(2−τn−1,1−2−τn−1), and the derivatives of ρn satisfy the natural estimates∣∣∣∣ dk

dsk ρn(s)
∣∣∣∣.2kτn for all k∈Z+.

Let

mn
x,ya1=

∫ 1

0
ρn(s)a1(sx+(1−s)y)ds.

Define the operator Tn
j [a1] by

Tn
j [a1] f (x)=

∫
Rd

Kn
j (x−y)mn

x,ya1 · f (y)dy.

Lemma 2.2. With those definitions above, we have

m
({

x∈Rd :
∣∣∣∫∫

El
u~η,~s(x) ∑

n≥100
∑
j∈Z

(
Tj[a1]B

~η,~s
j−n(x)−Tn

j [a1]B
~η,~s
j−n(x)

)
d~ηd~s

∣∣∣>λ/4
})
.
‖ f ‖1

λ
.

By Lemma 2.2, the proof of (2.6) now is reduced to verify the following estimate:

m
({

x∈Rd :
∣∣∣∫∫

El
u~η,~s(x) ∑

n≥100
∑
j∈Z

Tn
j [a1]B

~η,~s
j−n(x) d~ηd~s

∣∣∣>λ/4
})
.
‖ f ‖1

λ
.

Below we separate Tn
j [a1] as Pj−nκTn

j [a1]+(I−Pj−nκ)Tj[a1], where κ satisfies 0< κ<1
which will be chosen later. For Pj−nκTn

j [a1], we have the following lemma.
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Lemma 2.3. With those definitions above, for n≥100, we have

‖Pj−nκTn
j [a1]B

~η,~s
j−n‖1.n

(
2−(1−κ)n+2−(1−τδ−1)n)‖B~η,~s

j−n‖1.

Applying Chebyshev’s inequality, Minkowski’s inequality and Lemma 2.3 and the
property (iv) in Lemma 2.1, one may get

m
({

x∈Rd :
∣∣∣∫∫

El
u~η,~s(x) ∑

n≥100
∑
j∈Z

Pj−nκTn
j [a1]B

~η,~s
j−n(x) d~ηd~s

∣∣∣>λ/4
})

.λ−1
∫∫

El
∑

n≥100
∑

j

∣∣ l

∏
i=2

âi(ηi)
∣∣‖Pj−nκTn

j [a1]B
~η,~s
j−n‖1d~ηd~s

.λ−1 ∑
n≥100

n(2(−1+κ)n+2(−1+τδ−1)n)‖ f ‖1.λ−1‖ f ‖1.

Now the problem is reduced to prove the estimate below

m
({

x∈Rd :
∣∣∣∫∫

El
u~η,~s(x) ∑

n≥100
∑
j∈Z

(I−Pj−nκ)Tn
j [a1]B

~η,~s
j−n(x) d~ηd~s

∣∣∣>λ/4
})
.
‖ f ‖1

λ
. (2.9)

In the following, we need to make a microlocal decomposition of the kernel. To do this,
we need to give a partition of unity on the unit surface Sd−1. Choose n≥ 100. Let Θn =
{en

v}v be a collection of unit vectors on Sd−1 which satisfies the following two conditions:
(a) |en

v−en
v′ |≥2−nγ−4, if v 6=v′;

(b) If θ∈Sd−1, there exists an en
v such that |en

v−θ|≤2−nγ−4.
The constant γ in (a) and (b) satisfying 0<τδ−1<γ<κ<1 which will be chosen later.

In fact, we may simply take a maximal collection {en
v}v for which (a) holds. Notice that

there are C2nγ(d−1) elements in the collection {en
v}v. For every θ∈Sd−1, there only exists

finite en
v such that |en

v−θ|≤2−nγ−4. Now we can construct an associated partition of unity
on the unit surface Sd−1. Let ζ be a smooth, nonnegative, radial function with ζ(u)=1 for
|u|≤ 1

2 and ζ(u)=0 for |u|>1. Define

Ψn
v(ξ)= ζ

(
2nγ
( ξ

|ξ| −en
v

))
, Γn

v(ξ)=Ψn
v(ξ)

(
∑

en
v∈Θn

Ψn
v(ξ)

)−1
.

