
Commun. Comput. Phys.
doi: 10.4208/cicp.OA-2018-0235

Vol. 27, No. 2, pp. 513-545
February 2020

A GPU-Accelerated Hybridizable Discontinuous Galerkin

Method for Linear Elasticity

Maurice S. Fabien∗

Department of Computational and Applied Mathematics, Rice University,
6100 Main MS-134, Houston, TX 77005, USA.

Received 13 September 2018; Accepted (in revised version) 6 January 2019

Abstract. We design and analyze an efficient GPU-accelerated hybridizable discon-
tinuous Galerkin method for linear elasticity. Performance analysis of the method is
done using the state-of-the-art Time-Accuracy-Size (TAS) spectrum. TAS is a new per-
formance measure which takes into account the accuracy of the solution. Standard
performance measures, like floating point operations or run-time, are not completely
appropriate for gauging the performance of approximations of continuum mechanics
problems, as they neglect the solutions accuracy. A standard roofline model demon-
strates that our method is utilizing computational resources efficiently, and as such,
significant speed ups over a serial implementation are obtained. By combining tradi-
tional performance measures and the novel time-accuracy measures [7] into our per-
formance model, we are able to draw more complete conclusions about which dis-
cretizations are best suited for an application. Several numerical experiments validate
and verify our numerical scheme.

AMS subject classifications: 65Y05, 74S05, 65N30, 65N55

Key words: GPU-acceleration, discontinuous Galerkin, hybridization, multigrid, performance
analysis.

1 Introduction

Computer architecture is becoming more sophisticated at the node level, where individ-
ual core clock rates are reduced, but more cores are packed into a chipset; to the point
that floating point performance is greatly eclipsing memory operations. Efficiently uti-
lizing this type of computational hardware has already been shown to require different
programming models and parallel computing paradigms. This trend has consequences
for the planning and designing of next-generation high-performance computing soft-
ware [19, 45]. With this in mind, we design and analyze a GPU-accelerated hybridizable
discontinuous Galerkin (HDG) method for linear elasticity.

∗Corresponding author. Email address: fabien@rice.edu (M. S. Fabien)

http://www.global-sci.com/cicp 513 c©2020 Global-Science Press

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0235 | Generated on 2024-12-19 03:26:09

514 M. S. Fabien / Commun. Comput. Phys., 27 (2020), pp. 513-545

HDG methods have several attractive properties, especially for problems where the
solution of linear systems is required. As the HDG method is a discontinuous finite
element method, it retains many of the features of discontinuous Galerkin (DG) meth-
ods that are celebrated, like local conservation, arbitrary order approximations, rigorous
mathematical foundation, hp-adaptivity, admits unstructured meshes, and so on [12].
One of the important properties of the HDG method that differentiates it from classi-
cal DG methods is its ability to use static condensation. This well-known technique in-
troduces additional unknowns on the mesh skeleton, and due to a judicious choice of
numerical trace and flux, the original unknowns can be eliminated in an element-by-
element fashion [13]. The total number of unknowns for the HDG method is thus re-
duced by a large amount for higher orders when compared to standard DG methods. As
a result, drastic savings for memory storage and computational time are feasible [33].

For the linear elasticity equations, several HDG methods have been proposed, e.g., [15,
17, 17, 25, 53, 57, 58]. These discretizations have variations in how the primal and mixed
variables are treated. We follow the discretization outlined in [43], as it is locking-free
(for any k≥0), and is easily extendible to other equations, like Stokes and nonlinear elas-
ticity. Related discretizations, like face centred finite volumes [56], the weak Galerkin
method [9, 62], and the hybrid high order method [14, 20] have also been studied. Rele-
vant applications can be found in [16, 34, 35].

The HDG method for linear elasticity presented in [43] has all approximate variables
(displacement, gradient of displacement, and hydrostatic pressure) converge at the opti-
mal rate of k+1 in the L2-norm for polynomials of degree k≥0. There are a few interesting
consequences of the gradient of displacement converging at the optimal rate. Quantities
of engineering interest, like vorticity, stress, and strain also all converge at the rate of k+1
in the L2-norm [43]. In addition, there exist local postprocessing schemes for the displace-
ment variable which result in a new displacement approximation that superconverges at
the rate of k+2 in the L2-norm [44]. As the postprocessing is performed in an element-
by-element manner, it is much cheaper than solving the full system at one polynomial
order higher.

GPU-accelerated numerical methods for partial differential equations (PDEs) have
received a great deal of attention. In particular, lattice Boltzmann and discontinuous
Galerkin finite element methods have been demonstrated to perform well for linear wave
problems and hyperbolic conservation laws [10,66,67]. However, few many-core or even
GPU-accelerated DG methods are considered for partial differential equations that are
inherently implicit in their nature, like PDEs that have elliptic or parabolic characteristics.
The dominant difficulty for this class of PDEs is that they require the solution of large
sparse linear systems. Efficient sparse linear solvers for high order DG methods are in
general bandwidth bound, and more sophisticated [24, 29]. Preconditioners that map
well to many-core architectures (e.g. [1, 3]) may not provide the best performance due to
their poor convergence rates [22].

A GPU-accelerated HDG method for the 2D Poisson problem is proposed in [37],
which analyzes in detail an efficient HDG assembly based on batch processing. The lin-

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0235 | Generated on 2024-12-19 03:26:09

M. S. Fabien / Commun. Comput. Phys., 27 (2020), pp. 513-545 515

ear solver they used is an algebraic multigrid preconditioned conjugate gradient method
[4, 5]. The linear solver is not the focus of their paper. On the other hand, they show
that for high orders the global solve (ignoring assembly costs) is the bottleneck in their
single-GPU study. In [54] a GPU-accelerated specialized block sparse matrix format is
introduced, which comes with a fast tensor contraction for the HDG method, and this al-
lows for an efficient sparse matrix-vector product. No linear solver is considered. In [22]
a HDG multigrid linear solver is consider for the 2D Poisson problem in a many-core
environment (Xeon Phi).

Performance modeling is crucial for determining the efficiently and scalability of com-
putational frameworks [36]. Moreover, it allows for systematic improvements through
optimizations and tuning. Standard performance measures, like floating point opera-
tions or run-time, are not completely appropriate for gauging the parallel performance
of approximations of continuum mechanics problems, as they neglect solution accuracy.
In other words, optimal device utilization does not always translate to meaningful and
accurate computational science. By incorporating novel time-accuracy measures [7] into
our performance model, we are able to draw more complete conclusions about which
discretizations are best suited for an application.

The main contributions of this paper is now outlined. Section 2 states the model
problem and the HDG discretization. In Section 3 we detail our strategy of implementing
the HDG method on the GPU. We accelerate the static condensation process for the HDG
method, extending the work in [37] to vector-valued problems. Since our problem is in
3D, and is a vector-valued system, there are some novel enhancements we must make
in order to extend the size of problems we can consider. Most notably, the local solver
matrices on an element are much larger than for scalar problems. A straightforward
implementation severely restricts the size of problem one can consider, due to the limited
GPU memory. To address this, we take advantage of the rich sparsity structure that the
local solver matrices have. The local solvers are completely data parallel, and element
local, so they benefit from parallelism on the GPU. We leverage state-of-the-art optimized
GPU-accelerated CUDA libraries [46, 47] to achieve significant speed ups over a serial
CPU implementation.

This is covered in Section 3, which also has a traditional parallel performance analysis
inspecting device utilization, and roofline model [64]. Exposing fine grain parallelism for
the global solver is more challenging. To do this, we detail and assess the algorithmic
and computational performance of a GPU-accelerated multigrid preconditioner. This
preconditioner is an extension of the work done in [22], applied to the 3D linear elasticity
equations, which is the focus of Section 3.3.

In Section 4 several numerical examples are considered to verify and validate our
GPU-accelerated linear elasticity solver. Section 5 revisits the computational analysis,
where time-accuracy measures [7, 8] are applied to better gauge the performance of the
GPU-accelerated HDG approximations. Conclusions follow.

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0235 | Generated on 2024-12-19 03:26:09

516 M. S. Fabien / Commun. Comput. Phys., 27 (2020), pp. 513-545

2 Model problem

The small deformation of the elastic isotropic body Ω⊂R
3 is governed by the following

equation

−∇·(µ∇u+(µ+λ)(∇·u)I)= f , (2.1)

where u represents the displacement components, λ is the Lamé parameter, the shear
modulus is given by µ, and the body force is denoted by f . We introduce the displace-
ment gradient tensor, H =∇u, and the hydrostatic pressure p=−(µ+λ)(∇·u). Eq. (2.1)
written in first order form is then

H−∇u=0 (2.2)

−∇·(µH−pI)= f , (2.3)

ǫp+∇·u=0, (2.4)

where ǫ=(µ+λ)−1. We work with Eqs. (2.2)-(2.4), as they are extendible to other models
in continuum mechanics, e.g., Stokes, acoustic and elastic waves, and nonlinear elasticity.
The boundary of Ω, denoted ∂Ω is decomposed as ∂Ω=∂ΩD∪∂ΩN , where ∂ΩD∩∂ΩN =
∅. On the boundaries the following conditions are prescribed:

u= gD, on ∂ΩD, (2.5)

Bn= gN , on ∂ΩN , (2.6)

where n is the outward normal vector to ∂ΩN , gD is prescribed Dirichlet data, gN is pre-
scribed Nuemann data, and B is a linear boundary operator. The natural linear operator
B is a gradient-pressure condition: B=−µH+pI. Other conditions can be considered,
for example, for a stress type condition one has: B=−µ(H+HT)+ǫλpI.

2.1 Hybridizable discontinuous Galerkin discretization

The elastic body Ω is partitioned into a collection of tetrahedra, given by Th. Each tetra-
hedron is denoted by K, with a maximum diameter h. The mesh skeleton is denoted
by Γh, which is the union of all the faces in Th. Put ∂Th as the collection of all element
boundaries, which contains duplicate faces; whereas Γh consists of only unique faces. We
assume that Th is shape regular [11], that is, there exists a scalar γ>0 for each K∈Th so
that

γhK≤ rK,

where hK is the diameter of K, and rK is the largest ball inscribed in K.

We definePk(K) to be the space of all polynomials of at most degree k≥0 on a domain
K, and L2(K) to be the space of all square integrable functions on K. Given an integer k≥0,

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0235 | Generated on 2024-12-19 03:26:09

M. S. Fabien / Commun. Comput. Phys., 27 (2020), pp. 513-545 517

the underlying approximation spaces for the HDG method are as follows:

Gh={G∈ (L2(Th))
3×3 : G|K∈ (Pk(K))3×3, ∀K∈Th},

Vh ={v∈ (L2(Th))
3 : v|K∈ (Pk(K))3, ∀K∈Th},

Ph={p∈L2(Th) : p|K∈Pk(K), ∀K∈Th},
Mk

h ={µ∈ (L2(Γh))
3 : µ|e∈Pk(e), ∀e∈Γh}.

These are the discontinuous finite element approximation spaces for the gradient of dis-
placement (Gh), displacement (Vh), hydrostatic pressure (Ph), and trace of displacement
(Mk

h). The objects of integration over these spaces can be scalars, vectors, or tensors. In
order to distinguish between these cases we use the following notation:

(p,q)Th
= ∑

K∈Th

∫

K
pq, (u,v)Th

= ∑
K∈Th

∫

K
u·v, (E,H)Th

= ∑
K∈Th

∫

K
tr(ET H),

for p,q∈Ph , u,v∈Vh and E,H∈Gh. Similarly, for the integration over element boundaries,
we set

〈p,q〉∂Th
= ∑

K∈Th

∫

∂K
pq, 〈u,v〉∂Th

= ∑
K∈Th

∫

∂K
u·v, 〈η,µ〉∂Th

= ∑
K∈Th

∫

∂K
η·µ,

for p,q∈Ph, u,v∈Vh and η,µ∈Mk
h .

The HDG discretization for Eq. (2.2) seeks approximations (Hh,uh,ph,ûh) ∈
(Gh,Vh,Ph,Mk

h) of (H,u,p,û) such that

(Hh,E)Th
+(uh,∇·E)Th

−〈ûh,En〉∂Th
=0 (2.7)

(µHh−ph I,∇w)Th
+〈ĥh,w〉∂Th

=(f ,w)Th
(2.8)

(ǫph,q)Th
−(uh,∇q)Th

+〈ûh ·n,q〉∂Th
=0 (2.9)

〈ĥh,µ〉∂Th\∂Ω+〈ûh−gD,µ〉∂ΩD
+〈b̂h−gN ,µ〉∂ΩN

=0, (2.10)

for all (E,w,q,µ)∈(Gh,Vh,Ph,Mk
h), and the numerical flux and boundary flux are given by

ĥh =(−µHh+ph I)·n+S(uh−ûh), b̂h=(−µHh+ǫλph I)·n+S(uh−ûh). (2.11)

Eq. (2.10) enforces continuity of the normal component of the numerical flux. We note
that for ǫ=0, Eqs. (2.7)-(2.10) correspond to a HDG method for Stokes flow (see [44]).

The HDG method boasts convergence rates of k+1 for all approximate unknowns
in the L2-norm [43]. Thus, the displacement converges at the rate of k+1 in the energy
norm. A consequence of the gradient of displacement converging at the rate of k+1 is
that a postprocessing exists which allows us to generate a superconvergent displacement
that converges at the rate of k+2 in the L2 norm [43]. Another result of the optimal
gradient of displacement convergence, is other physical quantities of engineering interest
also converge at the rate of k+1, for instance: stress, strain, and vorticity [43].

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0235 | Generated on 2024-12-19 03:26:09

518 M. S. Fabien / Commun. Comput. Phys., 27 (2020), pp. 513-545

2.2 Basis information

On the approximation spaces we utilize the Proriol–Koornwinder–Dubiner–Owens
(PKDO) modal basis; a hierarchical orthogonal basis (see [21, 39, 50, 51]). We select this
basis for a number of reasons:

• Orthogonality simplifies mass matrices, as they become diagonal.

• Excellent conditioning for interpolation and quadrature which facilitates high order
approximations.

• The hierarchical property of the basis renders the prolongation and restriction op-
erators for spectral multigrid binary. Hierarchy can also be exploited if we want to
seamlessly switch approximation spaces.

To simplify computation of the HDG method, we form a mapping between the so-
called reference elements onto the elements of the mesh. This allows us to do compu-
tations on the reference element, instead of defining different basis functions for each
physical element [40]. The reference triangle is defined to be the equilateral triangle with
points (−1,1), (−1,−1), and (1,−1). The reference tetrahedra is defined by the points
(−1,−1,−1), (1,−1,−1), (−1,1,−1), and (−1,−1,1).

In 2D, on a reference triangle, the PKDO basis takes the form

Ψm1
(r,s)=

√
2Pi(η1)

(0,0)Pj(η2)
(2i+1,0)(1−η2)

i, η1=
2(r+1)

(1−s)
, η2= s,

0≤ i, j, i+ j≤ k, m1= j+(k+1)i+1− i(i−1)

2
, (2.12)

with P
(α,β)
i (x) as the ith order Jacobi polynomial. On the reference tetrahedron the PKDO

basis is given by

Φm2(r,s,t)=
√

8Pi(η1)
(0,0)Pj(η2)

(2i+1,0)Pl(η3)
(2i+2j+2,0)(1−η3)

i+j,

η1=−
2(r+1)

(s+t)
−1, η2=

2(1+s)

(1−t)
−1, η3 = t,

0≤ i, j,l, i+ j+l≤ k, m2=−ij− (2+k)i2

2
− j2

2
+

i3

6
. (2.13)

The following notation is used throughout this manuscript. Denote the degrees of free-

dom (DoFs) on a face by d2 = (k+2
2), and the degrees of freedom on a tetrahedron by

d3=(k+3
3). High order polynomials need quadrature rules of sufficient precision. We use

the quadrature weights and abscissae on the reference triangle/tetrahedron suggested
by the following references: [26, 61].

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0235 | Generated on 2024-12-19 03:26:09

M. S. Fabien / Commun. Comput. Phys., 27 (2020), pp. 513-545 519

2.3 Superconvergent postprocessing

The postprocessing scheme we use is described in [43]. Given K∈Th, an approximate dis-
placement uh, and displacement gradient Hh, the postprocessed displacement u∗ satisfies

(∇u∗,∇w)K =(Hh,∇w)K, ∀w∈ (P k+1(K))3, (2.14)

(u∗,1)K =(uh,1)K, (2.15)

where u∗|K ∈ (P k+1(K))3. Numerical results (see Section 4, Tables 1 and 3) show that
this postprocessing superconverges at the rate of k+2 in the L2–norm for k > 0. In the
case of nearly incompressible materials, the postprocessing still superconverges. This
postprocessing is attractive as it can be computed in a completely data parallel manner,
and is less expensive than solving the globally coupled system.

2.4 HDG discretization

Here we outline the static condensation feature of the HDG method. In other words,
we explain how the interior degrees of freedom corresponding to the gradient of dis-
placement, displacement, and hydrostatic pressure can be eliminated locally; leaving a
globally coupled problem defined on the mesh skeleton in terms of the hybrid unknown
only. Eqs. (2.7)-(2.10) can be rewritten in matrix form:

AHH AHu AHp AHû

AuH Auu Aup Auû

ApH Apu App Apû

AûH Aûu Aûp Aûû

H
U
P

Û

=

FH

Fu

Fp

Fû

. (2.16)

The system in Eq. (2.16) is valid at the element level. We define

A1=

AHH AHu AHp

AuH Auu Aup

ApH Apu App

, A2=[AHû,Auû,Apû]

T , A3=[AûH,Aûu,Aûp], (2.17)

and F = [FH ,Fu,Fp]T. We can isolate the volume space unknowns (H,U,P) element by
element,

H
U
P

=A−1

1 (F−A2Û). (2.18)

To enforce continuity of the normal component of the numerical flux one has

AûH H+AûuU+AûpP+AûûÛ=Fû. (2.19)

We can statically condense out the interior unknowns, leaving the only globally coupled
unknown as the displacement Û. Eqs. (2.18) and (2.19) result in the following discrete
system

HÛ=F, (2.20)

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0235 | Generated on 2024-12-19 03:26:09

520 M. S. Fabien / Commun. Comput. Phys., 27 (2020), pp. 513-545

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

Polynomial degree k

D
G

D
o
F
s
/
H
D
G

D
o
F
s

N = 1
N = 4
N = 8

Figure 1: Comparison of DG to HDG DoFs.

where
H=Aûû−A3A−1

1 A2, F=Fû−A3A−1
1 F . (2.21)

Note that the equations in (2.21) are valid element-wise. We define HK and FK as the
restriction of H and F to the element K∈Th, respectively. After Eq. (2.20) is solved, one
can statically evaporate Û to obtain (H,U,P) through Eq. (2.18).

The statically condensed linear system gives rise to fewer DoFs than classical DG
methods, especially for higher polynomial degrees. Below we give a brief complexity
comparison. More thorough analyses including different dimensions and element types
are carried out in [33]. For simplicity, we assume that the underlying domain is a cube,
and it is partitioned into N×N×N hexahedral elements. Each hexahedron is then di-
vided into 5 tetrahedra. The number of faces in the mesh is 2N2(3N+1) and the number
of elements is 5N3. The ratio of DG to HDG DoFs becomes

HDGDoFs=3(2d2N2(3N+1)), DGDoFs=3(5d3N3),
DGDoFs

HDGDoFs
=

5d3N3

2d2N2(3N+1)
.

For N>3 and k>0 HDG has fewer DoFs than DG. If N<4 and k>1, then HDG has fewer
DoFs than DG. Fig. 1 plots this ratio for N∈{1,4,8}. From this complexity comparison,
we can conclude that the HDG method benefits from higher orders. Also, when the mesh
is sufficiently large (e.g. N > 3), the lower order discretizations match or have fewer
DoFs than DG. It should also be stated that the total number of nonzero entries in the
discretization matrix is smaller than that of the DG method [33].

3 GPU strategy

In this section we describe our GPU implementation. The two main steps are the local
and global solvers. The local solvers are defined on the element level by the equations

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0235 | Generated on 2024-12-19 03:26:09

M. S. Fabien / Commun. Comput. Phys., 27 (2020), pp. 513-545 521

in (2.21). We make extensive use of optimized linear algebra libraries for dense matrices.
In particular, Basic Linear Algebra Subprograms (BLAS) [41] and Linear Algebra Package
(LAPACK) [2]. The BLAS library has optimized routines for fundamental linear algebra
operations like matrix-matrix multiplication, dot products, vector addition, etc. In LA-
PACK, optimized routines for matrix factorizations, solving linear systems, and matrix
decompositions are provided.

Since the local solvers are valid element-wise, we can use a sequence of GPU-
accelerated batched BLAS matrix-matrix multiplication and LAPACK operations in order
to form them. The BLAS matrix-matrix multiplication routines and LAPACK operations
have a favorable flop/byte ratio as well as data reuse. The local solvers are completely
parallel, and batched routines allow us to process all local solvers simultaneously. Simi-
lar approaches were considered in [22, 37]. Once the local solvers are generated, we may
solve the globally coupled problem described by (2.20). The globally coupled system is
solved iteratively with a preconditioned conjugate gradient method. A multigrid precon-
ditioner is developed for this problem.

The workstation used for the computational results has the following components:
NVIDIA TITAN X (2016) GPU (maximum memory bandwidth 480 GB/s), 64GB of DDR4
memory, Intel i7-6700K CPU at 4.00GHz (maximum memory bandwidth 34.1 GB/s), run-
ning Ubuntu 16.04 and CUDA version 8.0. All computations are done in double precision
arithmetic, and several performance metrics are extracted through the nvprof/nvvp pro-
filing tools [47].

3.1 Local solvers

The works in [22,37] consider many-core implementations of HDG methods for the Pois-
son problem. In our paper we extend the batched processing strategies described therein
for the vector valued elasticity problem. One complication that arises is that the local
solver matrices (2.17) are much larger for vector valued problems. As such, new modi-
fications must be made to accommodate these larger matrices. Batched BLAS/LAPACK
operations are intended for small to moderately sized matrices, for instance, the routines
provided by cuBLAS [46]. Moreover, these routines work with dense matrices, even if
they exhibit a great deal of sparsity. A naive implementation is possible, but will severely
limit the problem size one can consider due to the limited GPU memory.

From Eq. (2.21), it is clear that the matrixA1 must be factorized or inverted. However,
A1 is of size (13d3×13d3). GPU batched operations like gemm (matrix-matrix multiplica-
tion), getrf (LU factorization), getrs (backward/forward solve using LU factorization),
and getri (compute inverse using LU factorization) are intended for matrices of small
size. The batched getrf and getrs operations typically have one thread block per matrix,
and one thread is responsible for one entry of the matrix. As such, for larger matrices, the
resources required for these operations becomes exceedingly prohibitive.

For example, the NVIDIA TITAN X (Pascal) GPU has 28 streaming multiprocessors,
each of which is capable of launching a maximum of 2048 threads. Hence, a maximum

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0235 | Generated on 2024-12-19 03:26:09

522 M. S. Fabien / Commun. Comput. Phys., 27 (2020), pp. 513-545

nz = 9686

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

(a) A1

nz = 1174

0 20 40 60 80

0

10

20

30

40

50

60

70

80

(b) Z−1

nz = 400

0 5 10 15 20

0

2

4

6

8

10

12

14

16

18

20

(c) Z−1
m

Figure 2: Sparsity pattern for the local solver matrices (k=3).

of 28∗2048=57344 resident threads is possible on this GPU. If we set k=3, then A1 has
67600 entries, and one thread per matrix entry easily exhausts the maximum number of
resident threads.

To avoid this limitation, we make explicit use of the sparsity of A1. The sparsity
pattern for A1 is displayed in Fig. 2(a). Note that the upper left block of A1 is diagonal,
which is a consequence of our choice of the PKDO orthonormal hierarchical basis, see
Eq. (2.13). Instead of factoring A1, we consider its block 2×2 representation, and form its
Schur complement. That is, we set

A−1
1 =

[
A B
C D

]−1

=

[
A−1+A−1BZCA−1 −A−1BZ

−ZCA−1 Z

]
, Z=(D−CA−1B)−1,

with

A=AHH, B=[AHu,AHp], C=[AuH,ApH]
T, D=

[
Auu Aup

Apu App

]
.

The Schur complement Z has dimension 4d3. We observe that the matrix Z−1 is also
sparse with a rich structure, as can be seen in Fig. 2(b). Thus, we put Z−1 in a block 2×2
representation, and form its Schur complement as well:

Z−1=
[
Am Bm
Cm Dm

]−1

=

[
A−1

m +A−1
m BmZmCmA−1

m −A−1
m BmZm

−ZmCA−1
m Zm

]
, Zm=(Dm−CA−1

m Bm)
−1.

The matrix Zm is dense (Fig. 2(c)), but has dimension d3, which renders the batched
BLAS/LAPACK operations suitable for a much wider range of polynomial orders
(around k=8 or k=9 for our targeted GPUs). The difference in matrix sizes and nonzero
entries can be inferred from Fig. 2. As such, we need only to generate Zm, and then use
it to build Z. The matrix A−1

1 does not need to be directly constructed as we only need
its action against other matrices, and this is performed through operator evaluation. We

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0235 | Generated on 2024-12-19 03:26:09

M. S. Fabien / Commun. Comput. Phys., 27 (2020), pp. 513-545 523

now summarize the general steps to invertA1, where it is understood that this procedure
is done for all elements K∈Th simultaneously:

1. Form Z−1
m using the nonzero blocks of Z−1 (accomplished by a sequence of gemm

routines).

2. Invert Z−1
m to obtain Zm (accomplished by getri or getrf and getrs).

3. Form Z using Zm, and the nonzero blocks of Am, Bm, Cm, and Dm (accomplished by
a sequence of gemm routines).

Once Z is formed, H and F from Eq. (2.21) can be generated element by element simul-
taneously by a sequence of batched matrix-matrix multiplications. The terms H and F

from Eq. (2.21) require the matricesA−1
1 ,A2, andA3. We do not explicitly form these ma-

trices, rather they are constructed by operation evaluation, which results in a sequence
of small dense matrix-matrix multiplications. These small matrices come from elemental
contributions, e.g., volume-space mass matrices (d3×d3), lift matrices (4d2×d3), and flux
matrices (d3×4d2). This allows us to utilize batched gemm operations from the cuBLAS
library, which simultaneously processes the contributions for all elements. We refer the
reader to [37] for further details of this approach.

We make note of a few observations regarding the cuBLAS batched gemm implemen-
tation. There are currently no batched matrix-vector operations in cuBLAS (e.g. matrix-
vector multiplication). Further, using cuBLAS batched gemm for gemv operations (needed
to build F) was found to be very inefficient, compared to a straightforward custom
batched gemv kernel (one thread block per matrix, one thread per row of said matrix). As
the basic work unit in CUDA is a warp (group of 32 threads), padding the elemental ma-
trices so that their dimensions round up to the nearest warp or half warp on average gives
a 2× speed up. In addition, we found that a straightforward custom batched gemm kernel
outperforms cuBLAS batched gemm for polynomial orders 0≤ k≤3. The cuBLAS batched
gemm operation was designed to target many different matrix sizes, but the elemental ma-
trices for 0≤ k≤3 fall into the “very small” matrix category, and cuBLAS is not necessar-
ily optimized for these cases. Some researchers have explored this case [18, 28, 32, 42, 65],
however, this is beyond the scope of our work.

Fig. 3 has a comparison of these three kernels for a batch size of 25000, where each
matrix is of size (d3×d3), and 0≤ k≤4. We see that the custom kernel for k=0 and k=1
has a run time below 1 ms, and for k≤2, significant speed ups are obtained compared to
the best cuBLAS implementation. A 1.4× speed up is achieved for k=3, and cuBLAS is
more efficient for k>3. Comparing the padded and unpadded cuBLAS implementation,
we see that the padded version maintains a nearly constant run time for 0≤ k≤4. This is
expected as the matrix dimensions are rounded up the nearest multiple of the warp size.
So, for k<4, the matrices are always of size (32×32), and for k=4 they are size (64×64).
To get a sense for how the local solver scales with polynomial degree, Fig. 4 plots the total
normalized run time (the total run time for polynomial degree k divided by the total run
time for polynomial degree k=7), on a mesh with 5400 unstructured tetrahedral elements.

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0235 | Generated on 2024-12-19 03:26:09

524 M. S. Fabien / Commun. Comput. Phys., 27 (2020), pp. 513-545

0 1 2 3 4

0

10

20

30

4 · 10−2 0.22 1.63
5.02

31.37

15.1 13.6

23.9

17.7 19.6

7.3 7.3 7.3 7.3 8.2

Polynomial degree k

E
x
ec
u
ti
o
n
ti
m
e
in

m
s Custom kernel

cuBLAS batched gemm

cuBLAS gemm (padded)

Figure 3: Comparison of run times for various GPU batched gemm operations. Time is measured in milliseconds.
Batch size is 25000 matrices.

0 1 2 3 4 5 6 7

0.4

0.6

0.8

1

0.54 0.53
0.59

0.52 0.55

0.4

0.84

1

Polynomial degree k

N
or
m
al
iz
ed

ti
m
e

Figure 4: Normalized total run time for local solver stage of the HDG pipeline.

For 0≤ k≤5, we observe a weak scaling pattern emerge. A spike in performance occurs
at k=5. For k=5, no padding is needed as the cuBLAS batched heuristics work well with
the native elemental matrix dimensions. Fig. 5 has a breakdown of the dominant costs in
terms of percentage of run time. It is clear that H on average accounts for roughly 75%
of the run time for the local solvers. This is the case as H is block (3×3), for a total of 9
blocks of dimension 4d2. The combined time for both Z and F is considerably smaller, as
there is much less work required.

3.2 Global solver

The core routine in our global solver is a globally coupled sparse matrix-vector multi-
plication. For tetrahedral meshes, and moderate polynomial orders, the authors in [6]
recommend a matrix-free operation evaluation approach. That is, we do not directly
assemble the global sparse matrix, but instead we use the local matrices and mesh con-
nectivity information to perform global matrix-vector multiplications (which is needed

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0235 | Generated on 2024-12-19 03:26:09

M. S. Fabien / Commun. Comput. Phys., 27 (2020), pp. 513-545 525

0 1 2 3 4 5 6 7

20

40

60

80

100

0.78 0.77 0.75 0.75 0.74 0.79

0.63
0.77

0.22 0.23 0.25 0.25 0.26 0.21

0.37
0.23

Polynomial degree k

P
er
ce
n
ta
g
e
o
f
ru
n
ti
m
e

F and Z

H

Figure 5: Percentage of run time for the local solvers.

for iterative solvers). That is, for a input ~x, we have from (2.20)

A~x= ∑
K∈Th

(AK
HDG)

T
HKAK

HDG~x,

where AK
HDG is gather operator for all trace degrees of freedom on element K and

(AK
HDG)

T is a scatter operator for all trace degrees of freedom on element K. As the
statically condensed HDG method has its only unknowns defined on the mesh skeleton,
we use a face-only connectivity. The benefit for this is that no atomics or mutex locks
are needed to avoid race conditions. For interior faces, there are two elements that will
contribute to the resultant vector. This algorithm results in dense local matrix-vector
products that are data parallel. We assign one thread block per face to perform the dense
matrix-vector products, so that one thread is responsible for the contributions of one face
degree of freedom (for all displacement components). We are mainly interested in higher
orders, but for lower orders, performance will drop. This is because as each thread loads
data from the L1 cache, they will not make full use of the 128-byte cache line that is
fetched. Thread transposition could be used to boost performance in this case [38].

A GPU-accelerated tensor contraction for the HDG method was studied in [54], which
stores the HDG matrix in a block dense format, and is shown to be more efficient than a
standard compressed row storage format. The approach we adopt is similar, except that
our global matrix-vector is matrix-free as defined in [6].

Algorithm 1 describes our sparse matrix-vector multiply (SPMV) routine. It is a tensor
contraction, as there are three displacement components, and to promote data reuse, the
local input vector is put into shared memory. Moreover, our data is organized such that
memory is coalesced, which is important for bandwidth performance. An additional

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0235 | Generated on 2024-12-19 03:26:09

526 M. S. Fabien / Commun. Comput. Phys., 27 (2020), pp. 513-545

optimization that we make is to limit the maximum registers allocated per thread, which
was determined to be 30-31 from the NVIDIA Visual Profiler (nvvp) for our target GPU.

Algorithm 1 Global SPMV

Input: H of size (12d2,12d2,|Th|), and x of size (3d2,|Γh|),
Output: y of size (3d2,|Γh|),
for e∈{1,2,··· ,|Γh|} do

K1← element number adjacent to face e
K2← element number adjacent to face e

if e∈∂Ω then

K1=K2

end if

for K∈{K1,K2} do

for j∈{1,··· ,12d2} do

x̂j← all face DoFs of x on K
end for
Barrier()

for j∈{1,··· ,12d2} do

yi,e←yi,e+Hi,j,K x̂j

end for

end for

end for

Many algorithms related to finite element problems are bandwidth bound, and SPMV
falls into this category. The key components of the multigrid method (see Subsection 3.3)
we use also fall into this category. As such, the most significant tuning benefits will
come from memory transfer optimizations. To measure memory transfer performance,
we utilize the following nvprof tool metrics:

dram read throughput, dram write throughput, gld efficiency, gst efficiency.

Memory bandwidth is measured as

Bandwidth(GB/s)=dram read throughput+dram write throughput.

The metrics gld efficiency (global load efficiency) and gst efficiency (global store
efficiency) give the ratio of requested global load (store) throughput to required global
load (store) throughput. We observe that gld efficiency and gst efficiency are both
greater than or equal to 90% efficiency. This indicates that our tensor contraction ker-
nels load (store) operations use the device’s memory bandwidth effectively. Fig. 6 ex-
amines the performance of the global sparse matrix-vector multiplication. For a struc-
tured mesh of 7986 tetrahedral elements, and a unstructured mesh of 8051 tetrahedral
elements, Fig. 6(a) shows the achieved bandwidth as a function of the polynomial order.

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0235 | Generated on 2024-12-19 03:26:09

M. S. Fabien / Commun. Comput. Phys., 27 (2020), pp. 513-545 527

0 1 2 3 4 5 6 7
0

100

200

300

400

480

Polynomial degree

B
an

d
w
id
th

(G
B
/s
)

Structured mesh

0

100

200

300

400 Unstructured mesh

0 1 2 3 4 5 6 7

30%

50%

60%

70%

P
er
ce
n
ta
ge

of
p
ea
k
b
an

d
w
id
th

(a) Bandwidth under k refinement

Mesh 1 Mesh 2 Mesh 3 Mesh 4
0

100

200

300

400

480

Mesh number

B
an

d
w
id
th

(G
B
/s
)

Structured mesh (k = 2)

30%

50%

60%

70%

P
er
ce
n
ta
ge

of
p
ea
k
b
an

d
w
id
th

(b) Bandwidth under h refinement

Figure 6: Bandwidth achieved by the tensor contraction SPMV. For sufficiently large problem sizes, the tensor
contraction kernel is able to achieve over 60% of the peak bandwidth.

For 2≤ k≤ 5, we sustain a bandwidth that is approximately 60% of the peak 480 GB/s
(GTX TITAN X). For k> 5, the achieved bandwidth reaches close to 70% of the peak. In
our tensor contraction framework, lower order polynomial degrees (k < 2) suffer from
a lack of thread saturation at the warp level; as there are significantly fewer degrees of
freedom. An optimization that could be utilized is studied in [38], where they introduce
a thread transposition technique that has threads/thread blocks process contributions for
multiple cells.

Fig 6(b) examines the SPMV bandwidth for different structured meshes, with the
polynomial degree fixed at k= 2. The meshes used are uniform refinements of the unit
cube, with 320, 2560, 20480, and 163840 elements. For coarse meshes, the bandwidth will
be lower because the number of threads per thread block is proportional to the DoFs on
a face. At a few hundred elements, the bandwidth is near 50% of the peak. As the num-
ber of elements increases, a higher bandwidth is observed, and it moves past 60% of the
peak.

To get a better sense of the device utilization of the tensor contraction kernel, we
study the roofline model, which allows us to identify optimization opportunities as well
as model performance [64]. In Fig. 7, a roofline model associated with Fig. 6(a) is given.
As expected, the tensor contraction is bandwidth bound, since it consists of small dense
matrix-vector products. In addition, as the polynomial degree is increased, the through-
put of the tensor contraction moves closer to the performance ceiling. Despite this, our
tensor contraction is only able to achieve roughly 18% to 30% of the peak double precision
throughput (317 GFLOPS/s).

The performance analysis done in this section ensures that our algorithm is efficiently
using the GPU’s computational resources. However, it completely ignores the accuracy
of our approximations; which is a very important measure. Building off our previous
work in [7], we incorporate time-accuracy measures for a more complete performance
assessment in Section 5.

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0235 | