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Abstract. We propose a multiple relaxation time entropic realization of a recent two-
phase flow lattice Boltzmann model [S.A. Hosseini, B. Dorschner, and I. V. Karlin,
Journal of Fluid Mechanics 953 (2022)]. While the original model with a single re-
laxation time allows us to reach large density ratios, it is limited in terms of stability
with respect to non-dimensional viscosity and velocity. Here we show that the entropic
multiple relaxation time model extends the stability limits of the model significantly,
which allows us to reach larger Reynolds numbers for a given grid resolution. The
thermodynamic properties of the solver, using the Peng–Robinson equation of state,
are studied first using simple configurations. Co-existence densities and temperature
scaling of both the interface thickness and the surface tension are shown to agree well
with theory. The model is then used to simulate the impact of a drop onto a thin liquid
film with density and viscosity ratios matching those of water and air both in two and
three dimensions. The results are in very good agreement with theoretically predicted
scaling laws and experimental data.
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1 Introduction

Due to their presence in a wide range of applications, development of models for two-
phase flows simulation holds an especially important place in any of the many numerical
methods for computational fluid mechanics. The lattice Boltzmann method, developed
in the early 90’s is no exception to this general observation. Soon after the develop-
ment of the first lattice Boltzmann models [28], extensions to two-phase flow physics
were proposed [15, 35]. Over the past 30 years, a variety of formulations for two-phase
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flows, from the more classical Allen–Cahn and Cahn–Hilliard based formulations to the
very popular pseudo-potential model [35], have been proposed and widely used. While
routinely applied to many different configurations and used to model different physical
phenomena, most of these approaches have struggled with large density ratios and high
Reynolds number simulations [8, 25]. In the class of pseudo-potential and free energy
formulations [27,38], these limitations appear in the form of deviations of the coexistence
liquid/vapor densities from their analytical counter-parts at lower temperatures and are
broadly referred to as thermodynamic inconsistency issues [8].

In a recent work [18], we proposed a kinetic scheme and a lattice Boltzmann real-
ization exhibiting both thermo- and hydrodynamic consistency even at extremely high
density ratios. It was shown that the scheme is not only suitable to capturing thermody-
namic properties of the liquid-vapor interface and is thermodynamically well-posed but
also allows for simulation of dynamic configurations at very high density ratios. How-
ever, relying on the simplest collision operator, i.e. single relaxation time, the simulations
were limited in terms of the minimum non-dimensional viscosities and the maximum
Courant–Friedrichs–Lewy (CFL) numbers. As a remedy, more advanced collision oper-
ators such as entropic [2, 3, 29], multiple relaxation time [10] and regularized [24] have
been proposed. The multiple relaxation time collision operator has grown into the most
widely used approach, for both single and two-phase flows. While effectively allowing
for extended stability domains [13, 17, 23, 37, 42], it nevertheless lacks closures for the in-
dividual relaxation rates of the higher order moments. The entropic multiple relaxation
model provides a physically motivated closure for the free parameter and in doing so
allows for extended stability domains without tunable parameters [20]. A realization for
two-phase flows based on a free-energy formulation was devised in [5].

Here, we propose a multiple relaxation time entropic realization of our previously
proposed model [18] and thus increase the attainable Reynolds numbers. After a brief
introduction of the model, it is first validated on simple configurations which probe ther-
modynamic properties such as coexistence densities at different temperatures and surface
tension. Subsequently, simulations of drop impact on a liquid film are carried out first
in two and then in three dimensions, at a density ratio of 103. The results show that the
entropic multiple relaxation model provides a simple and effective means to overcome
the stringent stability limits of the single relaxation time model.