Then it is easy to see that Γn
v is homogeneous of degree 0 with ∑

v
Γn

v(ξ)= 1 holds for all

ξ 6=0 and all n. In addition, we have the following estimate for multi-indices α and ξ 6=0,

|∂α
ξ Γn

v(ξ)|.2nγ|α||ξ|−|α|. (2.10)

Now we define operator Tn,v
j [a1] by

Tn,v
j [a1] f (x)=

∫
Rd

Kn,v
j (x−y)mn

x,ya1 · f (y)dy, (2.11)
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where Kn,v
j (x)=Kn

j (x)Γn
v(x). Therefore, we have

Tn
j [a1]=∑

v
Tn,v

j [a1].

In the sequel, we need to sperate the phase of the frequent space into different direction.
Hence we define a multiplier operator by

Ĝn,vh(ξ)=Φ(2nγ〈en
v ,ξ/|ξ|〉)ĥ(ξ),

where h is a Schwartz function and Φ is a smooth, nonnegative, radial function such that
0≤Φ(x)≤1 and Φ(x)=1 on |x|≤2, Φ(x)=0 on |x|>4. Now let Gn,v+(I−Gn,v) act on
Tn,v

j [a1]. Then we can split Tn,v
j [a1] into two parts:

Tn,v
j [a1]=Gn,vTn,v

j [a1]+(I−Gn,v)Tn,v
j [a1].

The following lemmas give the L2 estimate involving the term Gn,v, which will be proved
in next section.

Lemma 2.4. With those definitions above, for n≥100,∥∥∥∫∫
El

u~η,~s(x) ∑
j∈Z

∑
v

Gn,v(I−Pj−nκ)T
n,v
j [a1]B

~η,~s
j−n(x)d~ηd~s

∥∥∥2

2
.2−nγλ‖ f ‖1.

The estimates of the terms involving (I−Gn,v)(I−Pj−nκ)T
n,v
j [a1] are more complicated.

In Section 4, we shall prove the following lemma.

Lemma 2.5. We have∥∥∥∫∫
El

u~η,~s(x) ∑
n≥100

∑
j∈Z

∑
v
(I−Gn,v)(I−Pj−nκ)T

n,v
j [a1]B

~η,~s
j−n(x) d~ηd~s

∥∥∥
1
.‖ f ‖1.

2.2 Proof of Theorem 1.1

We now complete the proof of (2.9). By Chebyshev’s inequality, we have

m
({

x∈ (E∗)c :
∣∣∣∫∫

El
u~η,~s(x) ∑

n≥100
∑
j∈Z

(I−Pj−nκ)Tn
j [a1]B

~η,~s
j−n(x) d~ηd~s

∣∣∣>λ/4
})

.λ−2
∥∥∥∫∫

El
u~η,~s(x) ∑

n≥100
∑
j∈Z

∑
v

Gn,v(I−Pj−nκ)T
n,v
j [a1]B

~η,~s
j−n(x) d~ηd~s

∥∥∥2

2

+λ−1
∥∥∥∫∫

El
u~η,~s(x) ∑

n≥100
∑
j∈Z

∑
v
(I−Gn,v)(I−Pj−nκ)T

n,v
j [a1]B

~η,~s
j−n(x) d~ηd~s

∥∥∥
1
.
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Using Lemma 2.5, we can get the desired estimate of the second term above. By Minkowski’s
inequality and Lemma 2.4, the first term above is bounded by

λ−2
(

∑
n≥100

∥∥∥∫∫
El

u~η,~s(x) ∑
j∈Z

∑
v

Gn,v(I−Pj−nκ)T
n,v
j [a1]B

~η,~s
j−n(x) d~ηd~s

∥∥∥
2

)2

.λ−2
(

∑
n≥100

(2−nγλ‖ f ‖1)
1
2

)2
.λ−1‖ f ‖1.

We hence complete the proof of Theorem 1.1 once Lemmas 2.2-2.5 hold.

3 Proofs of Lemmas 2.2-2.4

3.1 Proof of Lemma 2.2

By the definitions of Tj[a1] and Tn
j [a1], we have

‖Tj[a1] f−Tn
j [a1] f ‖1=

∫
Rd

∣∣∣∫
Rd

(
Kj(x−y)mx,ya1−Kn

j (x−y)mn
x,ya1

)
f (y)dy

∣∣∣dx

≤I+ I I,

where

I=
∫

Rd

∣∣∣∫
Rd
(Kj(x−y)−Kn

j (x−y))mx,ya1 · f (y)dy
∣∣∣dx,

I I=
∫

Rd

∣∣∣∫
Rd

Kn
j (x−y)

(
mx,ya1−mn

x,ya1

)
f (y)dy

∣∣∣dx.

Consider I firstly. By the definition of Kn
j (x), we have

Kj(x−y)−Kn
j (x−y)=

∫
ηj−lτ(n)(z)(Kj(x−y)−Kj(x−y−z))dz.

Notice that

|Kj(x−y)−Kj(x−y−z)|
≤|φj(x−y)(K(x−y)−K(x−y−z))|+|φj(x−y)−φj(x−y−z)||K(x−y−z)|

:=A+B.

Consider the first term A. Note that |z| ≤ 2j−lτ(n) and 2j−1≤ |x−y| ≤ 2j+1, then we have
2|z|< |x−y|. By the regularity condition (1.1b), we have

A.
|z|δ

|x−y|d+δ
χ{2j−1≤|x−y|≤2j+1}.2−τn2−jdχ{2j−1≤|x−y|≤2j+1}.

OPEN ACCESS

DOI https://doi.org/10.4208/ata.OA-0007 | Generated on 2024-12-19 04:54:37



278 Y. Ding and X. D. Lai / Anal. Theory Appl., 35 (2019), pp. 268-287

For the second therm B, by the fact |z|≤2j−lτ(n) and the support of φj, we have |x−y|≈
|x−z−y| and 2j−2≤|x−y|≤2j+2. By (1.1a), we get

B.
2−j|z|
|x−z−y|d χ{2j−2≤|x−y|≤2j+2}.2−τn2−jdχ{2j−2≤|x−y|≤2j+2}.

As for I I, we have

∣∣mx,ya1−mn
x,ya1

∣∣= ∣∣∣∫ 1

0
(1−ρn(s))a1(sx+(1−s)y)ds

∣∣∣.2−τn‖a1‖∞.

Combining the above three estimates and applying Minkowski’s inequality, we have

‖Tj[a1] f−Tn
j [a1] f ‖1

.2−τn‖a1‖∞

∫
Rd

∫
2j−2≤|x−y|≤2j+2

2−jd
∫

Rd
ηj−lτ(n)(z)dz| f (y)|dydx

.2−τn‖a1‖∞2−jd
∫

Rd

∫
2j−2≤|x−y|≤2j+2

| f (y)|dydx

.2−τn‖a1‖∞‖ f ‖1. (3.1)

By Chebyshev’s inequality, Minkowski’s inequality, the estimates above and the property
(iv) in Lemma 2.1, we get the bound

m
({

x∈Rd :
∣∣∣∫∫

El
u~η,~s(x) ∑

n≥100
∑
j∈Z

(
Tj[a1]B

~η,~s
j−n(x)−Tn

j [a1]B
~η,~s
j−n(x)

)
d~ηd~s

∣∣∣>λ/2
})

.λ−1 ∑
n≥100

∫∫
El

∣∣∣ l

∏
i=2

âi(ηi)
∣∣∣∑

j

∥∥∥Tj[a1]B
~η,~s
j−n−Tn

j [a1]B
~η,~s
j−n

∥∥∥
1
d~ηd~s

.λ−1‖a1‖∞

( l

∏
i=2
‖âi‖1

)
∑

n≥100
2−τn‖ f ‖1.λ−1‖ f ‖1,

which is the required estimate. �

3.2 Proof of Lemma 2.3

Since B
~η,~s
j−n = ∑l(Q)=2j−n b~η,~s

Q , we only need to consider a fixed b~η,~s
Q with l(Q) = 2j−n. By

applying Fubini’s theorem, one may write

Pj−nκTn
j [a1]b

~η,~s
Q (x)

=
∫ 1

0
ρn(s)

∫
Rd

b~η,~s
Q (y)

∫
Rd

ηj−nκ(x−w)Kn
j (w−y)a1(sw+(1−s)y)dwdyds.
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Making a change of variables z=w+ 1−s
s y, one may get

Pj−nκTn
j [a1]b

~η,~s
Q (x)

=
∫ 1

0
ρn(s)

∫
Rd

a1(sz)
∫

Rd
ηj−nκ

(
x−z+

1−s
s

y
)

Kn
j

(
z− y

s

)
b~η,~s

Q (y)dydzds.

