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Abstract. In this paper we introduce a new mathematical model for the active con-
traction of cardiac muscle, featuring different thermo-electric and nonlinear conduc-
tivity properties. The passive hyperelastic response of the tissue is described by an
orthotropic exponential model, whereas the ionic activity dictates active contraction in-
corporated through the concept of orthotropic active strain. We use a fully incompress-
ible formulation, and the generated strain modifies directly the conductivity mecha-
nisms in the medium through the pull-back transformation. We also investigate the
influence of thermo-electric effects in the onset of multiphysics emergent spatiotem-
poral dynamics, using nonlinear diffusion. It turns out that these ingredients have
a key role in reproducing pathological chaotic dynamics such as ventricular fibrilla-
tion during inflammatory events, for instance. The specific structure of the governing
equations suggests to cast the problem in mixed-primal form and we write it in terms
of Kirchhoff stress, displacements, solid pressure, dimensionless electric potential, ac-
tivation generation, and ionic variables. We also advance a new mixed-primal finite
element method for its numerical approximation, and we use it to explore the proper-
ties of the model and to assess the importance of coupling terms, by means of a few
computational experiments in 3D.
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1 Introduction

Temperature variations may have a direct impact on many of the fundamental mech-
anisms in the cardiac function [74]. Substantial differences have been reported in the
conduction velocity and spiral drift of chaotic electric potential propagation in a num-
ber of modelling and computationally-oriented studies [25], and several experimental
tests confirm that this is the case not only for cardiac tissue, but for other excitable sys-
tems [28, 40]. The phenomenon is however not restricted to electrochemical interactions,
but it also might affect mechanical properties [33, 45, 68]. Indeed, cardiac muscle is quite
sensitive to mechanical stimulation and deformation patterns can be very susceptive to
external agents such as temperature. For instance, enhanced tissue heterogeneities can
be observed when the medium is exposed to altered thermal states, and in turn these
can give rise to irregular mechano-chemical dynamics. A few examples that relate to
experimental observations from epicardial and endocardial activity on canine right ven-
tricles at different temperatures, as well as tachycardia and other fibrillation mechanisms
occurring due to thermal unbalance, can be found in e.g. [25]. These scenarios can be re-
lated to extreme conditions encountered during heat strokes and sports-induced fatigue
(easily reaching 41◦C), and localisation of other thermal sources such as ablation devices;
but also to surgery or therapeutical procedures (in open-chest surgery tissues might be
exposed to cold air in the operating theatre at 25◦C), or due to extended periods of expo-
sure to even lower temperatures that can occur during shipwrecks or avalanches. It is not
striking that temperature effects might affect the behaviour of normal electromechanical
heart activity. However the precise form that these mechanisms manifest themselves is
not at all obvious. This is, in part, a consequence of the nonlinear character of the thermo-
electro-mechanical coupling. For instance, one can show that localised thermal gradients
might destabilise the expected propagation of the electric wave, as well as change the
mechanical behaviour of anisotropic contraction. Our goal is to investigate the role of
the aforementioned effects in the development and sustainability of cardiac arrhythmias.
These complex emerging phenomena originate from multifactorial and multiphysical in-
teractions [57], and they are responsible for a large number of cases of pathological dys-
function and casualties. The model we propose here has potential therefore in the inves-
tigation of mechanisms provoking such complex dynamics, in particular those arising
during atrial and ventricular fibrillation.

Even if computational models for the electromechanics of the heart are increasingly
complex and account for many multiphysics and multiscale effects (see e.g. [11, 58, 70]),
we are only aware of one recent study [10] that addresses similar questions to the ones
analysed here. However that study is restricted to one-dimensional domains, it uses the
two-variable model from [51], and it assumes an active stress approach for a simplified
neo-Hookean material in the absence of an explicit stretch state. Our phenomenologi-
cal framework also uses a minimal temperature-based two-variable model, but in con-
trast, it additionally includes a nonlinear conductivity representing a generalised diffu-
sion mechanism intrinsic to porous-medium electrophysiology [36]. We postulate then an
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extended model that also accounts for active deformation of the tissue, where the specific
form of the electromechanical coupling is dictated by an adaptation of the orthotropic ac-
tive strain framework proposed in [62].

The remainder of the paper is laid out in the following manner. Section 2 discusses
a combination of phenomenological and physiological coupled models from thermo-
electric and thermo-mechanic dynamics being local (potentially sub-cellular in a phys-
iological model), tissue, and organ-scale levels. We introduce in Section 3 a new mixed-
primal finite element scheme for the solution of the set of governing equations (in par-
ticular using the Kirchhoff stress as additional unknown), where we provide also some
details about its computational realisation. All of our numerical tests are collected in
Section 4, including conduction velocity assessment, and a few simulations regarding
normal and arrhythmic dynamics in simplified 3D domains. We then conclude in Sec-
tion 5 with a summary and a discussion on the limitations and envisaged extensions of
this study.

2 A new model for thermo-electric active strain

In this section we provide an abridged derivation of the set of partial differential equa-
tions describing the multiscale coupling between electric, thermal, mechanical, and ionic
processes; which are, in principle, valid for general excitable and deformable media.

2.1 Muscle contraction via the active strain approach

Let Ω⊂R3 denote a deformable body with piecewise smooth boundary ∂Ω, regarded in
its reference configuration, and denoted by ν, the outward unit normal vector on ∂Ω. The
kinematical description of finite deformations regarded on a time interval t∈ (0,tfinal] is
made precise as follows. A material point in Ω is denoted by x, whereas xt−x=u(t):Ω→
R3 will denote the displacement field characterising its new position xt within the body
Ωt in the current, deformed configuration. The tensor F := I+∇u is the gradient (ap-
plied with respect to the fixed material coordinates) of the deformation map; its Jacobian
determinant, denoted by J=detF, measures the solid volume change during the deforma-
tion; and C=FtF is the right Cauchy-Green deformation tensor on which all strain mea-
sures will be based (here the superscript ()t denotes the transpose operator). The first
isotropic invariant controlling deviatoric effects is I1(C) = trC, and for generic unitary
vectors f 0,s0, the scalars I4, f (C)= f 0 ·(C f 0), I8, f s(C)= f 0 ·(Cs0) are direction-dependent
pseudo-invariants of C measuring fibre-aligned stretch (see e.g. [67]). As usual, I denotes
the 3×3 identity matrix. In the remainder of the presentation we will restrict all space
differential operators to the material coordinates.