2 Model description

The two-phase fluid is modeled using the continuum kinetic framework detailed in [18]
and represented as,

∂t f +v·∇ f =− 1

τ
( f − f eq)− 1

ρ

∂ f eq

∂u
·
[

∇(P−P0)−κρ∇∇
2ρ
]

, (2.1)

where f is the one-particle distribution function, v the particle velocity, κ the capillary
coefficient in the second-gradient fluid model, ρ and u are the fluid density and velocity,
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P is the thermodynamic pressure and P0 is a reference pressure used in the equilibrium
distribution function f eq,

f eq=
ρ

(2πP0/ρ)D/2
exp

[

− (v−u)2

2P0/ρ

]

. (2.2)

At variance with a classical Boltzmann–Vlasov equation [41], the Enskog model [6, 11]
or the revised Enskog theory [39], here the reference pressure P0 is not necessarily the
kinetic contribution to the full pressure P. Rather, P0 is a parameter that can be adjusted
to optimize stability properties of the discrete solver. For the model to be well-posed, P0

must satisfy a sub-isentropic condition,

P0≤Cρ5/3, (2.3)

for some C>0. This guarantees a dissipative evolution equation with respect to normal
modes [18].

Upon discretization in both space and time, and using the exact difference method [22]
to evaluate the body force term, the LBGK equations are written,

fi (r+ciδt,t+δt)=
(

1−ω

2

)

fi (r,t)+
ω

2
f mirr
i (r,t)+

(

f ∗i − f
eq
i

)

, (2.4)

where fi and ci are the discrete populations and corresponding discrete particle velocities,
ω is the relaxation rate tied to the fluid kinematic viscosity ν as:

ω=
δt

ρν/P0+δt/2
, (2.5)

and δt and δr are the time-step and grid spacing. Moreover, f
eq
i and f ∗i are, respectively,

the discrete equilibrium and the extended equilibrium populations to be defined in the
next paragraphs. Finally, the mirror state f mirr

i for a single-relaxation time operator is
defined as [20],

f mirr
i (r,t)=2 f eq− fi (r,t) . (2.6)

2.1 Standard lattice and product-form

The model is realized on the standard discrete velocity sets D3Q27 and D2Q9 where D=
2,3 stands for the spatial dimensions and Q=9,27 is the number of discrete velocities. For
the sake of clarity the more general case of the D3Q27 will be used for the presentation,

ci =(cix,ciy,ciz), ciα∈{−1,0,1}. (2.7)
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We first introduce the triplet of functions in the two variables ξα and ζαα that will be
defined later,

Ψ0(ξα,ζαα)=1−ζαα, (2.8)

Ψ1(ξα,ζαα)=
ξα+ζαα

2
, (2.9)

Ψ−1(ξα,ζαα)=
−ξα+ζαα

2
, (2.10)

and a product-form associated with the discrete velocities ci (2.7),

Ψi =Ψcix
(ξx,ζxx)Ψciy

(ξy,ζyy)Ψciz
(ξz,ζzz). (2.11)

All populations shall be determined by specifying the variables ξα and ζαα in the product-
form (2.11). For the remainder of this work we use δri = ciδt for the lattice links, and
represent the grid spacing in all directions α= x,y,z as δr= |ciα |δt, ciα 6=0.

2.2 Discrete equilibrium and extended-equilibrium functions

Following [18] and using the reference pressure P0, the variables appearing in the triplet
functions (2.8), (2.9) and (2.10) are set to:

ξα=uα, (2.12)

ζαα=
P0

ρ
+u2

α, (2.13)

where the local density ρ and flow velocity u are computed as:

ρ(r,t)=
Q−1

∑
i=0

fi(r,t), (2.14)

ρu(r,t)=
Q−1

∑
i=0

ci fi(r,t). (2.15)

The local equilibrium populations are computed with the product-form (2.11),

f
eq
i =ρ ∏

α=x,y,z

Ψciα

(

uα,
P0

ρ
+u2

α

)

. (2.16)

The extended equilibrium populations f ∗i are similarly represented by the product-form
(2.11) and re-defining the variables,

ξ∗α =uα+
Fαδt

ρ
, (2.17)

ζ∗αα=
P0

ρ
+u2

α+
Φαα

ρ
, (2.18)

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2022-0032 | Generated on 2024-11-17 01:17:23



S. A. Hosseini, B. Dorschner and I. V. Karlin / Commun. Comput. Phys., 33 (2023), pp. 39-56 43

where Φαα/ρ is the correction term for the diagonals of the non-equilibrium momentum
flux tensor [32],

Φαα =
(

1−ω

2

)

δt∂α

(

ρuα

(

u2
α+

3P0

ρ
−3ς2

))

, (2.19)

where we have introduced the so-called lattice speed of sound ς=δr/
√

3δt. The extended
equilibrium is therefor written as,

f ∗i =ρ ∏
α=x,y,z

Ψciα

(

uα+
Fαδt

ρ
,
P0

ρ
+u2

α+
Φαα

ρ

)

. (2.20)

2.3 Pseudo-potential and capillarity

In order to recover the Korteweg stress tensor [21] the force is defined as:

δtF=±2ψ(r)
Q−1

∑
i=0

wi

ς2
ci

[

4

3
ψ(r+ciδt)− 1

6
ψ(r+2ciδt)

]

+κ̃ρ(r)
Q−1

∑
i=0

wi

ς2
ci [2ρ(r+ciδt)−ρ(r+2ciδt)]+O

(

[δr∇]5
)

, (2.21)

where κ̃=κδr2 and the pseudo-potential ψ is introduced,

ψ=

{√
P−P0, if P>P0,√
P0−P, if P≤P0,

(2.22)

and the weights wi are defined by the product-form (2.11) at ξα =0, ζαα =ς2,

wi= ∏
α=x,y,z

Ψciα

(

0,ς2
)

. (2.23)

The square-root form was initially proposed in [36] in an attempt to match the pressure
in the pseudo-potential model [35] with the Enskog equation and later reprised in [43] as
a way to introduce generic equations of state into the pseudo-potential formulation. As
noted previously [16, 36], while successfully introducing different equations of state into
the model, the divergence of the full stress tensor is different from Korteweg’s stress ten-
sor as required by the standard thermodynamics [1]. While the present model recovers
a surface tension term of the form κρ∇∇2ρ in the continuum limit, matching exactly the
Korteweg’s contribution, the former gets a different term, i.e. κψ∇∇2ψ [33, 34]. Below
for optimal performance we set P0/ρ=ς2.

2.4 Multi-relaxation time entropic realization

The two-relaxation time entropic formulation is realized by writing discrete populations
as [20]:

fi = ki+si+hi, (2.24)
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where the kinematic part ki, represents contributions from conserved moments, si en-
tails contributions from the stress and hi denotes all higher-order moments contributions.
Considering invariance of conserved moments and physical constraint on the relaxation
rate of second-order moments defining si, the mirror state can be written:

f mirr
i = ki+

(

2s
eq
i −si

)

+(1−γ)hi+γheq, (2.25)

where a free parameter γ has been introduced, which allows independent control over
the relaxation rate of higher-order moments. This free parameter is found by minimizing
the discrete entropy in the post-collision state, f ′i :

dH( f ′)
dγ

=0, (2.26)

which upon expansion around equilibrium up to the first non-vanishing order results
in [5]:

γ

2
=

1

ω
−
(

1− 1

ω

) 〈∆s|∆h〉
〈∆h|∆h〉 , (2.27)

where ∆si = s
eq
i −si, ∆hi =h

eq
i −hi, and the entropic scalar product 〈|〉 is defined as:

〈X|Y〉=
Q

∑
i=1

XiYi

f ∗i
. (2.28)

Here we use the central Hermite moments as the basis for the projection. Details of the
moments space and corresponding contributions are given in Appendix A. Furthermore,
a set of Matlab codes and functions to derive analytical expressions for the proposed
collision operator are available in the supplementary material.

3 Numerical validation

The model as introduced in the previous section will be used here to conduct both ther-
modynamic checks and dynamic simulations.

3.1 Consistency tests

We first validate the thermodynamic consistency of the solver for the density ratios of
interest, here ≈103. Simulation are performed using the Peng-Robinson equation of state
[30],

P=
ρRT

1−bρ
− aα(T)ρ2

1+2ρb−b2ρ2
, (3.1)

with

α(T)=
[

1+(0.37464+1.54226ω′−0.26992ω′2)
(

1−
√

T/Tc

)]2
, (3.2)

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2022-0032 | Generated on 2024-11-17 01:17:23



S. A. Hosseini, B. Dorschner and I. V. Karlin / Commun. Comput. Phys., 33 (2023), pp. 39-56 45

where ω′ is the acentric factor (ω′=0.344 for water), and

a=0.45724
R2T2

c

Pc
, b=0.0778

RTc

Pc
. (3.3)

Here Tc and Pc are the critical state temperature and pressure, a and b are constants ac-
counting for the strength of the attractive inter-molecular force and the volume occupied
by the molecules respectively, and R the universal gas constant.

3.1.1 Co-existence densities

We begin with the validation of liquid-vapour coexistence. Two-dimensional flat inter-
face simulations are conducted on 800×10 grid-points. The domain is filled with the
vapour phase of the fluid and periodic boundary conditions are applied all around. A
400 points wide column of the liquid phase is placed at the center. Simulations are ran un-
til steady-state, characterized with a L0 norm convergence criterion based on the density
field, is reached. The theoretical prediction for the coexistence density ratio ρl/ρv can be
obtained via the equilibrium condition leading to the Maxwell equal-area construction,

∫ ρl

ρv

Psat−P

ρ2
dρ=0, (3.4)

where Psat(T) is the saturation pressure at which the liquid and vapor phases coexist at
a given temperature T below the critical point. The results as obtained from both theory
and simulation are shown in Fig. 1 and point to an excellent agreement. This is not
surprising as the interface thickness, defined here as W = (ρl−ρv)/max|∇ρ|, points to
well-resolved interfaces down to the temperature of interest as shown in Fig. 1.

3.1.2 Surface tension

The mean-field behavior of the van der Waals second gradient fluid is known to lead to
a scaling with the temperature of the form,

σ ∝ (1−Tr)
3/2. (3.5)

The scaling (3.5) has been theoretically demonstrated by van der Waals close to the critical
temperature Tr→1 [4,40]. To further validate the thermodynamic properties of the solver
2-D simulations of drops with initial radii R0/δr∈ [25,200] with R0/W>10 placed at the
center of a fully periodic square domain are considered. The surface tension coefficient is
evaluated using the Laplace law (D=2) as,

∆P=
(D−1)σ

Re
, (3.6)

where the radius Re is the equimolar dividing surface [12]. Simulations were conducted
for different temperatures with Tr ∈ [0.5,0.98] and for three different values of a. The ob-
tained results are demonstrated in Fig. 2. In agreement with the van der Waals model, the
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Figure 1: Left: Coexistence densities for the Peng-Robinson equation of state as obtained from (grey line) the
Maxwell construction and (red markers) numerical simulations with a= 0.003 and b= 0.095. Right: Interface
thickness for different temperatures (red markers) as obtained from simulations.

Figure 2: Left: Surface tension for different temperatures and values of a, (red circles) a=0.003, (blue squares)
a=0.0017 and (black diamonds) a=0.0011 with b=0.095. Right: Illustration of the Laplace law for Tr=0.59
and a=0.003.

surface tension scales as 3/2 near the critical point. Below Tr = 0.8, the scaling changes
slightly to 11/9 which is in agreement with the fit proposed by Guggenheim [14]. Fur-
thermore, in agreement with the principle of corresponding states proposed by Guggen-
heim, these scalings hold regardless of the choice of value for the interaction parame-
ters [14]. However for the simulations, as demonstrated in our previous publication [18]
the principle of corresponding states is only correctly recovered in the limit of a resolved
interface, i.e. δr/W → 0, that we characterize as a thermodynamically converged simula-
tion [18].
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Figure 3: Maximum spurious currents for (left) different temperatures and νδt/δr2 =0.1 and (right) viscosities
at Tr=0.59 as obtained from 2-D drop simulations with (red circular markers) single relaxation time and (square
blue markers) entropic collision operators.

Additionally, the maximum spurious currents for each one of the considered temper-
atures and different non-dimensional viscosities were monitored for the same choice of
coefficients in the equation of state using both the single relaxation time and the present
entropic collision operators. The results are shown in Fig. 3. While the use of the entropic
collision operator has very limited effects on the spurious currents for νδt/δr2 =0.1, it is
observed to reduced them by up to a factor of two at lower viscosities. Furthermore, as
observed in the plots, it extends the domain of stability reaching non-dimensional viscosi-
ties as low as 10−3 and considerably accelerates the convergence of spurious velocities to
their equilibrium values. The latter, illustrated in Fig. 4, can be explained by the fact that
putting bulk viscosity under entropy control enhances dissipation of normal modes. It
is also interesting to note that the spurious currents can be fitted with a function of the
form (1−Tr)

m leading to a scaling of m≈2.2. Spurious currents can also be mitigated by
increasing the thickness of the interface. Rescaling of the force contribution via the equa-
tion of state coefficient a has been shown to allow for control over the interface thickness.
To that end the effect of the choice of that parameter on spurious currents at the temper-
ature of interest has also been studied. The results are shown in Fig. 5 and show that
interface thickness can effectively be used to control maximum spurious currents.

3.2 Crown radius evolution scaling upon impact: 2-D simulation

Next we consider the impact of a drop on a thin liquid layer in 2-D. It is an interesting
configuration as it involves complex dynamics. In many instances, upon impact and at
the contact point (line) a thin liquid jet also referred to as ejecta is formed, which contin-
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Figure 4: Time-evolution of maximum spurious currents along with the density and velocity fields at the
converged state as obtained from simulations with SRT and entropic models at ν=0.03 and Tr =0.59.

Figure 5: Maximum spurious currents for different values of a at Tr = 0.59 with (red circular markers) single
relaxation time and (square blue markers) entropic collision operators.

ues to grow and propagate as a corolla [26]. Detailed studies of the initial stages of the
spreading of the crown have shown that the spreading radius scales as the square root
of time regardless of the Weber and Reynolds numbers [19]. To validate the solver, we
consider four different sets of Weber and Reynolds numbers,

(We,Re)∈{(57,4000),(93,4000),(238,4000),(93,100)}, (3.7)
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Figure 6: Snapshots of the 2-D drop impacting thin liquid film for (left) We=57, Re=4000 and (right) We=238,
Re=4000.

Figure 7: Snapshots of the 2-D drop impacting thin liquid film for (left) We=93, Re=100 and (right) We=93,
Re=4000.

where the non-dimensional parameters are defined as

Re=
2ρlU0R0

µl
, (3.8)

and

We=
2ρl R0U0

2

σ
, (3.9)

with R0 and U0 the initial drop radius and velocity. The domain is rectangular of size
24R0×12R0 with a liquid film of thickness h= R0 at the bottom. In all simulations pre-
sented in this section Tr =0.59 leading to ρl/ρv =103 and νv/νl =15 corresponding to the
air/water system. The drop radius is set to R0=100δr.

The evolution of the liquid surface as obtained from the simulations is shown in
Figs. 6 and 7. The times are reported in non-dimensional form, normalized by the con-
vective characteristic time τ=2R0/U0. It is interesting to note that at the lowest Reynolds
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Figure 8: Evolution of the crown radius over time as obtained from 2-D simulation. The dashed line represents
the ∝

√
t/τ scaling.

number, Fig. 7, the ejecta does not form. Furthermore at this Reynolds number the crown
is thicker and smaller in height. All these observations are expected as the larger liquid
viscosity leads to faster dissipation of the initial kinetic energy of the drop, hence lower
heights reached by the crown, and thicker boundary layers explaining both the thickness
of the ejecta and crown. The evolution of the spreading crown radii r over time for dif-
ferent cases are shown in Fig. 8. As shown there the radii scale as the square root of time
at the initial stages of the impact, in agreement with results reported in [19]. It should be
noted that using the same resolution, i.e. R0 = 100δr, the single relaxation time collision
operator was also stable for simulations up to Re=2000. To better illustrate the effect of
the entropic collision operator on stability, simulations were run using different impact
speeds and viscosities for a fixed interface thickness W = 5δr. Simulations were carried
out with νδt/δr2 ∈ [0.0025 0.1] and U0δt/δr∈ [0 0.16]. The resulting stability domains are
plotted in Fig. 9.As shown there, while the single relaxation solver becomes unstable be-
low νδt/δr2=0.04 the entropic solver remains stable down to νδt/δr2=0.005. Below that
value simulations become unstable because spurious currents get too large. This limit can
in practice be pushed further down by reducing spurious currents via thicker interfaces.

3.3 3-D configuration: Comparison with experiments

As a final configuration we consider the impact of a drop on a thin liquid film in 3-D.
Configurations follow the experimental study presented in [7]. Three different cases are
studied in this section, We=82, 167 and 328 and they cover a Range of Reynolds numbers
between 3500 to 6900. All simulations parameters are chosen so as to match a water/air
system. Furthermore the thickness of the liquid film h is set to h/2R0 = 0.22 follow-
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Figure 9: Stability domain as obtained for the 2-D drop impact simulation as a function of non-dimensional
impact velocity and viscosity. The drop radius is set to R0 = 50δr. Single relaxation time collision operator
stability domain are shown with red circular symbols while those of the entropic model are shown with blue
square markers.

ing [7]. In all simulations the drop initial radius is set to R0 =80 and the domain size to
14R0×14R0×6R0. For the largest We number configuration, in order to initiate instabil-
ity without enforcing any specific wavelength, the velocity field in the liquid phases is
initially supplemented with white noise with a normal distribution centered around the
initial uniform velocity and a standard deviation of the order of 5 percent of the impact
velocity. The evolution of the crown radius over time is then extracted from simulations
and compared to experimental data reported in [7].

The evolution of the liquid surface over time for all three Weber numbers along with
the relaxation rate of higher order moments are shown in Fig. 10 along with correspond-
ing snapshots from experiments. It is interesting to note that, as expected, the entropic
stabilizer is highly active near liquid/vapor interfaces. In parts of the domain away from
interfaces 2/ωγ ≈ 1. At the largest Weber number the snapshot from the experiment
shows instabilities on the crown. In the corresponding simulation, while being less pro-
nounced an onset of instability on the crown can clearly be observed. The differences in
the amplitude of the instability at a given time between experiments and simulations can
be explained by higher levels of perturbation and noise present in typical experimental
condition speeding up the growth of unstable modes [9, 31]. The changes in the crown
diameter as obtained from both simulations and experiments reported in [7] are shown in
Fig. 11. The results point to excellent agreement between experimental observations and
numerical simulation conducted with the entropic model. A video of the drop evolution
over time for We=328 can be found in supplementary materials.
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Figure 10: Snapshots at (from left to right) t=0.1, 0.3, 0.5 and 0.7 ms of simulations of 3-D drop impact on
liquid film. The right-most column shows snapshots at t=0.7 ms from experiments reported in [7]. The rows
(from top to bottom) correspond to We= 82, 167 and 328. The planes behind iso-surfaces representing the

liquid show the distribution of density and 2
ωγ on the central plane.

Figure 11: Evolution of the crown diameters over time (red circular markers) as obtained from simulation and
(black lines) reported in [7] from experiments.
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4 Conclusion

We proposed a multiple relaxation time entropic realization of a previously introduced
model for two-phase flows. The use of this collision operator was shown to drastically
impact the stability domain and to a certain extent the maximum spurious currents al-
lowing simulations to reach larger Reynolds numbers, up to Re≈7000 in the case of 3-D
drop impact simulations. All of this without sacrificing the thermodynamic consistency
of the solver, as evidenced by co-existence densities and surface tension scaling.
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A Moment projection space for the relaxation process

A modified set of central Hermite moments are used here for the collision operator as
projection space for the relaxation process. The modifications concern second-order mo-
ments to allow for independent control over the bulk viscosity as standard Hermite
polynomials do not allow it. The Hermit coefficients axpyq where for the D2Q9 stencil
axpyq ∈{a0,ax,ay,axy,ax2−ay2 ,ax2 +ay2 ,ax2y,axy2 ,ax2y2} are defined as:

axpyq =
Q−1

∑
i=0

Hxpyq(ci−u) fi, (A.1)

where Hxpyq are the corresponding central Hermit polynomials. For the D3Q27 stencil
we define Hermite coefficients as:

axpyqzr =
Q−1

∑
i=0

Hxpyqzr(ci−u) fi, (A.2)

and use the following set of moments:

axpyqzr ∈{a0,ax,ay,az,axy,axz,ayz,ax2 −ay2 ,ax2 −az2 ,ax2 +ay2 +az2 ,ax2y,ax2z,axy2 ,ay2z,axz2 ,

ayz2 ,ax2y2 ,ax2y2 ,ax2z2 ,ay2z2 ,ax2yz,axy2z,axyz2 ,axy2z2 ,ax2yz2 ,ax2y2z,ax2y2z2}. (A.3)

Applying the transform to the equilibrium populations, a
eq
0 =ρ and a

eq
xpyqzr =0 ∀(x,p,r) 6=

(0,0,0) which in turn leads to k
eq
i = f

eq
i and s

eq
i =h

eq
i =0. For the extended equilibrium f ∗i
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the central Hermit moments in the case of the D2Q9 stencil are:

a
∗=

[

ρ,Fxδt,Fyδt,
FxFyδt2

ρ
,
δt2(F2

x −F2
y )+ρ(Φxx−Φyy)

ρ
,
δt2(F2

x +F2
y )+ρ(Φxx+Φyy)

ρ
,

δtFy(δt2F2
x +ρΦxx)

ρ2
,
δtFx(δt2F2

y +ρΦyy)

ρ2
,
(δt2F2

x +ρΦxx)(δt2F2
y +ρΦyy)

ρ3

]

. (A.4)

while in 3-D for the D3Q27 stencil:

a
∗=

[

ρ,Fxδt,Fyδt,Fzδt,
FxFyδt2

ρ
,
FxFzδt2

ρ
,
FyFzδt2

ρ
,
δt2(F2

x −F2
y )+ρ(Φxx−Φyy)

ρ
,

δt2(F2
x −F2

z )+ρ(Φxx−Φzz)

ρ
,
δt2(F2

x +F2
y +F2

z )+ρ(Φxx+Φyy+Φzz)

ρ
,
δtFy(δt2F2

x +ρΦxx)

ρ2
,

δtFz(δt2F2
x +ρΦxx)

ρ2
,
δtFx(δt2F2

y +ρΦyy)

ρ2
,
δtFz(δt2F2

y +ρΦyy)

ρ2
,
δtFx(δt2F2

z +ρΦzz)

ρ2
,

δtFy(δt2F2
z +ρΦzz)

ρ2
,
δt3FxFyFz

ρ2
,
(δt2F2

x +ρΦxx)(δt2F2
y +ρΦyy)

ρ3
,

(δt2F2
x +ρΦxx)(δt2F2

z +ρΦzz)

ρ3
,
(δt2F2

y +ρΦyy)(δt2F2
z +ρΦzz)

ρ3
,
δt2FyFz(δt2F2

x +ρΦxx)

ρ3
,

δt2FxFz(δt2F2
y +ρΦyy)

ρ3
,
δt2FxFy(δt2F2

z +ρΦzz)

ρ3
,
δtFz(δt2F2

x +ρΦxx)(δt2F2
y +ρΦyy)

ρ4
,

δtFy(δt2F2
x +ρΦxx)(δt2F2

z +ρΦzz)

ρ4
,
δtFx(δt2F2

y +ρΦyy)(δt2F2
z +ρΦzz)

ρ4
,

(δt2F2
x +ρΦxx)(δt2F2

y +ρΦyy)(δt2F2
z +ρΦzz)

ρ5

]

. (A.5)
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