By using the cancellation of b~η,~s
Q (see the property of (iv) in Lemma 2.1), one may write∣∣Pj−nκTn

j [a1]b
~η,~s
Q (x)

∣∣
=
∣∣∣∫ 1

0
ρn(s)

∫
Rd

a1(sz)
∫

Rd
b~η,~s

Q (y)

×
(

ηj−nκ

(
x−z+

1−s
s

y
)

Kn
j

(
z− y

s

)
−ηj−nκ

(
x−z+

1−s
s

y0

)
Kn

j

(
z− y0

s

))
dydzds

∣∣∣
≤I+ I I,

where y0 is the center of Q and

I=
∣∣∣∫ 1

0
ρn(s)

∫
Rd
|a1(sz)|

∫
Rd
|b~η,~s

Q (y)|

×
∣∣∣ηj−nκ

(
x−z+

1−s
s

y
)
−ηj−nκ

(
x−z+

1−s
s

y0

)∣∣∣∣∣∣Kn
j

(
z− y

s

)∣∣∣dydzds

and

I I=
∣∣∣∫ 1

0
ρn(s)

∫
Rd
|a1(sz)|

∫
Rd
|b~η,~s

Q (y)|

×
∣∣∣ηj−nκ

(
x−z+

1−s
s

y0

)∣∣∣∣∣∣Kn
j

(
z− y

s

)
−Kn

j

(
z− y0

s

)∣∣∣dydzds.

Since l(Q)=2j−n, we have |y−y0|.2j−n. Using the mean value formula, one may have

I.‖a1‖∞

∫ 1

0
ρn(s)

∫
Rd

∫
Rd
|b~η,~s

Q (y)
∣∣∣1−s

s
2−j+κn|y−y0|

∣∣∣Kn
j

(
z− y

s

)∣∣∣dydzds

.2(−1+κ)n‖a1‖∞

∫ 1

0
ρn(s)s−1ds‖Kn

j ‖1‖b
~η,~s
Q ‖1.n2(−1+κ)n‖b~η,~s

Q ‖1.

Similarly, by the mean value formula and (2.8), one may get

I I.‖a1‖∞

∫ 1

0
ρn(s)

∫
Rd

∫
Rd
|b~η,~s

Q (y)|s−1|y−y0|
∫ 1

0

∣∣∣∇Kn
j

(
z− ty+(1−t)y0

s

)∣∣∣dtdydzds

.2j−n‖a1‖∞

∫ 1

0
ρn(s)s−1ds‖∇Kn

j ‖1‖b
~η,~s
Q ‖1.n2(−1+τδ−1)n‖b~η,~s

Q ‖1.

Combining the estimates of I and I I and summing over all Q with l(Q)=2j−n, we finish
the proof of Lemma 2.3. �
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3.3 Proof of Lemma 2.4

The proof of this lemma is quite similar to that of Proposition 2.4 in [18]. As usually,
we adopt the TT∗ method in the L2 estimate. We also use some orthogonality argument
based on the following observation of the support of F(Gn,v(I−Pj−nκ)T

n,v
j [a1]): For a

fixed n≥100, we have

sup
ξ 6=0

∑
v
|Φ2(2nγ〈en

v ,ξ/|ξ|〉)|.2nγ(d−2). (3.2)

In fact, by the homogeneity of Φ2(2nγ〈en
v ,ξ/|ξ|〉), it suffices to take the supremum over

the surface Sd−1. For |ξ|=1 and ξ∈ supp Φ(2nγ〈en
v ,ξ/|ξ|〉), denote by ξ⊥ the hyperplane

perpendicular to ξ. Then
dist(en

v ,ξ⊥).2−nγ. (3.3)

Since the mutual distance of en
v ’s is bounded by 2−nγ−4, there are at most 2nγ(d−2) vectors

satisfy (3.3). We hence get (3.2).
By applying Plancherel’s theorem and Cauchy-Schwarz inequality, we have∥∥∥∫∫

El
u~η,~s(x) ∑

j∈Z

∑
v

Gn,v(I−Pj−nκ)T
n,v
j [a1]B

~η,~s
j−n(x) d~ηd~s

∥∥∥2

2

=
(∫∫

El

∣∣∣ l

∏
i=2

âi(ηi)
∣∣∣∥∥∥∑

v
Φ(2nγ〈en

v ,ξ/|ξ|〉)F
(
∑

j
(I−Pj−nκ)T

n,v
j [a1]B

~η,~s
j−n

)
(ξ)
∥∥∥

2
d~ηd~s

)2

.2nγ(d−2)
(∫∫

El

∣∣∣ l

∏
i=2

âi(ηi)
∣∣∣∥∥∥∑

v

∣∣∣F(∑
j
(I−Pj−nκ)T

n,v
j [a1]B

~η,~s
j−n

)∣∣∣2∥∥∥ 1
2

1
d~ηd~s

)2

.2nγ(d−2)
(∫∫

El

∣∣∣ l

∏
i=2

âi(ηi)
∣∣∣(∑

v

∥∥∥∑
j
(I−Pj−nκ)T

n,v
j [a1]B

~η,~s
j−n

∥∥∥2

2

) 1
2
d~ηd~s

)2
. (3.4)

