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Abstract. A kernel-independent treecode (KITC) is presented for fast summation of
particle interactions. The method employs barycentric Lagrange interpolation at
Chebyshev points to approximate well-separated particle-cluster interactions. The
KITC requires only kernel evaluations, is suitable for non-oscillatory kernels, and re-
lies on the scale-invariance property of barycentric Lagrange interpolation. For a given
level of accuracy, the treecode reduces the operation count for pairwise interactions
from O(N2) to O(N logN), where N is the number of particles in the system. The al-
gorithm is demonstrated for systems of regularized Stokeslets and rotlets in 3D, and
numerical results show the treecode performance in terms of error, CPU time, and
memory consumption. The KITC is a relatively simple algorithm with low memory
consumption, and this enables a straightforward OpenMP parallelization.
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1 Introduction

Consider the problem of evaluating the sum

u(xi)=
N

∑
j=1

k(xi,xj) f j, i=1,··· ,N, (1.1)
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where u(xi) is a velocity (or potential or force) and {xi} ⊂R
d is a set of particles with

weights { fi}. Depending on the application, the velocity and weights may be scalars or
vectors, and the kernel may be a tensor. The kernel k(x,y) describes the interaction be-
tween a target particle x and a source particle y, and we are interested in non-oscillatory
kernels that are smooth for x 6=y and decay slowly for |x−y|→∞. It is understood that
if the kernel is singular for x=y, then the sum omits the i= j term.

These sums arise in particle simulations involving point masses, point charges, and
point vortices, as well as in boundary element methods where the particles are quadra-
ture points. Evaluating (1.1) by direct summation requires O(N2) operations which is
prohibitively expensive when N is large, and several fast methods have been developed
to reduce the cost. One can distinguish between two types of methods, particle-mesh meth-
ods in which the particles are projected onto a uniform mesh where the FFT or multigrid
can be used (e.g. P3M [29], particle-mesh Ewald [16], spectral Ewald [2], multilevel sum-
mation [9, 27]), and tree-based methods in which the particles are partitioned into a hierar-
chy of clusters with a tree structure and the particle-particle interactions are replaced by
particle-cluster or cluster-cluster approximations (e.g. treecode [4], fast multipole method
(FMM) [24], panel clustering [26]).

Tree-based methods. The present work is concerned with tree-based methods that rely
on degenerate kernel approximations of the form,

k(x,y)≈
n

∑
k=0

φk(x)ψk(y). (1.2)

Such approximations can be classified as near-field/local or far-field/multipole depending
on their domain of validity in the variables x,y. The treecode originally used a far-field
monopole approximation for the Newtonian potential [4], while the FMM improved on
this by employing higher-order multipole and local approximations, in particular using
Laurent series for the 2D Laplace kernel and spherical harmonics for the 3D Laplace ker-
nel [24, 25]. Later versions of the FMM used plane wave expansions for the 3D Laplace
kernel [10] and spherical Bessel function expansions for the Yukawa potential [23]. Meth-
ods based on Cartesian Taylor expansions were also developed for some common ker-
nels [13, 15, 30, 36, 38, 52, 57].

Kernel-independent methods. The tree-based methods cited above rely on analytic
series expansions specific to each kernel and alternative approximation methods have
been investigated. An early example in this direction was an FMM for Laplace ker-
nels based on discretizing the Poisson integral formula [3], and this was followed by
a pseudoparticle method that reproduces the multipole moments for these kernels [39].
Later work developed approximations suitable for a wide class of non-oscillatory ker-
nels. One approach based on polynomial interpolation [32, section 11.4] has been applied
in the context of multilevel approximation [21], hierarchical matrices [7], and the black-
box FMM (bbFMM) [19]. An alternative method employed in the kernel-independent
FMM (KIFMM) uses equivalent densities [60,61], while other kernel-independent FMMs
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use Legendre expansions [22], matrix compression based on skeletonization [42], and
truncated Fourier series [62]. Recently an FMM based on the Cauchy integral formula
and Laplace transform was proposed for general analytic functions [35], and a kernel-
independent treecode was developed using approximate skeletonization for particle sys-
tems in high dimensions [41].

Present work. There is ongoing interest in exploring different strategies for fast sum-
mation of particle interactions, and the present work contributes a kernel-independent
treecode (KITC) with operation count O(N logN) in which the far-field approximation
uses barycentric Lagrange interpolation at Chebyshev points [6, 56]. The barycentric La-
grange interpolant can be efficiently implemented and has good stability properties [28,
43,47]; the 1D case is reviewed in [6,56] and here we apply it in 3D using a tensor product
to compute well-separated particle-cluster approximations.

It should be noted that the bbFMM [19] and KITC both use polynomial interpolation,
but they differ in two ways. The first difference concerns the interpolating polynomial;
the bbFMM uses Chebyshev points of the 1st kind (roots of Chebyshev polynomials)
and expresses the Lagrange polynomials in terms of Chebyshev polynomials, while the
KITC uses Chebyshev points of the 2nd kind (extrema of Chebyshev polynomials) and
expresses the Lagrange polynomials in barycentric form; as explained in Section 3, this
enables the KITC to take advantage of the scale-invariance property of barycentric La-
grange interpolation. The second difference concerns the algorithm structure; the KITC
uses only far-field approximations and avoids the multipole-to-local translations and
SVD compression steps in the bbFMM [19]. With these choices the KITC is a relatively
simple algorithm with low memory consumption, and this enables a straightforward
OpenMP parallelization.

We will present numerical results motivated by the method of regularized Stokeslets
(MRS) for slow viscous flow [11, 12]. The MRS has been applied to simulate cilia- and
flagella-driven flow [18,50], helical swimming [12], slender body flow [8], coupled Stokes-
Darcy flow [53], and flow around elastic rods [45]. Due to the complexity of the MRS
kernels, they are prime candidates for kernel-independent fast summation methods, but
as far as we know only recently has the KIFMM been applied to MRS simulations [33,48].
Here we apply the KITC to systems of regularized Stokeslets and rotlets from [48], and
the results demonstrate the method’s good performance in terms of accuracy, efficiency,
and memory consumption in serial and parallel simulations.