Next we recall the active strain model for ventricular electromechanics as introduced
in [52]. There, the contraction of the tissue results from activation mechanisms governed
by internal variables and incorporated into the finite elasticity context using a virtual
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multiplicative decomposition of the deformation gradient into a passive (purely elastic)
and an active part F=FEFA, defined in general, triaxial form

FA = I+γ f f 0(x)⊗ f 0(x)+γss0(x)⊗s0(x)+γnn0(x)⊗n0(x). (2.1)

The coefficients γi, with i= f ,s,n, are smooth scalar functions encoding the local consti-
tutive stretch in specific directions, whose precise definition will be postponed to Sec-
tion 2.3. The inelastic contribution to the deformation modifies the size of the cardiac
fibres, and then compatibility of the motion is restored through an elastic deformation
accommodating the active strain distortion. The triplet ( f 0(x),s0(x),n0(x)) represents
a coordinate system pointing in the local direction of cardiac fibres, transversal sheetlet
compound, and normal cross-fibre direction n0(x)= f 0(x)×s0(x).

Constitutive relations defining the material properties and underlying microstructure
of the myocardial tissue will follow the orthotropic model proposed in [34], for which the
strain energy function and the first Piola-Kirchhoff stress tensor (after applying the active
strain decomposition) read respectively

Ψ(FE)=
a

2b
eb(IE

1 −3)+
a f s

2b f s

[
e

b f s(IE
8, f s)

2−1
]
+ ∑

i∈{ f ,s}

ai

2bi

[
ebi((IE

4,i−1)+)2−1
]
, P=

∂Ψ

∂F
−pJF−t,

(2.2)
where a,b,ai,bi with i∈{ f ,s, f s} are material parameters, p denotes the solid hydrostatic
pressure, and we have used the notation (x)+ :=max{x,0}. Switching off the anisotropic
contributions acting on s0 and n0 (but not the shear term) under compression ensures that
the associated terms in the strain energy function (in both the pure passive and active-
strain formulations) are strongly elliptic [55] (these will be the terms appearing on the
second diagonal block of the weak formulation from Section 3, the block corresponding
to displacements), however the overall problem will remain of a saddle-point structure.

The modified elastic invariants IE
i are functions of the coefficients γi and the invariant

and pseudo invariants as follows

IE
1 =

[
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(γn+1)2

]
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]
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IE
4, f =

I4, f(
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)2
, IE

4,s =
I4,s

(γs+1)2
, IE

8, f s=
I8, f s(

γ f +1
)
(γs+1)

.

Accordingly, the active strain and consequently the force associated to the active part
of the total stress, will receive contributions acting distinctively on each direction f 0(x),
s0(x), n0(x).

The balance of linear momentum together with the incompressibility constraint are
written, when posed in the inertial reference frame and under pseudo-static mechanical
equilibrium, in the following way

−∇·P=ρ0b in Ω×(0,tfinal], (2.3a)

ρJ−ρ0 =0 in Ω×(0,tfinal], (2.3b)
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where ρ0,ρ are the reference and current medium density, and b is a vector of body loads.
Furthermore, the balance of angular momentum translates into the condition of symme-
try of the Kirchhoff stress tensor Π=PFt, which is in turn encoded into the momentum
and constitutive relations (2.3a), (2.2), and (2.1).

Following the notation in [5], the contribution to stress that does not include pressure
explicitly is denoted as G(u) := ∂Ψ

∂F Ft, and therefore we have the constitutive relation

Π=G(u)−pJI. (2.4)

2.2 A modified Karma model for cardiac action potential

Let us denote by Iext a spatio-temporal external electrical stimulus applied to the medium.
On the undeformed configuration we proceed to write the following monodomain equa-
tions describing the dimensionless transmembrane potential propagation and the dy-
namics of slow recovery currents according to a specific temperature T:

∂v

∂t
−∇·[D(v,F)∇v]=

f (v,n)

τv(T)
+ Iext in Ω×(0,tfinal], (2.5a)

dn

dt
=

g(v,n)

τn(T)
in Ω×(0,tfinal], (2.5b)

where the unknowns are the adimensional transmembrane potential, v, and the recovery
variable, n. This reaction-diffusion system is endowed with the following specifications,
taking the membrane model proposed in [38], and adapting it to include thermo-electric
effects following the development in [31]

f (v,n) :=−v+[v∗−S(n)][1−tanh(v−v⋆)]
v2

2
, (2.6a)

g(v,n) :=R(n)H(v−vn)−[1−H(v−vn)]n, (2.6b)

R(n) :=
1−(1−e−L)n

1−e−L
, S(n) :=nM, (2.6c)

τv(T) :=
τ0

v

1+β(T−T0)
, τn(T) :=τ0

n Q10(T). (2.6d)

As in the original phenomenological model from [38], hereH(x) stands for the Heaviside
step function, i.e. H(x)= 0 for x≤ 0 and H(x)= 1 for x > 0. The (unit-less) transmem-
brane potential assumes values in [−1,5], and the resting state of the dynamical system is
(v,n)=(0,0). The functionR(n) acts as a nonlinear modulator of the time-frame between
the end of an action potential pulse and the beginning of the next one (diastolic interval),
as well as the duration of the subsequent action potential pulse. The dispersion map S(n)
is based on experimental restitution properties and it relates the instantaneous speed of
the action potential front-end at a given spatial point, with the time elapsed since the
back-end of a previous pulse that has passed through the same location. In turn, these
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functions are tuned by the parameters L,M, respectively. With the specification (2.6d)
we are extending the aforementioned models by including an Arrhenius exponential law
that modifies the dynamics of the gating variable through the function Q10 =µ(T−T0)/10.
This term characterises the action of temperature through the mechanism of ionic feed-
back. In this expression, T0 represents the reference temperature, i.e. 37◦C, and the law
remains valid within a 10-degrees range. Furthermore, the so-called Moore term defining
the time constant τv(T) associated with the transmembrane voltage is assumed to follow
a linear variation with T.

The model from [38] has been designed specifically for cardiac tissue and it has been
widely used in high-resolution 2D and 3D electrophysiological studies that match vari-
ous types of experimental data [31]. However, owing to its simplicity, limitations of this
model are well-known. They relate to lack of accuracy in reproducing the correct time
and space morphology of the action potential signal, and in describing repolarisation
features such as APD restitution, as well as in providing the correct onset and devel-
opment of spiral/scroll waves during arrhythmic scenarios. In fact, a number of more
physiologically accurate cellular models are available from the literature [3, 22], but we
restrict to (2.6) as the complexity in our model resides more in the multi-field coupling
framework and in its suitability for large scale electromechanical simulations. Exten-
sions to the two-variable model in (2.5) that stay on the phenomenological realm include
the three and four-variable systems mentioned above and proposed in [3, 23], and they
provide further experimental validation of the suitability of simplified models for the
study of a wide class of physiological and pathological scenarios. More specific aspects
of possible model extensions will be discussed in Section 5. An additional generalisation
with respect to [38] is the self-diffusion due to voltage and the account for anisotropy
in the diffusion. Due to the Piola transformation (forcing a compliance of the diffusion
tensor using the deformation gradients), the conductivity tensor D(·,·) in (2.5a) depends
nonlinearly on the deformation gradient F, whereas self-diffusion is here taken as the
potential-dependent diffusivity proposed in [31], but appropriately modified to incorpo-
rate information about preferred directions of diffusivity according to the microstructure
of the tissue. This model is motivated by diffusion in porous media [71], which has been
applied to cardiac tissue in [36], justified by the porous nature of the medium [46] and by
the multiscale character of diffusion (intercalated discs and gap junctions at the cell level
and micro-tubuli at the subcelullar scale, [73]). More precisely, we set