Once it is showed that for a fixed en
v , ~η,~s,∥∥∥∑

j
(I−Pj−nκ)T

n,v
j [a1]B

~η,~s
j−n

∥∥∥2

2
.2−2nγ(d−1)λ‖ f ‖1, (3.5)

then by card(Θn).2nγ(d−1), and apply (3.4) and (3.5) we get∥∥∥∫∫
El

u~η,~s(x) ∑
j∈Z

∑
v

Gn,v(I−Pj−nκ)T
n,v
j [a1]B

~η,~s
j−n(x) d~ηd~s

∥∥∥2

2
.2−nγλ‖ f ‖1,

which is just the desired bound of Lemma 2.4. Thus, to finish the proof of Lemma 2.4, it
is enough to prove (3.5). By applying (2.7), the support of Γn

v and 0<γ<κ<1, we have

|(I−Pj−nκ)T
n,v
j [a1]B

~η,~s
j−n(x)|.Hn,v

j ∗|B
~η,~s
j−n|(x),
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where Hn,v
j (x) :=2−jdχEn,v

j
(x) and χEn,v

j
(x) is a characteristic function of the set

En,v
j :={x∈Rd : |〈x,en

v〉|≤2j+2, |x−〈x,en
v〉en

v |≤2j+2−nγ}.

For a fixed en
v , we write∥∥∥∑
j

Tn,v
j [a1]B

~η,~s
j−n

∥∥∥2

2
.∑

j

∫
Rd

Hn,v
j ∗Hn,v

j ∗|B
~η,~s
j−n|(x)·|B~η,~s

j−n(x)|dx

+∑
j

j−1

∑
i=−∞

∫
Rd

Hn,v
j ∗Hn,v

i ∗|B
~η,~s
i−n|(x)·|B~η,~s

j−n(x)|dx. (3.6)

Observe that ‖Hn,v
i ‖1.2−idm(En,v

i ).2−nγ(d−1), therefore for any i≤ j,

Hn,v
j ∗Hn,v

i (x)≤2−nγ(d−1)2−jdχẼn,v
j

,

where Ẽn,v
j =En,v

j +En,v
j . Hence for a fixed ~η,~s, j, n, en

v and x, we have

Hn,v
j ∗Hn,v

j ∗|B
~η,~s
j−n|(x)+

j−1

∑
i=−∞

Hn,v
j ∗Hn,v

i ∗|B
~η,~s
i−n|(x)

.2−nγ(d−1)2−jd∑
i≤j

∫
x+Ẽn,v

j

|B~η,~s
i−n(y)|dy

.2−nγ(d−1)2−jd∑
i≤j

∑
Q∈Qi−n

Q∩{x+Ẽn,v
j }6=∅

∫
Rd
|b~η,~s

Q (y)|dy

.2−nγ(d−1)2−jd∑
i≤j

∑
Q∈Qi−n

Q∩{x+Ẽn,v
j }6=∅

λ|Q|

.λ2−2nγ(d−1), (3.7)

where in third inequality above, we use
∫
|b~η,~s

Q (y)|dy . λ|Q| (see the property (iv) in
Lemma 2.1) and in the fourth inequality we use fact that the cubes in Q are disjoint (see
the property (i) in Lemma 2.1). By (3.6), (3.7) and the property (iv) in Lemma 2.1, we
obtain ∥∥∥∑

j
(I−Pj−nκ)T

n,v
j [a1]B

~η,~s
j−n

∥∥∥2

2
.λ2−2nγ(d−1)∑

j
‖B~η,~s

j−n‖1.λ2−2nγ(d−1)‖ f ‖1.

Hence, we complete the proof of Lemma 2.4. �
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4 Proof of Lemma 2.5

To prove Lemma 2.5, we have to deal with some oscillatory integrals which come from
(I−Gn,v)Tn,v

j [a1].
Before stating the proof of Lemma 2.5, let us give some notations. We first introduce

the Littlewood-Paley decomposition. Let ψ be a radial C∞ function such that ψ(ξ)=1 for
|ξ|≤1, ψ(ξ)=0 for |ξ|≥2 and 0≤ψ(ξ)≤1 for all ξ∈Rd. Define βk(ξ)=ψ(2kξ)−ψ(2k+1ξ),
then βk is supported in {ξ :2−k−1≤|ξ|≤2−k+1} and ∑k βk(ξ)=1 for ξ∈Rd\{0}. Choose β̃
be a radial C∞ function such that β̃(ξ)=1 for 1

2≤|ξ|≤2, β̃ is supported in {ξ : 1
4≤|ξ|≤4}

and 0≤ β̃(ξ)≤1 for all ξ∈Rd. Set β̃k(ξ)= β̃(2kξ), then it is easy to see βk= β̃kβk. Define the
convolution operators Λk and Λ̃k with Fourier multipliers βk and β̃k, respectively. That
is,

Λ̂k f (ξ)=βk(ξ) f̂ (ξ), ̂̃Λk f (ξ)= β̃k(ξ) f̂ (ξ).

Then by the construction of βk and β̃k, we have

Λk = Λ̃kΛk, I= ∑
k∈Z

Λk.

where I is the identity. Write

(I−Gn,v)Tn,v
j [a1]=∑

k
(I−Gn,v)ΛkTn,v

j [a1].

By using Minkowski’s inequality,∥∥∥∫∫
El

u~η,~s(x) ∑
n≥100

∑
v

∑
j
(I−Pj−nκ)(I−Gn,v)Tn,v

j [a1]B
~η,~s
j−n(x)d~ηd~s

∥∥∥
1

≤ ∑
n≥100

∑
v

∑
j

∑
k

∑
l(Q)=2j−n

∫∫
El

∣∣∣ l

∏
i=2

âi(ηi)
∣∣∣·‖(I−Pj−nκ)(I−Gn,v)ΛkTn,v

j [a1]b
~η,~s
Q ‖1d~ηd~s. (4.1)

Lemma 4.1. For a fixed b~η,~s
Q with l(Q)=2j−n, there exists N>0, such that

‖(I−Pj−nκ)(I−Gn,v)ΛkTn,v
j [a1]b

~η,~s
Q ‖1.2δ−1τn−nγ(d−1)+(−j+k)+nγ(1+2N)‖b~η,~s

Q ‖1. (4.2)

Proof. First write

‖(I−Pj−nκ)(I−Gn,v)ΛkTn,v
j [a1]b

~η,~s
Q ‖1

=‖(I−Pj−nκ)Λ̃k(I−Gn,v)ΛkTn,v
j [a1]b

~η,~s
Q ‖1

≤‖(I−Pj−nκ)Λ̃k‖L1→L1‖(I−Gn,v)ΛkTn,v
j [a1]b

~η,~s
Q ‖1.
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It is easy to see that ‖(I−Pj−nκ)Λ̃k‖L1→L1 . 1 uniformly with j,k,nκ. Denote hk,n,v(ξ) =
(1−Φ(2nγ〈en

v ,ξ/|ξ|〉))βk(ξ). Applying Fubini’s theorem, we may write

(I−Gn,v)ΛkTn,v
j [a1]b

~η,~s
Q (x)=:

∫
Rd

Dk(x,y)b~η,~s
Q (y)dy, (4.3)

where
Dk(x,y)=

1
(2π)d

∫
Rd

eix·ξ hk,n,v(ξ)
∫

Rd
e−iξ·ωKn,v

j (ω−y)mn
ω,ya1dωdξ.

Next we make a change of variables to polar coordinate ω−y= rθ. By Fubini’s theorem,
Dk(x,y) can be written as

1
(2π)d

∫
Sd−1

Γn
v(θ)

{∫
Rd

∫ ∞

0
ei〈x−y−rθ,ξ〉hk,n,v(ξ)Kn

j (rθ)rd−1(mn
y+rθ,ya1)drdξ

}
dσ(θ). (4.4)

By the support of Kn
j (x) in (2.7), we have 2j−2≤ r≤2j+2. Since θ∈supp Γn

v , then |θ−en
v |≤

2−nγ. Using the support of Φ, we see |〈en
v ,ξ/|ξ|〉|≥21−nr. Thus,

|〈θ,ξ/|ξ|〉|≥ |〈en
v ,ξ/|ξ|〉|−|〈en

v−θ,ξ/|ξ|〉|≥2−nγ. (4.5)

Integrating by parts with r, Dk(x,y) can be rewritten as

1
(2π)d

∫
Sd−1

Γn
v(θ)

{∫
Rd

∫ ∞

0
ei〈x−y−rθ,ξ〉 hk,n,v(ξ)

i〈θ,ξ〉 ∂r

[
Kn

j (rθ)rd−1mn
y+rθ,ya1

]
drdξ

}
dσ(θ).