The paper is organized as follows. Section 2 discusses polynomial interpolation and
its application to kernel approximation. Section 3 reviews barycentric Lagrange interpo-
lation following [6, 56]. Section 4 explains how the interpolant is used to approximate
particle-cluster interactions. Section 5 describes how some quantities called modified
weights are computed. Section 6 presents the KITC algorithm. Section 7 reviews the
MRS kernels (regularized Stokeslet and rotlet). Section 8 presents numerical results for
two examples motivated by recent MRS simulations [48]. A summary is given in Sec-
tion 9.
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2 Polynomial interpolation and kernel approximation

We begin by recalling some basic facts about polynomial interpolation in 1D [56]. Given
a function f (t) and n+1 distinct points sk∈[−1,1] for k=0,··· ,n, there is a unique polyno-
mial pn(t) of degree at most n that interpolates the function at these points, pn(sk)= f (sk),
k=0,··· ,n. The Lagrange form of the interpolating polynomial is

pn(t)=
n

∑
k=0

fkLk(t), fk = f (sk), k=0,··· ,n, (2.1)

where the Lagrange polynomials,

Lk(t)=
Πn

k′=0,k′ 6=k(t−sk′)

Πn
k′=0,k′ 6=k(sk−sk′)

, k=0,··· ,n, (2.2)

have degree n and satisfy Lk(sk′)=δkk′ . We view the interpolating polynomial pn(t) as an
approximation to f (t), and applying this idea to a kernel k(x,y) in 1D, we hold x fixed
and interpolate with respect to y to obtain

k(x,y)≈
n

∑
k=0

k(x,sk)Lk(y). (2.3)

The approximation on the right is a polynomial of degree n in the variable y and it inter-
polates the kernel at y= sk; this idea is well known (e.g. [32, section 11.4]).

Now consider a kernel k(x,y) in 3D and a tensor product set of grid points sk =
(sk1

,sk2
,sk3

)∈ [−1,1]3, where k=(k1,k2,k3) is a multi-index with kℓ=0,··· ,n for ℓ=1,2,3.
As above we hold x fixed and interpolate with respect to y=(y1,y2,y3) to obtain

k(x,y)≈
n

∑
k1=0

n

∑
k2=0

n

∑
k3=0

k(x,sk)Lk1
(y1)Lk2

(y2)Lk3
(y3). (2.4)

In this case the approximation on the right is a polynomial of degree n in each vari-
able (y1,y2,y3) and it interpolates the kernel at the grid points y = sk. Moreover, the
Lagrange polynomial expressions (2.3) and (2.4) are degenerate kernel approximations
of the form (1.2).

3 Barycentric Lagrange interpolation

The expression for the interpolating polynomial described in Section 2 is not well-suited
for practical computing due to cost and stability issues; the problem though is not with
the Lagrange form (2.1) for pn(t), but rather with the expression (2.2) for the Lagrange
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polynomials Lk(t). Berrut and Trefethen [6] advocated using instead the 2nd barycentric
form of the Lagrange polynomials,

Lk(t)=

wk

t−sk
n

∑
k′=0

wk′

t−sk′

, wk=
1

Πn
k′=0,k′ 6=k(sk−sk′)

, k=0,··· ,n, (3.1)

where wk are the barycentric weights. This form is mathematically equivalent to (2.2),
with the understanding that the removable singularity at t = sk is resolved by setting
Lk(sk′) = δkk′ ; to enforce this condition, following [6] the code is written so that if the
argument t is closer to an interpolation point sk than some tolerance, this is flagged and
the correct value Lk(sk′) = δkk′ is provided. In our implementation the tolerance is the
minimum positive IEEE double precision floating point number, DBL MIN= 2.22507e-
308; further details will be given in Section 5.

We work with Chebyshev points of the 2nd kind,

sk =cosθk, θk =
kπ

n
, k=0,··· ,n. (3.2)

In this case the interpolating polynomial pn(t) converges rapidly and uniformly on [−1,1]
to f (t) as n increases, under mild smoothness assumptions on the given function [56].
Note that computing the barycentric weights wk by the definition (3.1) requires O(n2)
operations, but this expense disappears for the sk chosen in (3.2) because in that case the
following simple weights can be used instead [49, 56],

wk=(−1)kδk, δk =

{
1/2, k=0 or k=n,

1, k=1,··· ,n−1.
(3.3)

This relies on a scale-invariance property of the barycentric form of Lk(t) in (3.1); namely,
if the weights wk have a common constant factor α 6=0, then α can be cancelled from the
numerator and denominator, and (3.1) stays the same.

Hence the barycentric Lagrange form of the interpolating polynomial is

pn(t)=

n

∑
k=0

wk

t−sk
fk

n

∑
k=0

wk

t−sk

, (3.4)

and with the simple weights (3.3), evaluating pn(t) requires O(n) operations [6, 56].
The scale-invariance property is also important when working on different intervals;

if [−1,1] is linearly mapped to [a,b] by t → 1
2(a+b+t(b−a)), then the weights wk de-

fined in (3.1) gain a factor of 2n/(b−a)n which could lead to overflow or underflow, but
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this factor can be safely omitted due to scale-invariance. This means that the simple
weights (3.3) can be used for any interval [a,b], along with the linearly mapped Cheby-
shev points; this is important in the present work because the treecode uses intervals of
different sizes. Note also that barycentric Lagrange interpolation is stable in finite preci-
sion arithmetic [28, 43, 47], and the Chebfun software package uses this form of polyno-
mial interpolation [14].

For comparison, the bbFMM [19] uses Chebyshev points of the 1st kind,

s̄k =cos θ̄k, θ̄k =
(2k−1)π

2n
, k=1,··· ,n, (3.5)

and a Chebyshev Lagrange form of the interpolating polynomial,

pn−1(t)=
n

∑
k=1

fk L̄k(t), L̄k(t)=
1

n
+

2

n

n−1

∑
k′=1

Tk′(s̄k)Tk′(t), k=1,··· ,n, (3.6)

where Tk(t) is the kth degree Chebyshev polynomial and L̄k(s̄k′)=δkk′ . The cost of evalu-
ating pn−1(t) by directly summing (3.6) is O(n2), or O(nlogn) if a fast transform is used.
We are not aware of an analog of the barycentric scale-invariance property.

4 Particle-cluster interactions

In a treecode the particles {xi} are partitioned into a hierarchy of clusters {C}, and the
sum (1.1) is written as

u(xi)=
N

∑
j=1

k(xi,xj) f j =∑
C

u(xi,C), i=1,··· ,N, (4.1)

where
u(xi,C)= ∑

yj∈C

k(xi,yj) f j, (4.2)

is the interaction between a target particle xi and a source cluster C={yj}. The sum over
C in (4.1) denotes a suitable subset of clusters depending on the target particle. Fig. 1a
depicts a particle-cluster interaction with target particle xi, cluster center yc, cluster ra-
dius r, and particle-cluster distance R= |xi−yc|. In this work the clusters are rectangular
boxes whose sides are aligned with the coordinate axes, and the cluster radius r is the
half-length of the box diagonal. The interpolation scheme easily handles rectangular
boxes because it uses a tensor product in the x,y,z directions and the Chebyshev points
are mapped to the box appropriately in each direction. When the particle and cluster are
well-separated (the criterion is given in Section 6), the interaction (4.2) is computed using
the kernel approximation (2.4); this is depicted in Fig. 1b showing the Chebyshev grid
points sk in the cluster. Hence the result is that the target particle xi interacts with the
interpolation points sk rather than the source particles yj.
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Figure 1: Particle-cluster interaction, (a) target particle xi, source cluster C={yj}, center yc, radius r, particle-

cluster distance R= |xi−yc|, (b) Chebyshev grid points sk in cluster C.

In more detail, we substitute the kernel approximation (2.4) into the particle-cluster
interaction (4.2) and switch the order of summation to obtain the far-field particle-cluster
approximation,

u(xi,C)≈
n

∑
k1=0

n

∑
k2=0

n

∑
k3=0

k(xi,sk) f̂k, (4.3)

where the modified weights are

f̂k = ∑
yj∈C

Lk1
(yj1)Lk2

(yj2)Lk3
(yj3) f j, k1,k2,k3=0,··· ,n, (4.4)

and yj =(yj1,yj2,yj3). Note that when the target xi is well-separated from the sources yj,
the kernel k(x,y) is interpolated on a subdomain where it is smooth and this ensures the
accuracy of the approximation.

We see that (4.3) has the form of a particle-cluster interaction (4.2), where the source
particles and weights {yj, f j} are replaced by the Chebyshev grid points and modified

weights {sk, f̂k}. This is advantageous for two reasons. First, the modified weights f̂k

for a given cluster are independent of the target particle xi, so they can be precomputed
and re-used for different targets; details are given below. Second, the cost of the direct
sum (4.2) is O(Nc), where Nc is the number of particles in cluster C, while the cost of
the approximation (4.3) is O(n3) assuming the modified weights are known, so there is a
cost reduction when Nc≫n3. Finally note that the approximation (4.3) depends only on
kernel evaluations and hence qualifies as kernel-independent.

5 Computation of modified weights

Algorithm 1 describes how the modified weights are computed. Before proceeding, note
that the Lagrange polynomial terms in (4.4) in barycentric form are
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Lkℓ(yjℓ)=

wkℓ

yjℓ−skℓ
n

∑
k′
ℓ
=0

wk′
ℓ

yjℓ−sk′
ℓ

=
aj,ℓ,kℓ

n

∑
k′
ℓ
=0

aj,ℓ,k′
ℓ

, aj,ℓ,kℓ =
wkℓ

yjl−skℓ

, (5.1)

where the variables aj,ℓ,kℓ are introduced for clarity. There are three loops, the outer loop
over source particles j = 1,··· ,Nc, the 1st inner loop over coordinate indices ℓ= 1,2,3,
and the 2nd inner loop over Chebyshev points kℓ = 0,··· ,n. To handle the removable
singularity at yjℓ= skℓ , we adapt the procedure in [6, page 510].

In Algorithm 1, the source particles and weights yj, f j for a given cluster are input,

and the modified weights f̂k are output. The modified weights are initialized to zero on
line 4, the loop over source particles starts on line 6, and the flags and sums are initialized
on line 7. Lines 9-13 loop over the coordinate indices and Chebyshev points to compute
the terms aj,ℓ,kℓ ; this requires O(nNc) operations, and a temporary storage array of size
O(nNc) for the terms aj,ℓ,kℓ , which is reused for different clusters. Line 10 checks whether
a source particle coordinate is close to a Chebyshev point; if so, then a flag records the
index. Then on lines 15-17 the code checks to see whether a flag was set; if so, then the
temporary variables are adjusted to enforce the condition Lk(sk′)=δkk′ . Then on lines 20-
22 the code loops over the tensor product of Chebyshev point indices and increments the

modified weights f̂k as indicated in (4.4); this requires O(n3Nc) operations and O(n3)
storage for each cluster. The modified weights are computed this way for each cluster
when the tree is constructed and in practice this requires only a small fraction of the total
KITC CPU time; for example in one case with N = 640 K particles, the total CPU time was
149 s, while computing the modified weights took less than 2 s.

The quantities Lkℓ(yjℓ) could be computed instead using the Chebyshev form (3.6),
but the argument of the Chebyshev polynomials appearing there lies in the unit interval
[−1,1], so the particles yj must be mapped to the unit cube [−1,1]3, with cost O(Nc). The
barycentric form (3.1) does not require this mapping; the particles stay in place in the
cluster; hence the barycentric form has an advantage over the Chebyshev form since it
avoids the cost of mapping the particles yj.

6 Kernel-independent treecode algorithm

Aside from using barycentric Lagrange interpolation for the far-field approximation,
the present algorithm is similar to previous treecodes based on analytic series expan-
sions [4, 13, 36]. The procedure is outlined in Algorithm 2. After inputting the particle
data and treecode parameters, a hierarchical tree of particle clusters is built and the mod-
ified weights for each cluster are computed. In our implementation the root cluster of
the tree is the smallest rectangular box enclosing the particles. The root is bisected in any
coordinate direction for which the side length is greater than ℓmax/

√
2, where ℓmax is the
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Algorithm 1 computation of modified weights in (4.4)

1: input: source particles and weights for a given cluster, yj, f j

2: input: Chebyshev points mapped to the cluster, sk

3: output: modified weights, f̂k

4: initialize all f̂k = f̂ (k1,k2,k3)=0
5: % loop over source particles
6: for j=1 : Nc

7: initialize flag(1:3) = -1, sum(1:3) = 0
8: % loop over coordinate indices and Chebyshev points to compute aj,ℓ,kℓ
9: for ℓ=1 :3 and kℓ=0 : n

10: if |yjℓ−skℓ |≤ DBL MIN, flag(ℓ)= kℓ
11: else a(j,ℓ,kℓ)=wkℓ/(yjℓ−skℓ), sum(ℓ) += a(j,ℓ,kℓ)
12: end if
13: end for
14: % if a flag was set, adjust sum(ℓ) and a(j,ℓ,kℓ) to handle removable singularity
15: for ℓ=1 :3
16: if flag(ℓ)>−1, sum(ℓ)=1, a(j,ℓ,0 : n)=0, a(j,ℓ,flag(ℓ))=1, end if
17: end for
18: denom = sum(1) · sum(2) · sum(3)
19: % loop over tensor product of Chebyshev point indices as in (4.4)
20: for (k1,k2,k3)=(0 : n, 0 : n, 0 : n)
21: f̂ (k1,k2,k3) += (a(j,1,k1) · a(j,2,k2) · a(j,3,k3)/denom)· f j

22: end for
23: end for

maximum side length of the root. Hence the root is bisected in its long directions, but not
its short directions, and the child clusters are bisected in the same way. The process con-
tinues until a cluster has fewer than N0 particles, a user-specified parameter. The clusters
obtained this way are rectangular boxes, and a cluster may have 8, 4, or 2 children de-
pending on which sides were bisected. The flexibility to use rectangular boxes instead of
cubes is important in cases like Example 2 below where the particles lie in a rectangular
slab.