D(v,F)= [D0/2+D1v+D2v2]JC−1+D0/2JF−1 f⊗ f F−T, (2.7)

where f = F f 0, and where the values taken by the parameters Di, i = 0,1,2 (as well as
all remaining model constants) are displayed in Table 1, below. Note that here the dif-
fusivity is mainly affected by the fibre-to-fibre connections, and the term JC−1 appears
due to the change of configuration from spatial to reference coordinates, and it is also
referred to as geometric feedback [8]. The constants D1,D2 encode the effect of linear and
quadratic self-diffusion, and they have special importance at the depolarisation plateau
phase, since they modify the speed and action potential duration of the propagating
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Table 1: Coefficients for the electromechanical model (2.3), (2.5), (2.9), with values taken from [7,34,62].

Thermo-electric model parameters

v⋆=3 [–] vn=1 [–] v∗=1.5415 [–] µ=1.5 [–]

τ0
v =2.5 [ms] β=0.008 [–] τ0

n =250 [ms] D0=0.85 [cm2/s]

D1=0.09 [cm2/s] D2=0.01 [cm2/s] L=0.9 [–] M=9 [–]

T0=37 [◦C] µ̃=3.9 [–]

Mechano-chemical model parameters

a=0.333 [kPa] a f =18.535 [kPa] as =2.564 [kPa] a f s=0.417 [–]

b=9.242 [–] b f =15.972 [–] bs =10.446 [–] b f s=11.602 [–]

K0=5 [–] K1=3.5 [–] K2=0.035 [–] η∈{0.05,0.9} [kPa]

τ0
ξ =0.5 [ms] γ0=0.9 [–]

waves. We also note that even for resting transmembrane potential, the conductivity
tensor remains positive definite.

2.3 Activation mechanisms

A constitutive equation for the activation functions γi in terms of the microscopic cell
shortening ξ is adapted from [62] as follows

γ f (ξ)=γ0ξ, γs(ξ)=(1+γ0ξ)−1(1+K0γ0ξ)−1−1, γn(ξ)=K0γ0ξ, (2.8)

where γ0 is a positive constant that can control the intensity of the activation, and where
the specific relation between the myocyte shortening ξ and the dynamics of slow ionic
quantities (in the context of our phenomenological model, only n) is made precise using
the following law

dξ

dt
=

ℓ(ξ,n)

τξ(T)
in Ω×(0,tfinal], (2.9)

where, in analogy to (2.6), the dynamics of the myocyte shortening are here additionally
modulated by a temperature-dependent constant

ℓ(ξ,n) :=K1ξ2(1+n)−1−K2n, τξ(T) :=τ0
ξ Q̃10(T). (2.10)

Here Q̃10(T) = µ̃(T−T0)/10. The dynamics of these quantities can be observed in the top
panel of Fig. 1, for the case of base temperature and applying two pacing cycles. Ex-
amples of the dynamics of the thermo-electric quantities on the second cycle, and for
varying temperatures are collected in the bottom plots of Fig. 1. The structure of (2.9)
suggests that thermo-electric effects could be similarly incorporated in other models for
cellular activation (depending on cross-bridge transitions [43], on calcium - stretch rate
couplings in a viscoelastic setting [21], or using phenomenological descriptions), that is
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Figure 1: Top: kinetics of adimensional voltage, gating variable (left axis) and cell shortening with active strain
function (right axis) plotted against time. Bottom: Variations of the dynamics of the coupled thermoelectric
model according to temperature. The variations of the active strain and myocyte shortening coincide and
therefore the latter are not shown.

through a phenomenological rescaling with τξ . However, to perform a deeper and clar-
ifying study on the precise modification of ionic activity in the presence of temperature
gradients would be a much more difficult task.

2.4 Initial and boundary conditions

Eqs. (2.3a)-(2.3b) will be supplemented either with mixed normal displacement-traction
boundary conditions

u·ν=0 on ∂ΩD×(0,tfinal], and Pν= pN JF−tν on ∂ΩN×(0,tfinal], (2.11)

(where ∂ΩD,∂ΩN conform a disjoint partition of the boundary, the traction written in
terms of the first Piola-Kirchhoff stress tensor is t=Pν, and the term pN denotes a possibly
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time-dependent prescribed boundary pressure), or alternatively with Robin conditions
on the whole boundary

Pν+η JF−tu=0 on ∂Ω×(0,tfinal], (2.12)

which account for stiff springs connecting the cardiac medium with the surrounding soft
tissue and organs (whose stiffness is encoded in the scalar η). On the other hand, for
the nonlinear diffusion equation (2.5a) we prescribe zero-flux boundary conditions rep-
resenting insulated tissue

D(v,F)∇v·ν=0 on ∂Ω×(0,tfinal]. (2.13)

Finally, the coupled set of equations is closed after defining adequate initial data for the
dimensionless transmembrane potential and for the internal variables ξ,n:

v(x,0)=v0(x), n(x,0)=n0(x), ξ(x,0)= ξ0(x) on Ω×{0}. (2.14)

For the electrical and activation model we chose resting values for the dimensionless
transmembrane potential, the slow recovery, and the myocyte shortening v0=n0=ξ0=0,
where initiation of wave propagation will be induced with S1-S2-type protocols.

3 Galerkin finite element method

3.1 Mixed-primal formulation in weak form

The specific structure of the governing equations (written in terms of the Kirchhoff stress,
displacements, solid pressure, adimensional electric potential, activation generation, and
ionic variables) suggests to cast the problem in mixed-primal form, that is, setting the ac-
tive mechanical problem using a three-field formulation, and a primal form for the equa-
tions driving the electrophysiology. Further details on similar formulations for nearly
incompressible hyperelasticity problems can be found in [5,64]. Restricting to the case of
Robin boundary data for the mechanical problem, we proceed to test (2.3a), (2.3b), (2.4)
against adequate functions, and doing so also for (2.5) yields the problem: for t>0, find
(Π,u,p)∈L2

sym(Ω)×H1(Ω)×L2(Ω) and (v,n,ξ)∈H1(Ω)3 such that
∫

Ω
[Π−G(u)+pJI] : τ =0 ∀τ∈L2

sym(Ω), (3.1a)
∫

Ω
Π :∇vF−t+

∫

∂Ω
ηF−tu·v=

∫

Ω
ρ0b·v ∀v∈H1(Ω), (3.1b)

∫

Ω
[J−1]q=0 ∀q∈L2(Ω), (3.1c)

∫

Ω

∂v

∂t
w+

∫

Ω
D(v,F)∇v·∇w=

∫

Ω

[
f (v,n)

τv(T)
+ Iext

]
w ∀w∈H1(Ω), (3.1d)

∫

Ω

(
∂n

∂t
m+

∂ξ

∂t
ϕ

)
=

∫

Ω

(
g(v,n)

τn(T)
m+

ℓ(ξ,n)

τξ(T)
ϕ

)
∀(m,ϕ)∈H1(Ω)2. (3.1e)
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3.2 Galerkin discretisation

The spatial discretisation follows a mixed-primal Galerkin approach based on the formu-
lation (3.1). Our mechanical solver constitutes an extension of the formulation in [5] to the
case of fully incompressible orthotropic materials, whereas a somewhat similar method
(but using a stabilised form and dedicated to simplicial meshes) has been recently em-
ployed in [56] for cardiac viscoelasticity. This family of discretisations has the advantage
that the incompressibility constraint is enforced in a robust manner.

Let us denote by Th a regular partition of Ω into hexahedra K of maximum diam-
eter hK , and define the meshsize as h := max{hK : K ∈ Th}. The specific finite element
method we chose here is based on solving the discrete weak form of the hyperelasticity
equations using, for the lowest-order case, piecewise constant functions to approximate
each entry of the symmetric Kirchhoff stress tensor, piecewise linear approximation of
displacements, and piecewise constant approximation of solid pressure. In turn, all un-
knowns in the thermo-electrical model are discretised with piecewise linear and continu-
ous finite elements. More generally, we can use arbitrary-order finite dimensional spaces
Hh⊂L2

sym(Ω), Vh⊂H1(Ω), Wh⊂H1(Ω), Qh⊂L2(Ω) defined as follows:

Hh :={τh∈L2
sym(Ω) : τ

ij
h ∈Qk(K), ∀i, j∈{1,··· ,d},∀K∈Th},

Vh :={vh∈H1(Ω) : vh|K∈Qk+1(K)3,∀K∈Th},
Qh :={qh∈L2(Ω) : qh|K∈Qk(K),∀K∈Th},
Wh :={wh∈H1(Ω) : wh|K∈Qk+1(K),∀K∈Th},

(3.2)

where Qr(K) denotes the space of polynomial functions of degree s≤ r defined on the
hexahedron K. Assuming zero body loads, and applying a backward Euler time integra-
tion we end up with the following fully-discrete nonlinear electromechanical problem,

starting from the discrete initial data v0
h,n0

h,ξ0
h. For each j=0,1,··· : find (Π

j+1
h ,u

j+1
h ,p

j+1
h )

and (v
j+1
h ,n

j+1
h ,ξ

j+1
h ) such that

∫

Ω
[Π

j+1
h −G(u

j+1
h )+p

j+1
h J(u

j+1
h )I] : τh=0 ∀τh∈Hh, (3.3a)

∫

Ω
Π

j+1
h :∇vhF−t(uj+1

h )+
∫

∂Ω
ηF−t(uj+1

h )u
j+1
h ·vh =0 ∀vh∈Vh, (3.3b)

∫

Ω
[J(u

j+1
h )−1]qh =0 ∀qh∈Qh, (3.3c)

∫

Ω

v
j+1
h −v

j
h

∆t
wh+

∫

Ω
D(v

j+1
h ,F(u

j+1
h ))∇v

j+1
h ·∇wh−

∫

Ω

[
f (v

j
h,n

j
h)

τv(T)
+ Iext

]
wh=0

∀wh∈Wh, (3.3d)
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∫

Ω

n
j+1
h −n

j
h

∆t
mh−

∫

Ω

g(v
j
h,n

j
h)

τn(T)
mh=0 ∀mh∈Wh, (3.3e)

∫

Ω

ξ
j+1
h −ξ

j
h

∆t
ϕh−

∫

Ω

ℓ(ξ
j
h,n

j
h)

τξ(T)
ϕh=0 ∀ϕh∈Wh. (3.3f)

Due to the intrinsic interpolation properties of the finite-dimensional spaces specified in
(3.2), we expect to observe O(hk+1) convergence for Kirchhoff stress and pressure in the
tensor and scalar L2−norms, as well as O(hk+1) convergence for the remaining fields
in the H1−norm (which reduces to first-order convergence for the lowest-order finite
element family, k=0).

Alternatively to the method above, if we do not apply integration by parts in (3.1b),
one can redefine a method that seeks for H(div;Ω)-conforming approximations for the
Kirchhoff stress and L2(Ω) - conforming approximations of displacements. That is, for in-
stance using Raviart-Thomas elements of lowest order to approximate rows of the Kirch-
hoff stress tensor, and piecewise constant approximation of displacements [26], appro-
priately modified for the case of hexahedral meshes.

3.3 Implementation details

The coupling between activated mechanics and the electrophysiology solvers is not done
monolithically, but rather realised using a segregated fixed-point scheme. The nonlin-
ear mechanics are solved using an embedded Newton-Raphson method and an operator
splitting algorithm separates an implicit diffusion solution (where another Newton iter-
ation handles the nonlinear self-diffusion) from an explicit reaction step for the kinetic
equations, turning the overall solver into a semi-implicit method. Updating and storing
of the internal variables ξ and n is done locally at the quadrature points. In all cases
the solution of linear systems is carried out with the BiCGStab method preconditioned
with an algebraic multigrid solver (both provided by the PETSc library), and using a rel-
ative tolerance of 1e-5 for the unpreconditioned ℓ2-norm of the residual. The domains
to be studied consist of 3D slabs, ring-shaped, and ellipsoidal geometries with vary-
ing thickness and basal cuts, discretised into hexahedral meshes of maximum meshsize
h = 0.01 cm. The time discretisation uses a fixed timestep ∆t (dictated by the dynam-
ics of the cell ionic model rather than by a CFL condition, as the diffusion is discretised
implicitly), and we observe that the hyperelasticity equations have a different inherent
timescale, so we update their solution every five steps taken by the electrophysiology
solver. Since in (2.9) the evolution of myocyte shortening does not depend locally on the
macroscopic stretch, the activation system can be conveniently solved together with the
ionic model. A tolerance of 1e-7 on the ℓ∞-norm of the residual is employed to terminate
the Newton iterates for the nonlinear diffusion and for the nonlinear hyperelasticity sub-
problems. A summary of the overall process, including all steps from mesh generation
to solution visualisation, is outlined in Algorithm 1.
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Algorithm 1 – Overall coupled electromechanics