After integrating by parts with r, integrating by parts with ξ, the integral Dk(x,y) can be
rewritten as

1
(2π)d

∫
Sd−1

Γn
v(θ)

∫
Rd

ei〈x−y−rθ,ξ〉
∫ ∞

0
∂r

(
Kn

j (rθ)rd−1mn
y+rθ,ya1

)
×

(I−2−2k∆ξ)
N

(1+2−2k|x−y−rθ|2)N

(
hk,n,v(ξ)(i〈θ,ξ〉)−1

)
drdξdσ(θ). (4.6)

In the following, we give an explicit estimate of the term in (4.6). By the definition of
Kn

j (x), we have

|∂α
xKn

j (x)|=2−(j−lτ(n))|α|
∣∣∣∫ (∂α

xη)j−lτ(n)(x−z)Kj(z)dz
∣∣∣

≤2−(j−lτ(n))|α|‖Kj‖∞‖∂α
xη‖1.2−(j−lτ(n))|α|−jd, (4.7)

where the third inequality follows from (2.7). Observe

|∂r(mn
y+rθ,ya1)|=

∣∣∣∂r

(1
r

∫ r

0
ρn

( s
r

)
a1(y+sθ)ds

)∣∣∣. 1
r

2lτ(n)‖a1‖∞. (4.8)
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By using product rule, (4.7), (4.8) and 2j−2≤ r≤2j+2,∣∣∣∂r

(
Kn

j (rθ)rd−1(mn
y+rθ,ya1)

)∣∣∣.2lτ(n)−2j‖a1‖∞. (4.9)

By (4.5), we have
|(−i〈θ,ξ〉)−1 ·hk,n,v(ξ)|. |〈θ,ξ〉|−1.2nγ+k.

Now using product rule,

|∂ξi hk,n,v(ξ)|=
∣∣−∂ξi [Φ(2nγ〈en

v ,ξ/|ξ|〉)]·βk(ξ)+∂ξi βk(ξ)·(1−Φ(2nγ〈en
v ,ξ/|ξ|〉))

∣∣.2nγ+k.

Therefore by induction, we have |∂α
ξ hk,n,v(ξ)|.2(nγ+k)|α| for any multi-indices α∈Zn

+. By
using product rule again and (4.5), we have∣∣∂2

ξi
(〈θ,ξ〉)−1hk,n,v(ξ))

∣∣= ∣∣〈θ,ξ〉−3 ·2θ2
i ·hk,n,v−2〈θ,ξ〉−2 ·θi∂ξi hk,n,v(ξ)+〈θ,ξ〉−1∂2

ξi
hk,n,v(ξ)

∣∣
.23(nγ+k).

This implies the follow inequality

2−2k∣∣∆ξ [(〈θ,ξ〉)−1hk,n,v(ξ)]
∣∣.2(nγ+k)+2nγ.

Proceeding by induction, we have∣∣(I−2−2k∆ξ)
N [〈θ,ξ〉−1hk,n,v(ξ)]

∣∣.2(nγ+k)+2nγN . (4.10)

Now we choose N=[ d
2 ]+1. By (4.3) and Minkowski’s inequality,∥∥∥(I−Gn,v)ΛkTn,v

j [a1]b
~η,~s
Q

∥∥∥
1
≤
∫
‖Dk(·,y)‖1|b

~η,~s
Q (y)|dy.

So we need to get the L1 estimate of (4.4), by the support of hk,n,v,∫
supp(hk,n,v)

∫ (
1+2−2k|x−y−rθ|2

)−N
dxdξ≤C.

Integrating with r, we get a bound 2j. Then integrating with θ, we get a bound 2−nγ(d−1).
Combining (4.9), (4.10) and the above estimates,

‖Dk(·,y)‖1.2δ−1τn−nγ(d−1)+(−j+k)+nγ(1+2N).

Hence we complete the proof of Lemma 4.1 with N=[ d
2 ]+1.

Lemma 4.2. For a fixed b~η,~s
Q with l(Q)=2j−n, then

‖(I−Pj−nκ)(I−Gn,v)ΛkTn,v
j [a1]b

~η,~s
Q ‖1.2−nγ(d−1)+j−nκ−k‖b~η,~s

Q ‖1.

OPEN ACCESS

DOI https://doi.org/10.4208/ata.OA-0007 | Generated on 2024-12-19 04:54:37



Y. Ding and X. D. Lai / Anal. Theory Appl., 35 (2019), pp. 268-287 285

Proof. We write

‖(I−Pj−nκ)(I−Gn,v)ΛkTn,v
j [a1]b

~η,~s
Q ‖1

=‖(I−Pj−nκ)Λ̃k(I−Gn,v)ΛkTn,v
j [a1]b

~η,~s
Q ‖1

≤‖(I−Pj−nκ)Λ̃k‖L1→L1‖(I−Gn,v)Λk‖L1→L1‖Tn,v
j [a1]b

~η,~s
Q ‖1.