Turning to Algorithm 2, after building the tree of clusters (line 5), the code cycles
through the particles (line 7), and each particle interacts with clusters, starting at the root
and proceeding to the child clusters. The multipole acceptance criterion (MAC),

r

R
≤ θ, (6.1)

determines whether a particle xi and cluster C are well-separated, where (recalling Fig. 1)
r is the cluster radius, R is the particle-cluster distance, and θ is a user-specified parame-
ter. If the MAC (6.1) is satisfied, the particle-cluster interaction is computed by barycen-
tric Lagrange interpolation (4.3) with user-specified degree n; otherwise the code checks
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Algorithm 2 kernel-independent treecode

1: input: particle coordinates and weights xi, fi, i=1,··· ,N
2: input: treecode MAC parameter θ, polynomial degree n, maximum leaf size N0

3: output: particle velocities ui,i=1,··· ,N
4: program main

5: build tree of particle clusters

6: compute modified weights f̂k in (4.4) for each cluster
7: for i=1,··· ,N, compute velocity(xi, root), end for
8: end program
9: subroutine compute velocity(x, C)

10: if MAC is satisfied
11: compute particle-cluster interaction by approximation (4.3)
12: else
13: if C is a leaf, compute particle-cluster interaction by direct sum (4.2)
14: else
15: for each child C′ of C, compute velocity(x, C′), end for
16: end subroutine

the child clusters, or if the cluster is a leaf (no children), then the interaction is computed
directly by (4.2).

This is essentially the Barnes-Hut algorithm [4], extended to higher-order particle-
cluster approximations computed by barycentric Lagrange interpolation. There are two
stages; stage 1 is building the tree and computing the modified weights for each clus-
ter, and stage 2 is computing the particle-cluster interactions. In principle both stages
scale like O(N logN), although in practice stage 1 is much faster than stage 2. There are
three user-specified parameters (θ,n,N0) that control the accuracy and efficiency of the
treecode; the present work uses representative values with no claim that they are opti-
mal.

7 Regularized Stokes kernels

The method of regularized Stokeslets (MRS) uses regularized kernels to represent point
forces and torques in slow viscous flow [11, 12, 45]. In particular, consider the following
functions defined on R

3,

H1(r)=
2ǫ2+r2

8π(r2+ǫ2)3/2
, H2(r)=

1

8π(r2+ǫ2)3/2
, Q(r)=

5ǫ2+2r2

8π(r2+ǫ2)5/2
, (7.1a)

D1(r)=
10ǫ4−7ǫ2r2−2r4

8π(r2+ǫ2)7/2
, D2(r)=

21ǫ2+6r2

8π(r2+ǫ2)7/2
, (7.1b)
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where r= |x−y|, x is a target, y is a source, and ǫ is the MRS regularization parameter.
Given a set of source particles {yj} with forces {fj} and torques {nj}, for j=1,··· ,N, the
velocity induced by regularized Stokeslets is

u(x)=
N

∑
j=1

(
fj H1(rj)+

[
fj ·(x−yj)

]
(x−yj)H2(rj)

)
, (7.2)

where rj = |x−yj|, while the linear velocity and angular velocity induced by regularized
Stokeslets and rotlets are

u(x)=
N

∑
j=1

(
fjH1(rj)+

[
fj ·(x−yj)

]
(x−yj)H2(rj)+

1

2

[
nj×(x−yj)

]
Q(rj)

)
, (7.3a)

w(x)=
N

∑
j=1

(
1

2

[
fj×(x−yj)

]
Q(rj)+

1

4
njD1(rj)+

1

4

[
nj ·(x−yj)

]
D2(rj)

)
. (7.3b)

These sums have the pairwise interaction form (1.1) suitable for a fast summation
method; in this case the kernels are tensors, and the particle weights and output veloc-
ities are vectors. However the MRS functions (7.1) are somewhat complicated and we
know of only two recent applications of fast summation methods to these kernels [33,48]
using either the original KIFMM [60] or a later version in which the equivalent densities
are defined on coronas (or shells) around each cluster [61]. Note also that when ǫ=0, the
MRS kernels reduce to the usual Stokes kernels which are homogeneous (i.e. k(αx,αy)=
αλk(x,y) for some constant λ and all α>0); some versions of the FMM use this property to
improve performance (e.g. [40,51]), but this optimization is not available for the MRS ker-
nels because they are non-homogeneous when ǫ 6=0. In the next section we demonstrate
the capability of the KITC in evaluating the MRS sums (7.2)-(7.3) with ǫ 6=0.

8 Numerical results

We present results for two examples motivated by recent MRS simulations [48]. In these
examples the targets and sources coincide, but this is not an essential restriction. To
quantify the accuracy of the KITC we define the relative error,

E=

(
N

∑
i=1

|ud(xi)−ut(xi)|2
/ N

∑
i=1

|ud(xi)|2
)1/2

, (8.1)

where ud(xi) is the exact velocity computed by direct summation, ut(xi) is the treecode
approximation, and |u| is the Euclidean norm. In Example 2 where the linear veloc-
ity (7.3a) and angular velocity (7.3b) are computed, they are combined into a single vec-
tor and the error is computed as in (8.1). All lengths are nondimensional. References to
“CPU time” are the total wall-clock run time in seconds.
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The KITC algorithm described above was coded in C++ in double precision and com-
piled using the Intel compiler icpc with −O2 optimization. The source code is avail-
able for download (github.com/Treecodes/stokes-treecode). All computations were per-
formed on the University of Wisconsin-Milwaukee Mortimer Faculty Research Cluster;
each node is a Dell PowerEdge R430 server with two 12-core Intel Xeon E5-2680 v3 pro-
cessors at 2.50 GHz and 64 GB RAM; all compute and I/O nodes are linked by Mellanox
FDR Infiniband (56Gb/s) and gigabit Ethernet networks. For each example below, re-
sults of serial computations using a single core are first presented, followed by results of
parallel computations using OpenMP with up to 24 cores on a single node.

8.1 Example 1

The first example simulates microorganisms randomly located in a cube of side length
L=10, where each microorganism is a pair of particles representing its body and flagella,
and the particles exert unit forces in opposite directions along the organism length [48].
The total number of particles is N and we consider five systems with N=10K, 80K, 640K,
5.12M, 40.96M. The maximum number of particles in a leaf was set to N0 = 2000; note
however that in this case each cluster has 8 children and the actual leaf size is approxi-
mately N/8d =1250, where d is the depth of the tree (some leaves may have a few more
or less since the particle locations are random). The microorganism length is ℓ=0.02 and
the MRS parameter is ǫ=0.02. In this example we compute the Stokeslet velocity (7.2).

8.1.1 CPU time versus error

Fig. 2 focuses on intermediate system size N=640K, showing the treecode CPU time
versus the error E, for MAC parameters in the range 0.4≤θ≤0.8 and interpolation degrees
n = 1,··· ,10 (increasing from right to left). For a given MAC parameter θ, the error E
decreases as the degree n increases, but the CPU time increases. The lower envelope
of the data gives the most efficient treecode parameters. For example to achieve error
E≤ 1e-4, we can choose MAC θ=0.7 and degree n=7. Fig. 2 also shows the direct sum
CPU time (2249 s) as a horizontal line (the value is independent of the error); the treecode
is faster than direct summation for this range of parameters.

8.1.2 Error and CPU time versus system size

Fig. 3 plots the treecode error E (a), and CPU time (b) versus system size N, for MAC
parameter θ = 0.7 and interpolation degree n= 1,3,5,7,9. Since it is impractical to carry
out the direct sum for the largest system with N=40.96M, in that case the error was
computed using a sample of 2000 particles and the CPU time was extrapolated from
smaller systems. In Fig. 3a for a given degree n, the error first increases with increasing
system size N and then it decreases slightly for the two largest systems; nonetheless for
a given system size N, the error decreases as the interpolation degree n increases.

Fig. 3b shows that the treecode is faster than direct summation except for the smallest
system with N=10K (those runs all take less than 1 s). Two reference lines are shown;
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Figure 2: Example 1, regularized Stokeslets in a cube (7.2), MRS parameter ǫ= 0.02, system size N=640K,
direct sum CPU time (2249 s, red horizontal line), treecode CPU time (s) is plotted versus error E (blue symbols),
MAC parameter 0.4≤ θ≤0.8, degree n=1,··· ,10 (increasing from right to left).

Figure 3: Example 1, regularized Stokeslets in a cube (7.2), MRS parameter ǫ=0.02, (a) treecode error E, (b)
CPU time (s) versus system size N (10K, 80K, 640K, 5.12M, 40.96M), treecode MAC parameter θ=0.7, degree
n=1,3,5,7,9, maximum leaf size N0=2000, direct sum CPU time (ds, red,♦).

the direct sum CPU time is parallel to the O(N2) line as expected, while the KITC time is
slightly steeper than the O(N) line. The original Barnes-Hut treecode paper [4] pointed
out that the algorithm scales like O(N logN); the factor N comes from the loop over target
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Table 1: Example 1, regularized Stokeslets in a cube (7.2), MRS parameter ǫ=0.02, system size N, CPU time
(s) for direct sum and treecode (d,t), speedup (d/t), treecode error (E), results are from Fig. 3 with MAC
parameter θ=0.7, degree n=7, maximum leaf size N0=2000.

N direct sum (s), d treecode (s), t speedup, d/t error, E

10K 0.54 0.51 1.06 2.25e-6

80K 34.01 9.78 3.48 1.44e-5

640K 2248.93 149.14 15.08 3.17e-5

5.12M 157,542.13 1892.57 83.24 1.62e-5

40.96M 10,082,696.32 20,966.04 480.91 7.06e-6

particles (line 7 in Algorithm 2) and the factor logN is the number of levels in the tree; the
present results are consistent with this scaling estimate. As expected, for a given degree
n the speedup provided by the treecode increases with the system size N. To quantify
this observation, Table 1 records the direct sum and treecode CPU time and the treecode
error for the five systems using MAC parameter θ=0.7 and degree n=7. For the largest
system with N=40.96M particles, the treecode is more than 480 times faster than direct
summation while achieving error E=7.06e-6.

8.1.3 Memory consumption

The treecode memory consumption has two main components which are estimated as
follows. First, the memory due to the particle coordinates and weights is O(N), where N
is the number of particles in the system; this is the same as in direct summation. Second,
the memory due to the modified weights is O(n3N), where n is the degree of polynomial
interpolation and in this case N represents the number of clusters in the tree (this assumes
the number of levels in the tree is O(logN)). Hence the theoretical memory consumption
of the treecode is O(n3N), although in practice the O(N) particle data dominates when
the degree n is small.

To see the actual values, Table 2 presents the direct sum and treecode memory con-
sumption (MB) for Example 1; the results were obtained using the Valgrind Massif tool
(www.valgrind.org). For the largest system with N=40.96M particles, the direct sum
memory consumption (3604.80MB) was obtained by extrapolating from the smaller sys-
tems. It can be verified that the memory consumption in Table 2 is consistent with the es-
timates in the previous paragraph; for a given degree n, the memory consumption scales
like O(N), while for a given system size N, beyond the baseline particle data, the addi-
tional memory consumption scales like O(n3). Over this parameter range, the treecode
uses less than 1.65 times as much memory as direct summation, and a KITC computation
with N=40.96M particles and degree n= 9 uses about 5.2GB of memory. For compari-
son, a bbFMM computation with 1M Stokeslets ran out of memory for degree n>7 ( [19],
Fig. 8), although the precise memory consumption value was not given.
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Table 2: Example 1, regularized Stokeslets in a cube (7.2), MRS parameter ǫ = 0.02, direct sum and KITC
memory consumption (MB), system size N, treecode MAC parameter θ=0.7, degree n=1,3,5,7,9, maximum
leaf size N0 =2000.

system size N 10K 80K 640K 5.12M 40.96M

direct sum memory (MB) 0.88 7.04 56.36 450.60 3604.80

treecode memory (MB)

n=1 0.89 7.09 56.74 453.69 3629.24

n=3 0.91 7.27 58.17 465.09 3720.46

n=5 0.98 7.74 61.96 495.37 3962.69

n=7 1.16 8̇.66 69.28 553.96 4431.40

n=9 1.44 10.16 81.32 650.30 5202.10

8.1.4 Effect of MRS parameter

Table 3 shows the error E for values of the MRS parameter in the range 0.005≤ ǫ≤0.08,
with microorganism length l = ǫ and system size N = 640K [48]. The KITC used MAC
θ = 0.7 and degree n= 7, and the error is on the order of 1e-5. As ǫ increases, the error
first increases and then decreases; some error variation with ǫ is expected, but the reason
for this particular variation is not clear. It can be noted that error variation with ǫ also
occurred in KIFMM simulations (see [48], Table 3).

Table 3: Example 1, regularized Stokelets in a cube (7.2), system size N=640K, MRS parameter ǫ, microor-
ganism length l= ǫ, error E, treecode parameters θ=0.7, n=7, maximum leaf size N0 =2000.

MRS parameter, ǫ 0.005 0.01 0.02 0.04 0.08

error, E 7.68e-6 2.08e-5 3.17e-5 2.78e-5 1.93e-5

8.1.5 Parallel simulations

We parallelized the direct sum and KITC using OpenMP with up to 24 cores on a single
node. In both methods, the loop over target particles was parallelized, and the computa-
tion of the modified weights in the KITC was also parallelized.

We consider a system of N=640K regularized Stokeslets; the treecode parameters are
θ=0.7, n=7, N0 =2000, yielding E=3.17e-5. Table 4 shows the CPU time for direct sum
and KITC (d,t), parallel speedup and efficiency, and ratio of direct sum and treecode
CPU time. Parallelizing the direct sum reduces the CPU time from 2249 s with 1 core to
108 s with 24 cores, yielding parallel efficiency 86%. Parallelizing the KITC reduces the
CPU time from 149 s with 1 core to 10 s with 24 cores, yielding parallel efficiency 61%.
The KITC is 15 times faster than direct summation with 1 core and 10 times faster with
24 cores.

For comparison, the KIFMM results in [48] employed the Matlab Parallel Computing
Toolbox with up to 8 cores. For a system of size N=640K using a 43 grid to solve for
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Table 4: Example 1, regularized Stokeslets in a cube (7.2), parallel performance, system size N=640K, MRS
parameter ǫ= 0.02, KITC parameters θ= 0.7, n= 7, N0 = 2000, error E= 3.17e-5, number of cores (nc), CPU
time (s) is shown for direct sum and KITC (d,t), parallel speedup = d1/dnc,t1/tnc, parallel efficiency (PE %)
=(d1/dnc)/nc,(t1/tnc)/nc, parallel KITC speedup (d/t).

nc d time (s) d1/dnc d PE (%) t time (s) t1/tnc t PE (%) d/t

1 2249.71 1.00 100.00 149.75 1.00 100.00 15.02

2 1123.72 2.00 100.00 75.01 2.00 99.82 14.98

4 569.58 3.95 98.74 38.83 3.86 96.41 14.67

8 311.50 7.22 90.28 21.44 6.98 87.31 14.53

12 215.49 10.43 87.00 16.34 9.16 76.37 13.19

24 108.22 20.79 86.62 10.19 14.70 61.23 10.62

the equivalent densities, the error was E=7.33e-4, and the CPU time was reduced from
537 s with 1 core to 100 s with 8 cores, yielding parallel efficiency 67% (see [48], Tables
4 and 5). In comparing the KITC results and KIFMM results in [48], the point is not to
claim that one method is better than the other; that would require more extensive testing
beyond the scope of this work, but we believe the present results indicate that the KITC
is a competitive option for fast summation of MRS kernels.

8.2 Example 2

The second example models an array of rods representing cilia or free-swimming flag-
ella [45, 48]. The number of rods is Nr and each rod is a helical curve with M segments,
so the total number of particles is N = Nr(M+1). Each rod is parametrized by the z-
coordinate and has the form (x0+0.3cos2z,y0+0.3sin2z,z) for 0≤ z≤ 9, where the base
point (x0,y0) lies at a regular Cartesian grid point in the xy-plane and the rods extend in
the z-direction. Fig. 4 shows an example with Nr =16 rods and M=25 segments on each
rod, in the domain [−8,8]×[−8,8]×[0,9] in R

3.

In this example each particle is a superposition of a regularized Stokeslet and rotlet,
and the KITC is applied to compute the linear velocity (7.3a) and angular velocity (7.3b)
for a given rod configuration. Starting with Nr =152 rods with base points in the domain
[−8,8]×[−8,8] as in [48], we increase the number of rods (Nr = 152,202,302,402,602,802)
while expanding the horizontal dimensions of the domain to maintain constant rod den-
sity. Each rod has M = 150 segments, the MRS parameter is ǫ = 5L/M = 0.3, and each
component of the force fj and torque nj is a random number in [−1,1].

Unlike Example 1 where the particles lie in a cube, in Example 2 the particles lie in
a rectangular slab (the z-direction is shorter than the xy-directions). In particular, the
slab dimensions vary from 162×9 for the smallest system (Nr = 152, N = 33975) to ap-
proximately 852×9 for the largest system (Nr = 802, N = 966400). The tree construction
scheme described above yields clusters that are well adapted to the slab geometry of this
example.
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Figure 4: Example 2, regularized Stokeslets and rotlets on an array of helical rods representing cilia or free-
swimming flagella [45,48], Nr =16 rods, M=25 segments on each rod, domain [−8,8]× [−8,8]× [0,9] in R

3.

Also note that the regularized Stokeslet/rotlet kernel (7.3) in Example 2 has more
terms and is more expensive to evaluate than the regularized Stokeslet kernel (7.2) in
Example 1. Hence to better balance the cost of direct particle-particle interactions (4.2)
and particle-cluster approximations (4.3), the maximum leaf size was reduced to N0 =
1000 in Example 2.

8.2.1 Error and CPU time versus system size

Fig. 5 presents the treecode error (a) and the direct sum and treecode CPU time (b) versus
system size N. The treecode MAC parameter is θ=0.7 and the degree is n=1,3,5,7,9. The
error increases slightly with system size N, but for a given degree n, the error amplitude
is comparable to the results in Example 1 for this range of system size. As before, the
direct sum CPU time is parallel to the slope 2 line, while the KITC time is slightly steeper
than the slope 1 line and is consistent with O(N logN) scaling.

8.2.2 Parallel simulations

Table 5 presents results for Nr = 802 rods, system size N = 966400, and with treecode
parameters θ=0.7, n=7, N0=1000, yielding error E=2.24e-5. Parallelizing the direct sum
reduces the CPU time from 15651 s with 1 core to 742 s with 24 cores, yielding parallel
efficiency 87%, while parallelizing the KITC reduces the CPU time from 720 s with 1 core
to 43 s with 24 cores, yielding parallel efficiency 68%. The KITC is 21 times faster than
direct summation with 1 core and 17 times faster with 24 cores.
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Figure 5: Example 2, regularized Stokeslets and rotlets on an array of helical rods (7.3a)-(7.3b) following [48],
(a) KITC error E, (b) CPU time (s) for direct sum (red,♦) and KITC (blue, other symbols), number of rods

Nr=152,202,302,402,602,802, number of segments per rod M=150, system size N=Nr(M+1), MRS parameter
ǫ=0.3, KITC parameters θ=0.7, n=1,3,5,7,9, N0=1000.

Table 5: Example 2, regularized Stokeslets and rotlets on an array of helical rods (7.3a)-(7.3b) following [48],
parallel performance, Nr =802 rods, system size N=966400, MRS parameter ǫ=0.3, KITC parameters θ=0.7,
n = 7, N0 = 1000, error E= 2.24e-5, number of cores (nc), CPU time (s) is shown for direct sum and KITC
(d,t), parallel speedup = d1/dnc,t1/tnc, parallel efficiency (PE %) =(d1/dnc)/nc,(t1/tnc)/nc, parallel KITC
speedup (d/t).

nc d time (s) d1/dnp d PE (%) t time (s) t1/tnp t PE (%) d/t

1 15651.61 1.00 100.00 720.87 1.00 100.0 21.71

2 7907.10 1.98 98.97 371.91 1.94 96.91 21.26

4 3962.36 3.95 98.75 191.89 3.76 93.91 20.65

8 2120.36 7.38 92.27 110.88 6.50 81.27 19.12

12 1424.27 10.99 91.58 80.35 8.97 74.76 17.73

24 742.85 21.07 87.79 43.63 16.52 68.84 17.03

9 Summary

We presented a kernel-independent treecode (KITC) for fast summation of particle in-
teractions in 3D. The method employs barycentric Lagrange interpolation at Chebyshev
points to approximate well-separated particle-cluster interactions. The KITC requires
only kernel evaluations, is suitable for non-oscillatory kernels, and relies on the scale-
invariance property of barycentric Lagrange interpolation. Numerical results were pre-
sented for the non-homogeneous kernels arising in the Method of Regularized Stokeslets

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2019-0177 | Generated on 2025-04-20 07:59:15



L. Wang, R. Krasny and S. Tlupova / Commun. Comput. Phys., 28 (2020), pp. 1415-1436 1433

(MRS) [48]. For a given level of accuracy, the treecode CPU time scales like O(N logN),
where N is the number of particles, and a substantial speedup over direct summation is
achieved for large systems. The KITC is a relatively simple algorithm with low mem-
ory consumption, and this enables a straightforward parallelization; here we employed
OpenMP with up to 24 cores on a single node; alternative approaches including dis-
tributed memory parallelization for larger systems will be considered in the future [17,
44, 58].

Other kernels for which the KITC may be suitable are the regularized Green’s func-
tions used in computing nearly singular integrals (e.g. [5,54,55]), the RPY (Rotne-Prager-
Yamakawa) tensor for hydrodynamic interactions [37], and the generalized Born poten-
tial for implicit solvent modeling [59]. We expect that the KITC can take advantage of
several techniques employed in advanced implementations of the KIFMM and bbFMM
such as blocking operations, utilizing BLAS routines, AVX and SSE vectorization, and
GPU and Phi coprocessing (e.g. [1, 34, 40, 51]). It should be noted that an FMM could
be implemented using barycentric Lagrange interpolation for both the target and source
variables, and this is also an interesting direction for future study. Finally we mention
that the extension to barycentric Hermite interpolation has been carried out for scalar
electrostatic kernels [31].
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[7] S. Börm, L. Grasedyck and W. Hackbusch, Introduction to hierarchical matrices with applica-
tions, Eng. Anal. Bound. Elem., 27 (2003), 405-422.

[8] E. L. Bouzarth and M. L. Minion, Modeling slender bodies with the method of regularized
Stokeslets, J. Comput. Phys., 230 (2011), 3929-3947.

[9] A. Brandt and A. A. Lubrecht, Multilevel matrix multiplication and fast solution of integral
equations, J. Comput. Phys., 90 (1990), 348-370.

[10] H. Cheng, L. Greengard and V. Rokhlin, A fast adaptive multipole algorithm in three dimen-
sions, J. Comput. Phys., 155 (1999), 468-498.

[11] R. Cortez, The method of regularized Stokeslets, SIAM J. Sci. Comput., 23 (2001), 1204-1225.
[12] R. Cortez, L. Fauci and A. Medovikov, The method of regularized Stokeslets in three di-

mensions: Analysis, validation, and application to helical swimming, Phys. Fluids, 17 (2005),
Article 031504.

[13] C. I. Draghicescu and M. Draghicescu, A fast algorithm for vortex blob interactions, J. Com-
put. Phys., 116 (1995), 69-78.

[14] T. A. Driscoll, N. Hale and L. N. Trefethen, Chebfun Guide, Pafnuty Publications, Oxford,
2014. www.chebfun.org

[15] Z.-H. Duan and R. Krasny, An adaptive treecode for computing nonbonded potential energy
in classical molecular systems, J. Comput. Chem., 22 (2001), 184-195.

[16] U. Essmann, L. Perera, M. Berkowitz, T. Darden, H. Lee and L. Pedersen, A smooth particle
mesh Ewald method, J. Chem. Phys., 103 (1995), 8577-8593.

[17] H. Feng, A. Barua, S. Li and X. Li, A parallel adaptive treecode algorithm for evolution of
elastically stressed solids, Commun. Comput. Phys., 15 (2014), 365-387.

[18] H. Flores, E. Lobaton, S. Méndez-Diez, S. Tlupova, and R. Cortez, A study of bacterial flag-
ellar bundling, Bull. Math. Biol., 67 (2005), 137-168.

[19] W. Fong and E. Darve, The black-box fast multipole method, J. Comput. Phys., 228 (2009),
8712-8725.

[20] W.-H. Geng and R. Krasny, A treecode-accelerated boundary integral Poisson-Boltzmann
solver for solvated biomolecules, J. Comput. Phys., 247 (2013), 62-78.

[21] K. Giebermann, Multilevel approximation of boundary integral operators, Computing, 67
(2001), 183-207.

[22] Z. Gimbutas and V. Rokhlin, A generalized Fast Multipole Method for nonoscillatory ker-
nels, SIAM J. Sci. Comput., 24 (202), 796-817.

[23] L. F. Greengard and J. Huang, A new version of the Fast Multipole Method for screened
Coulomb interactions in three dimensions, J. Comput. Phys., 180 (2002), 642-658.

[24] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys., 73
(1987), 325-348.

[25] L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems, MIT Press, Cam-
bridge, MA 1988.

[26] W. Hackbusch and Z. P. Nowak, On the fast matrix multiplication in the boundary element
method by panel clustering, Numer. Math., 54 (1989), 463-491.

[27] D. J. Hardy, M. A. Wolff, J. Xia, K. Schulten and R. D. Skeel, Multilevel summation with
B-spline interpolation for pairwise interactions in molecular dynamics simulations, J. Chem.
Phys., 144 (2016), Article 114112.

[28] N. J. Higham, The numerical stability of barycentric Lagrange interpolation, IMA J. Numer.
Anal., 24 (2004), 547-556.

[29] R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, Taylor & Francis,
Bristol, 1988.

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2019-0177 | Generated on 2025-04-20 07:59:15



L. Wang, R. Krasny and S. Tlupova / Commun. Comput. Phys., 28 (2020), pp. 1415-1436 1435

[30] R. Krasny and L. Wang, Fast evaluation of multiquadric RBF sums by a Cartesian treecode,
SIAM J. Sci. Comput., 33 (2011), 2341-2355.

[31] R. Krasny and L. Wang, A treecode based on barycentric Hermite interpolation for electro-
static particle interactions, Comput. Math. Biophys., 7 (2019), 73-84.

[32] R. Kress, Linear Integral Equations, Springer, New York, 2014, third edition.
[33] J. LaGrone, R. Cortez, W. Yan and L. Fauci, Complex dynamics of long, flexible fibers in

shear, J. Non-Newton. Fluid Mech., 269 (2019), 73-81.
[34] I. Lashuk, A. Chandramowlishwaran, H. Langston, T.-A. Nguyen, R. Sampath, A.

Shringarpure, R. Vuduc, L. Ying, D. Zorin and G. Biros, A massively parallel adaptive fast-
multipole method on heterogeneous architectures, Commun. ACM, 55 (2012), 101-109.

[35] P.-D. Létourneau, C. Cecka and E. Darve, Cauchy Fast Multipole Method for general analytic
kernels, SIAM J. Sci. Comput., 36 (2014), A396-A426.

[36] P. Li, H. Johnston and R. Krasny, A Cartesian treecode for screened Coulomb interactions, J.
Comput. Phys., 228 (2009), 3858-3868.

[37] Z. Liang, Z. Gimbutas, L. Greengard, J. Huang and S. Jiang, A fast multipole method for the
Rotne-Prager-Yamakawa tensor and its applications, J. Comput. Phys., 234 (2013), 133-139.

[38] K. Lindsay and R. Krasny, A particle method and adaptive treecode for vortex sheet motion
in three-dimensional flow, J. Comput. Phys., 172 (2001), 879-907.

[39] J. Makino, Yet another fast multipole method without multipoles - Pseudoparticle multipole
method, J. Comput. Phys., 151 (1999), 910-920.

[40] D. Malhotra and G. Biros, Algorithm 967: A distributed-memory fast multipole method for
volume potentials, ACM Trans. Math. Softw., 43 (2016), Article 17.

[41] W. B. March, B. Xiao and G. Biros, ASKIT: Approximate skeletonization kernel-independent
treecode in high dimensions, SIAM J. Sci. Comput., 37 (2015), A1089-A1110.

[42] P. G. Martinsson and V. Rokhlin, An accelerated kernel-independent fast multipole method
in one dimension, SIAM J. Sci. Comput., 29 (2007), 1160-1178.

[43] W. F. Mascarenhas, The stability of barycentric interpolation at the Chebyshev points of the
second kind, Numer. Math., 128 (2014), 265-300.

[44] Y. M. Marzouk and A. F. Ghoniem, K-means clustering for optimal partitioning and dynamic
load balancing of parallel hierarchical N-body simulations, J. Comput. Phys., 207 (2005), 493-
528.

[45] S. D. Olson, S. Lim and R. Cortez, Modeling the dynamics of an elastic rod with intrinsic
curvature and twisting using a regularized Stokes formulation, J. Comput. Phys., 238 (2013),
169-187.

[46] C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cam-
bridge University Press, Cambridge, UK, 1992.

[47] H.-J. Rack and M. Reimer, The numerical stability of evaluation schemes for polynomials
based on the Lagrange interpolation form, BIT, 22 (1982), 101-107.

[48] M. W. Rostami and S. D. Olson, Kernel-independent fast multipole method within the frame-
work of regularized Stokeslets, J. Fluid Struct., 67 (2016), 60-84.

[49] H. E. Salzer, Lagrangian interpolation at the Chebyshev points xn,ν = cos(νπ/n),ν= 0(1)n;
some unnoted advantages, Comput. J., 15 (1972), 156-159.

[50] D. J. Smith, A boundary element regularized Stokeslet method applied to cilia- and flagella-
driven flow, Proc. R. Soc. A, 465 (2009), 3605-3626.

[51] T. Takahashi, C. Cecka and E. Darve, Optimization of the parallel black-box fast multipole
method on CUDA, in Proceedings of Conference on Innovative Parallel Computing (InPar),
2012, San Jose, CA, USA. DOI: 10.1109/InPar.2012.6339607.

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2019-0177 | Generated on 2025-04-20 07:59:15



1436 L. Wang, R. Krasny and S. Tlupova / Commun. Comput. Phys., 28 (2020), pp. 1415-1436

[52] J. Tausch, The Fast Multipole Method for arbitrary Green’s functions, Contemp. Math., 329
(2003), 307-314.

[53] S. Tlupova and R. Cortez, Boundary integral solutions of coupled Stokes and Darcy flows, J.
Comput. Phys., 228 (2009), 158-179.

[54] S. Tlupova and J. T. Beale, Nearly singular integrals in 3D Stokes flow, Commun. Comput.
Phys., 14 (2013), 1207-1227.

[55] S. Tlupova and J. T. Beale, Regularized single and double layer integrals in 3D Stokes flow,
J. Comput. Phys., 386 (2019), 568-584.

[56] L. N. Trefethen, Approximation Theory and Approximation Practice, SIAM, Philadelphia,
2013.

[57] L. Wang, S. Tlupova and R. Krasny, A treecode algorithm for 3D Stokeslets and stresslets,
Adv. Appl. Math. Mech., 11 (2019), 737-756.

[58] M. S. Warren and J. K. Salmon, A parallel hashed oct-tree N-body algorithm, in Proceedings
of the 1993 ACM/IEEE Conference on Supercomputing, (1993), 12-21.

[59] Z. Xu, X. Cheng and H. Yang, Treecode-based generalized Born method, J. Chem. Phys., 134
(2011), Article 064107.

[60] L. Ying, G. Biros and D. Zorin, A kernel-independent adaptive fast multipole algorithm in
two and three dimensions, J. Comput. Phys., 196 (2004), 591-626.

[61] L. Ying, A kernel independent fast multipole algorithm for radial basis functions, J. Comput.
Phys., 213 (2006), 451-457.

[62] B. Zhang, J. Huang, N. P. Pitsianis and X. Sun, A Fourier-series-based kernel-independent
fast multipole method, J. Comput. Phys., 230 (2011), 5807-5821.

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2019-0177 | Generated on 2025-04-20 07:59:15