1: for a given computation start with an offline phase and do
2: Set geometry, size and orientation, and assign boundary labels to the epicardium ∂Ωepi,

endocardium ∂Ωendo, and basal cut ∂Ωbase

3: Define a global meshsize and construct hexahedral meshes (surface and volumetric)
4: Generate orthotropy of the medium through the rule-based algorithm in mixed form
5: Set maximal and minimal angles for rotational anisotropy θepi and θendo

6: Set the ventricular centreline vector k0

7: Define mixed finite-dimensional spaces for the approximation of a potential φ and an
auxiliary sheetlet field ζ

8: Apply boundary conditions on the finite element space for sheetlets and solve the dis-
crete counterpart of (4.1)

9: Obtain sheetlet directions from s0=ζh/‖ζh‖
10: Project the centreline as follows k̂0=k0−(k0 ·s0)s0

11: Compute flat fibres field f̂ 0=s0×k̂0/‖k̂0‖
12: Apply a rotation of flat fibres incorporating intramural angle variation
13: end for
14: Set timestep ∆t, initial and final times t= t0,tfinal;
15: Define mixed finite-dimensional spaces in (3.2)
16: Define constant and solution-dependent model coefficients
17: Apply boundary conditions and set initial solutions from expressions or data
18: Construct functional forms appearing in the Galerkin discretisation (3.3)
19: while t< tfinal do
20: Construct the nonlinear algebraic system associated with (3.3d)-(3.3f), taking the reaction

terms explicitly
21: Construct the linear system arising from the Jacobian of the nonlinear problem
22: for k=1 until convergence do
23: Assemble and solve the matrix system associated with the Jacobian
24: Update Newton approximation and reinitialise
25: end for
26: Update thermo-electric solutions v

j
h← v

j+1
h , n

j
h← n

j+1
h , ξ

j
h← ξ

j+1
h and time-dependent

coefficients (e.g. boundary pressure pN(t))
27: Compute orthotropic activation quantities from (2.8)
28: Construct the nonlinear algebraic system associated with (3.3a)-(3.3c)
29: Construct the linear system arising from the Jacobian of the nonlinear problem
30: for k=1 until convergence do
31: Assemble and solve the tangent linear system for increments
32: Update Newton approximation and reinitialise
33: end for
34: Update time: t← t+∆t, j← j+1
35: Output solutions for visualisation and data analysis
36: end while

4 Numerical results

Before carrying out model validation and performing simulations with the fully coupled
model described in Section 2, we conduct a mesh convergence test to assess the accuracy
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Figure 2: Example of approximate displacement field on the deformed domain and a coarse hexahedral mesh
in the undeformed configuration (left); and error history for an accuracy test of the mixed formulation for
hyperelasticity (right) generated using a lowest-order discretisation.

of the mixed finite element scheme proposed for the three-field hyperelasticity subprob-
lem (2.3)-(2.4), in the case when the material is completely passive. The following test
has been employed (for isotropic, Mooney-Rivlin materials) as a benchmark for different
finite element solvers [4]. In the 3D domain defined by a ring-shaped region of width
0.25 cm, internal diameter of 0.5 cm and external diameter of 1 cm, we define closed-form
manufactured solutions as

p(x,y,z)= x4−y4−z4, u(x,y,z)=

(
x4+

2

5
yz, y4+

2

5
xz,

1

10
z4− 2

5
xyz

)t

,

and construct an exact form of the Kirchhoff stress, as well as body loads and eventually
traction terms using these smooth functions. Sheetlets are radially defined, whereas fi-
bres are clockwise oriented with respect to the y axis, and the hyperelasticity parameters
are set according to the second part of Table 1. Boundary conditions were considered of
mixed type as in (2.11), but setting appropriate non-homogeneous terms. The traction
boundary ∂ΩN corresponds to the top and bottom faces of the ring (parallel to the xz
axis where the normal vector is ν=(0,±1,0)t), whereas the normal displacement bound-
ary ∂ΩD is conformed by the internal and external curved surfaces. We compute errors
between the exact solutions and the approximate fields generated by the lowest-order
scheme on a sequence of unstructured hexahedral meshes of different resolutions. These
(absolute) errors are measured in the tensor and scalar L2−norms for the Kirchhoff stress
and pressure, respectively; and in the H1−norm for the displacements. We plot the re-
sults versus the number of degrees of freedom in Fig. 2(right), where we can observe an
optimal convergence (first-order in this case), as anticipated in Section 3. The number of
Newton iterates required to reach convergence was in average 4.
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4.1 Conduction velocity assessment

Following the study in [13], we next consider the electromechanical model (2.3), (2.5),
(2.9) defined on the 3D slab Ω=(0,10)×(0,5)×(0,5) cm3. The boundary conditions cor-
respond to (2.11) and (2.13). The bottom (z = 0), back (y = 0), and left (x = 0) sides of
the block will constitute ∂ΩD where we impose zero normal displacements, and on the
remainder of the boundary ∂ΩN =∂Ω\∂ΩD we prescribe zero traction. We consider only
constant fibre and sheet directions f 0=(1,0,0)t, s0=(0,1,0)t, and a stimulus of amplitude
2 and duration 2 ms is applied on the left wall at time t= 1ms, which initiates a planar
wave propagation. At a temperature of T = 37◦C, the thermo-electric effects are turned
off (both Q10 and Moore terms equal 1), and the reported maximum conduction velocity
of 45.1 cm/s can be computed using D̃ = 1.1cm2/s (that is, setting D1 = D2 = 0). Then,
variations of temperature and of the constants that characterise the nonlinear diffusion
lead to slight modifications on the conduction velocity. Here this value is computed us-
ing the approximate nondimensional potential, and activation times measured between
the points (x,y,z) = (4.663,2.5,2.5) and (x,y,z) = (5.337,2.5,2.5), that is a spatial varia-
tion in the x−direction of δx=0.674 cm, and employing a threshold of amplitude 1. We
also vary the mesh resolution and observe that the coarsest spatio-temporal discretisa-
tion that maintains conduction velocities in physiological ranges requires a meshsize of
h= 0.025 cm and a timestep of ∆t= 0.03ms. Our results are summarised in Table 2. We
can note that for the lowest temperatures, the changes in the mesh resolution entail sub-
stantial modifications in the conduction velocity, whereas for higher temperatures the
effect seems to be milder and even coarse meshes give physiological results. This effect
is physically linked to the widening of the action potential at low temperatures. After
computing each conduction velocity value, we have commenced another pacing cycle
(with an S2 applied at t=330 ms), and run the simulation until t=720 ms. Snapshots of
the dimensionless potential, activation, displacement magnitude, and solid pressure are
depicted in Fig. 3, where we can observe (in particular for t= 150 ms) a marked defor-
mation in the sheetlet direction complying with the shortening in the fibre direction. In
Fig. 4 we plot the history of the main thermo-electric and kinematic variables on the mid-
point of the line where conduction velocities are computed. We remark that the different

Table 2: Computed conduction velocities [m/s] according to different temperature values and spatio-temporal
refinement.

Temp. h=0.025 cm, h=0.0125 cm, h=0.006 cm,

∆t=0.03 ms ∆t=0.0075 ms ∆t=0.00125 ms

T=33◦C 0.356 0.377 0.422

T=35◦C 0.428 0.435 0.441

T=37◦C 0.439 0.447 0.453

T=39◦C 0.442 0.450 0.448

T=41◦C 0.443 0.451 0.451
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Figure 3: Samples of the approximate solutions (dimensionless potential, activation, displacement magnitude,
and solid pressure) shown on the deformed domain at t=50,150,450ms (left, middle, and right panels, respec-
tively). For this test we have used T=39◦C.

thermal states, in addition to modifying the conduction velocity, also affect the shape and
duration of the action potential wave. In agreement with the constitutive modelling, the
amount of contraction is not linked to the velocity of propagation but rather to the dura-
tion of the action potential. More precisely, since the active-strain contraction is linked to
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Figure 4: Evolution of main variables measured on the point (5,2.5,2.5) and up to t= 720ms, computed at
temperature T=39◦C.
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Figure 5: Temperature distributions in the undeformed configuration, where the colour code is in ◦C.

the amount of tissue undergoing a certain level of voltage, it turns out that at lower tem-
perature the action potential wave is larger (experimental evidence for this phenomenon
can be found in [24]), and therefore the amount of tissue undergoing contraction is larger.

4.2 Scroll wave dynamics and localised temperature gradients

We now perform a series of tests aimed at analysing the differences in wave propagation
patterns produced with different temperature conditions such as those encountered in
transmural gradients induced by fever, cold/hot water, and/or localisation of other ther-
mal sources such as ablation devices. First on the case of the base temperature T=37◦C,
secondly in the case where the domain is subject to a temperature gradient in the direc-
tion of the sheetlets s0=(0,1,0)t, and third when the temperature has a radial gradient in
the xy plane (see Fig. 5).
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Figure 6: Scroll waves developed after t = 450ms (left panel) and t= 600ms (right panel) using T = 37◦C,
plotted on the deformed configuration, and where arrows indicate displacement directions.

The domain of interest is now the slab Ω=(0,6.72)×(0,6.72)×(0,0.672) cm3, which
we discretise into a structured mesh of 72’000 hexahedral elements, with h = 0.116 cm.
We use a fixed timestep ∆t= 0.03ms and set a constant fibre direction f 0 =(1,0,0)t. We
employ an S1-S2 protocol to initiate scroll waves [2], where S1 is a square wave stimula-
tion current of amplitude 3 and duration 3 ms, starting at t= 1 ms on the face defined
by x= 0; and S2 is a step function of the same duration and amplitude, applied on the
lower left octant of the domain at t=350 ms. This time the boundary conditions for the
structural problem are precisely as in (2.12), using the constant η=0.05; and the boundary
conditions for the electrophysiology adopt the form (2.13). Fig. 6 shows two snapshots
of the voltage propagation through the deformed tissue slab for the first case, of constant
temperature (case I). Differences between the patterns obtained at different temperatures
are qualitatively shown in Fig. 7, which displays the difference in the dimensionless po-
tential between case II and case I, as well as between case III and case I. A fourth case (not
shown) was also tested, where the temperature gradient is placed in the direction of the
fibres. Then the differences in propagation are much more pronounced (up to the point
that the S1-S2 protocol described above is not able to produce scroll waves).

4.3 Scroll waves in an idealised left-ventricular geometry

We generate the geometry of a truncated ellipsoid, as well as unstructured hexahedral
meshes using GMSH [27]. The domain has a height (base-to-apex) of 6.8 cm, a maximal
equatorial diameter of 6.6 cm, a ventricular thickness of 0.5 cm at the apex and of 1.3 cm at
the equator. Relatively coarse and fine partitions with 13’793 (corresponding to a mesh-
size of h=0.104 cm) and 86’264 elements (and with a meshsize of h=0.052 cm) are used
for the simulations in this subsection. Consistently with other electromechanical simu-
lations on idealised ventricular geometries, here we consider a time-dependent pressure
distributed uniformly on the endocardium (that is, using the second relation in (2.11)).
In addition, on the basal cut we impose zero normal displacements (the first condition
in (2.11)), and on the epicardium we impose Robin conditions (2.12) setting a spatially
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Figure 7: Adimensional potential difference between case I (uniform temperature at T=37◦C) and two different
gradient distributions in the sheetlet (case II - left) and radial directions (case III - right), plotted on the reference
domain (for the sake of clarity of visualisation) at times t=350ms (top panels), t=450ms (middle row), and
t=600ms (bottom panels).

varying stiffness coefficient, going linearly from ηmin on the apex, to ηmax on the base
η(y) := 1

yb−ya
[ηmax(yb−y)+ηmin(y−ya)], where ya,yb denote the vertical component of

the positions at the apex and base, respectively. These conditions are sufficiently general
to mimic the presence of the pericardial sac (as well as the combined elastic effect of other
surrounding organs) having spatially-varying stiffness.

Fibre and sheetlet directions are constructed using a slight modification to the rule-
based algorithm proposed in [62], that we outline here for the sake of completeness (see
Algorithm 1). The needed inputs are a unit vector k0 aligned with the centreline and
pointing from apex to base, the desired maximal and minimal angles that will determine
the rotational anisotropy from epicardium to endocardium, θepi, θendo; and boundary la-
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Figure 8: Ellipsoidal fibre distribution, collagen normal-sheetlet, and cross-fibre directions generated with a
rule-based algorithm and setting θepi=−50◦, θendo=60◦.

bels for the epicardium ∂Ωepi, endocardium ∂Ωendo, and basal cut ∂Ωbase. The first step
consists in solving the following Poisson problem (here stated in mixed form for a poten-
tial φ and a preliminary sheetlet direction ζ) endowed with mixed boundary conditions

−∇·ζ=0 and ζ=∇φ in Ω,

ζ ·ν=0 on ∂Ωbase, φ=0 on ∂Ωendo, φ=1 on ∂Ωepi.
(4.1)

The unknowns of this problem are discretised with Brezzi-Douglas-Marini elements of
first order defined on quads, and piecewise constant elements [26]. Once a discrete first
sheetlet direction ζh is computed, the final sheetlet directions are obtained by normalisa-
tion s0 = ζh/‖ζh‖ (all normalisations in this section refer to component-wise operations

using the Euclidean norm). Secondly, we project the centreline k̂0 = k0−(k0 ·s0)s0 and

then compute an auxiliary vector field f̂ 0 (known as flat fibre field), using the sheetlet

and the projected centreline vectors f̂ 0 = s0×k̂0/‖k̂0‖. Thirdly, we proceed to project
now the flat fibres onto the sheetlet planes exploiting the rotational anisotropy, through
the operation

f 0= f̂ 0cos(θ(φh))+s0× f̂ 0sin(θ(φh))+s0(s0 · f̂ 0)[1−cos(θ(φh))],

where φh is the discrete potential and the function

θ(φh) :=
1

180π
[(θepi−θendo)φh+θendo],

modulates the intramural angle variation. Sample fibre, sheet and normal directions gen-
erated using this algorithm are shown in Fig. 8.

Let us point out that a simpler, primal formulation can be used for (4.1) written only
in terms of φ, from where fibre fields can be recovered (as done in other contributions).
However, we have found that our mixed method produced fibres and cross-fibres that

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0253 | Generated on 2024-12-27 02:46:57



106 R. Ruiz-Baier et al. / Commun. Comput. Phys., 27 (2020), pp. 87-115

35 3634.0 37.0

.

0.087

0.17

0.26

0.04

0.30
.

0.431

0.735

0.13

1.04
.

Figure 9: Temperature distribution for the second test case (top left), and two snapshots (200,300ms after the
S1 stimulus) illustrating the torsion and wall-thickening of the left ventricle (top centre and top right, where
the arrows indicate the displacement direction). The bottom panels show cuts along the z−midplane for the
top centre and top right figures.

are smoother, and this definitely has an impact when the ventricle surfaces are not so
regular as the present ellipsoid. Such a discussion has not much relevance here because
we are sticking to very simple geometries, but it provides an argument (apart from the
apparent novelty) in favour of using a mixed method.

The remaining constants employed in this Section are θepi =−50◦, θendo=60◦, ηmax =
0.6kPa (that is, we consider a transmurally asymmetric fibre distribution), and ηmin =
0.001kPa. As in the tests reported in previous subsections, the dynamics here are initi-
ated through an S1-S2 approach [39], which is a standard stimulation protocol in cardiac
electrophysiology (both experimentally and in silico), aimed at determining spiral wave
inducibility, in the context of replicating archetypal features of cardiac arrhythmias. One
typically generates a planar electrical excitation (S1), followed by a second broken stimu-
lus (S2) during the repolarisation phase of the S1 wave, the so-called vulnerable window.
In our numerical simulations, S1 is set on the apex and S2 is initiated at the same location,
but only for the quadrant x>0,z>0.

We consider two cases: one when the temperature is kept constant at 37◦C, and an-
other when at the time of switching on the electromechanical coupling, a localised point
on the epicardium towards the base is maintained at a lower temperature 34◦C. The tem-
perature distribution in this second case is defined as

T(x,y,z)=37−3exp(−[(x−3)3+y2+z2]/3),

(see the leftmost panel in Fig. 9). We illustrate the torsion and wall-thickening effects
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0.78 2.6-1.08 4.51

v

Figure 10: Propagation of the adimensional transmembrane potential plotted on the deformed domain, using
a constant temperature (top panels) and a cold spot (bottom). Snapshots shown at 200,300,400,500 ms after
the S2 stimulus.

achieved by the orthotropic activation model in the centre and right panels of Fig. 9,
observed before applying the wave S2.

Finally, a few snapshots of the scroll wave dynamics for the two cases are presented
in Fig. 10, indicating again an important model dependency on temperature variations.
In particular, the cold region notably increases the action potential duration. Once the ar-
rhythmic pattern is fully established, the differences between the two cases are increased
since higher nonlinearities appear. Samples of stress entries, displacement, pressure, and
myocyte contraction are in presented in Fig. 11, plotted on wedges that highlight ventric-
ular thickening, stress concentrations on the endocardium, a more pronounced pressure
profile near the apex, and apex to base motion. In addition to this test, we perform a set
of simulations using a constant higher temperature at 39◦C, and snapshots of the approx-
imate transmembrane potential at various time steps are displayed in Fig. 12.

5 Concluding remarks

We have advanced a new theoretical framework for the modelling of cardiac electrome-
chanics that incorporates active strain, anisotropic and nonlinear diffusion, and thermo-
electrical coupling as main ingredients. The proposed models couple different multi-field
and multi-scale (cell and sub-cell levels) phenomena, and they constitute a natural exten-
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Figure 11: Sample approximate Kirchhoff stress, displacement, pressure, and myocyte shortening at end diastole,
t=470ms (top) and t=610ms (bottom).

0.78 2.6-1.08 4.51

v

Figure 12: Propagation of the dimensionless transmembrane potential plotted on the deformed domain, us-
ing a higher temperature throughout the domain and a thinner ventricular geometry. Snapshots shown at
100,200,··· ,800ms after the S2 stimulus.

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0253 | Generated on 2024-12-27 02:46:57



R. Ruiz-Baier et al. / Commun. Comput. Phys., 27 (2020), pp. 87-115 109

sion of porous medium electrophysiology [36] to the case of cardiac electromechanics.
The continuum homogenised approach features a temperature dependence of all reac-
tion rates, as well as preserving material frame invariance and equilibrium constrains.

The novelties of this contribution also include a mixed-primal method based on a
pressure-robust formulation for hyperelasticity. Our numerical scheme has been used to
assess the influence of space and time discretisation at different thermal states in three-
dimensional domains. Comparisons were made in terms of local conduction velocity as
well as onset and development of scroll wave dynamics as precursors of life threatening
arrhythmias. The numerical simulations demonstrated the suitability of the proposed
model in reproducing key physiological features. In addition, we have observed model
scalability adequate to conduct large scale computations.

Our results, collected in Section 4, suggest that the new model develops higher non-
linearities and allows for more complex fibrillation dynamics when simulating classical
S1-S2 stimulation protocols in anisotropic ventricular domains. For instance, the pres-
ence of cold regions in combination with our active strain model lead to an enhanced
cardiac dispersion of repolarisation, which in turn results into more involved scroll wave
dynamics. Stimulation protocols (which represent the possible initiation of spiral waves
and arrhythmic patterns from e.g. a fictitious ectopic focus) are greatly affected, and
might even fail, under modified temperature conditions. For instance, allowing tem-
perature gradients along or across the fibre direction can result in completely different
activation patterns. A thorough computational assessment of these differences is there-
fore of key importance in determining experimental pacing mechanisms [30]. We believe
that the disruptions produced uniquely by temperature gradients can be even more pro-
nounced in the context of electromechanical simulations (as a consequence of the non-
linear coupling between the involved effects), and thus may play a key role in the onset
and development of arrhythmias (experimental evidence for this strong relation has been
known for other soft tissues since several decades, see e.g. [42]). The set of preliminary
tests presented in this paper highlights the importance of the proposed thermo-electro-
mechanical coupling. Nevertheless, further investigations are necessary to determine
other potential effects of the thermal coupling into the formation of local anchoring of
spiral waves to material heterogeneities (pinning phenomena, [6]), their removal through
low energy intra-cardiac defibrillators (unpinning protocols, see for instance [49]) and
also the influence of the mechanochemical patterns in the induction and modulation of
spatio-temporal alternans dynamics [32, 50, 61].

General limitations of our study reside in that we adopt a simplified phenomeno-
logical approach for both the thermo–electrophysiology and the excitation contraction
coupling modelling. Also, we have employed only idealised geometries in all our com-
putations, but remark that a more dedicated personalisation could be incorporated once
the following list of possible generalisations are in place.

First, higher complexity in the electrophysiology and in the contraction models should
be included to improve the (at this point, still quite basic) structure of the coupling mech-
anisms [22], also considering recent contributions where inductances are introduced [63].
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In particular, these extensions could lead to more refined conclusions regarding the on-
set and control of arrhythmias and fibrillation in which memory effects are predomi-
nant [44]. Secondly, it is left to investigate whether spatio-temporal variations of temper-
ature have an effect, perhaps in long term and operating theatre scenarios. In perspective,
the present study could serve in understanding and possibly controlling temperature-
altered cardiac dynamics in patients subjected to whole-body hyperthermia. This is a
medical procedure relevant for treating metastatic cancer and severe viral infections as
e.g. HIV [37, 41]. Let us also remark that heat conduction in the short-scales we consider
here (that is within one or two heart beats), can still be considered negligible. However,
cell and tissue homeostasis and energy dissipation within an extended non-equilibrium
thermodynamics framework could be an important improvement to our models, follow-
ing for instance [14, 18, 66]. These extensions would incorporate a complete bio-heat for-
mulation [28,54], which can account for the combined effects of heat generation from the
heart muscle, as well as advection-diffusion of temperature due to vasculature and blood
flow.

Another limitation of the present model is the phenomenological description of the
intracellular calcium. The lack of precise calcium dynamics forces us to include an ad hoc
calcium-stretch coupling. More realistic models as the one in e.g. [43] account also for
better action potential shape and morphology, inter- and intracellular calcium dynamics
and potentially including multiscale thermo-mechanical features; they will be incorpo-
rated in our framework in a next stage. On the same lines, we also aim at incorporating
microstructure-based bidomain formulations [60], but specifically targeted for electrome-
chanical couplings [65] allowing for effective application of defibrillation protocols (e.g.
the so-called virtual electrode effect) [20].

In addition, we plan to apply the present model and computational methodology in
the study of spatio-temporal alternans [19, 29] as well as spiral pinning and unpinning
phenomena [35, 75]. These supplementary studies would also contribute to further val-
idate the proposed multiphysics framework against experimental evidence. In fact, the
idealised ventricular domain embedded with myocardial fibres in rotational anisotropy
that we used in Section 4.3 can be readily exploited towards the characterisation of the
complex and unknown intramural dynamics, as soon as high-resolution imaging data
are incorporated into our computational framework. A further tuning of the material
parameters using synchronised endocardial and epicardial optical mapping datasets will
also be carried out. These studies are considered as a direct application of the very recent
technology developed in [9] for the identification of electromechanical waves, and phase
singularities in particular, through advanced imaging procedures.

The passive material properties of the muscle have been considered independent of
temperature, and a simple constitutive relation could be embedded in the strain-stress
law using the results from [69], or in the cell contraction model following e.g. [48]. More-
over, taking as an example what has been proposed for other biological scenarios such
as vascular pathologies, we estimate that the concepts of time-dependent mechanobio-
logical stability [16] as well as growth and remodelling [15, 17], could be incorporated in
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the context of computational modelling of the heart. For instance, here we would con-
sider distributed properties of collagen and muscular fibres, following for instance [53].
Mechanoelectric feedback has been left out from this study (with the aim of isolating the
effects of the thermo-electric contribution in an electromechanical context), so we could
readily employ recent models for stretch activated currents [59, 72], or alternatively em-
ploy stress-assisted conductivity as in [7, 47]. Other extensions include the use of geo-
metrically detailed biventricular meshes, more sophisticate boundary conditions (setting
for instance pressure-volume loops on the endocardium), and the presence of Purkinje
networks [12] and/or fast conduction systems that could definitely have an impact on
the reentry dynamics. Goals in the longer term deal with optimal control problems ex-
ploiting data assimilation techniques [1] using imaging tools and in silico testing of novel
defibrillation protocols [49].
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[40] R. Kienast, M. Handler, M. Stöger, D. Baumgarten, F. Hanser, and C. Baumgartner. Modeling
hypothermia induced effects for the heterogeneous ventricular tissue from cellular level to
the impact on the ECG. PLOS ONE, 12(8):1–22, 08 2017.

[41] D. N. Kinsht. Modeling of heat transfer in whole-body hyperthermia. Biophysics, 51:659–663,
2006.

[42] H. G. Klinger. Heat transfer in perfused biological tissue–i: General theory. Bullettin of
Mathematical Biology, 36:403–415, 1974.

[43] S. Land, S.-J. Park-Holohan, N. P. Smith, C. G. dos Remedios, J. C. Kentish, and S. A.
Niederer. A model of cardiac contraction based on novel measurements of tension develop-
ment in human cardiomyocytes. Journal of Molecular and Cellular Cardiology, 106(Supplement
C):68–83, 2017.

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0253 | Generated on 2024-12-27 02:46:57



114 R. Ruiz-Baier et al. / Commun. Comput. Phys., 27 (2020), pp. 87-115

[44] J. Landaw and Z. Qu. Memory-induced nonlinear dynamics of excitation in cardiac diseases.
Physical Review E, 97:042414, 2018.

[45] R. W. Lawton. The thermoelastic behavior of isolated aortic strips of the dog. Circulation
Research, 2:344–353, 1954.

[46] J. Lee, S. Niederer, D. Nordsletten, I. Le Grice, B. Smail, D. Kay, and N. Smith. Coupling
contraction, excitation, ventricular and coronary blood flow across scale and physics in the
heart. Phil. Trans. Roy. Soc. London A, 367:2311–2331, 2009.

[47] A. Loppini, A. Gizzi, R. Ruiz-Baier, C. Cherubini, F. H. Fenton, and S. Filippi. Competing
mechanisms of stress-assisted diffusivity and stretch-activated currents in cardiac electrome-
chanics. Frontiers in Physiology, 9:1714, 2018.

[48] X. Lu, L. S. Tobacman, and M. Kawai. Temperature-dependence of isometric tension and
cross-bridge kinetics of cardiac muscle fibers reconstituted with a tropomyosin internal dele-
tion mutant. Biophysical Journal, 91(11):4230–4240, 2006. ISSN 0006-3495.

[49] S. Luther, F. H. Fenton, and et. al. Low-energy control of electrical turbulence in the heart.
Nature, 475:235–239, 2011.
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