By using Minkowski’s inequality, one can easily get

‖Tn,v
j [a1]b

~η,~s
Q ‖1.2−nγ(d−1)‖b~η,~s

Q ‖1. (4.11)

Now we claim that

‖(I−Pj−nκ)Λ̃k‖L1→L1.2j−nκ−k, (4.12a)

‖(I−Gn,v)Λk‖L1→L1.1. (4.12b)

Combining (4.11), (4.12a) and (4.12b), one get the asserted bound. So to finish the proof,
it suffice to show (4.12a) and (4.12b). Write

(I−Pj−nκ)Λ̃k f (x)= ̂̃βk∗ f (x)−ηj−nκ∗ ̂̃βk f (x)

=
∫

Rd

∫
Rd

( ̂̃βk(x−y)− ̂̃βk(x−y−z)
)
ηj−nκ(z)dz· f (y)dy.

By using the mean value formula, one may get

̂̃βk(x−y)− ̂̃βk(x−y−z)=
∫ 1

0
〈z,∇ ̂̃βk(x−y−sz)〉ds.

Utilize the Fubini’s theorem, one may get

‖(I−Pj−nκ)Λ̃k f ‖1.2j−nκ−k‖∇̂̃β‖1‖η‖1‖ f ‖1.2j−nκ−k‖ f ‖1.

Thus we prove (4.12a). To prove (4.12b), it is enough to show that the function hk,n,v(ξ)=
(1−Φ(2nγ〈en

v ,ξ/|ξ|〉))βk(ξ) is a L1 Fourier multiplier. Let An,v
k be an invertible transform

with An,v
k en,v =2−nγ−ken,v and An,v

k y=2−ky if 〈y,en,v〉=0. For all α∈Zd
+, it is straightfor-

ward to check that
‖∂α
(
hk,n,v(An,v

k ·)
)
‖2.1

uniformly with k,n,v. By the Berenstein multiplier theorem (e.g., see Lemma 6.1.5 in [1]),

‖(I−Gn,v)Λk‖L1→L1.‖hk,n,v(An,v
k ·)‖

1
2
2 ∑
|α|=n
‖∂α
(
hk,n,v(An,v

k ·)
)
‖

1
2
2 .1,

which completes the proof of (4.12b).
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Proof of Lemma 2.5. Let ε0 satisfy 0< ε0 <1 and will be chosen later. By (4.1), Lemma 4.1,
Lemma 4.2 cardΘn. 2nγ(d−1), the property (iv) in Lemma 2.1 and the fact [nε0]≤ nε0 <
[nε0]+1, one obtain∥∥∥∫∫

El
u~η,~s(x) ∑

n≥100
∑
v

∑
j
(I−Pj−nκ)(I−Gn,v)Tn,v

j [a1]B
~η,~s
j−n(x)dηds

∥∥∥
1

≤
(

∑
n≥100

∑
v

∑
j

∑
k<j−[nε0]

∑
l(Q)=2j−n

+ ∑
n≥100

∑
v

∑
j

∑
k≥j−[nε0]

∑
l(Q)=2j−n

)
∫∫

El

∣∣∣ l

∏
i=2

âi(ηi)
∣∣∣·‖(I−Pj−nκ)(I−Gn,v)ΛkTn,v

j [a1]b
~η,~s
Q ‖1dηds

. ∑
n≥100

(2s1n+2s2n)
∫∫

El

∣∣∣ l

∏
i=2

âi(ηi)
∣∣∣·∑

j
‖B~η,~s

j−n‖1dηds

. ∑
n≥100

(2s1n+2s2n)‖ f ‖1,

where
s1=−ε0+γ+2

([d
2

]
+1
)

γ+δ−1τ, s2=−κ+ε0.

Now we choose τ> 1
n and 0<δ−1τ�γ� ε0�κ�1 such that

max{s1,s2}<0.

Therefore the above sum is convergent and we finish the proof of Lemma 2.5. �

Acknowledgements

The work is supported by NSFC (Nos. 11871096, 11801118 and No. 11571160), China
Postdoctoral Science Foundation (No. 2017M621253 and No. 2018T110279) and the Fun-
damental Research Funds for the Central Universities.

References
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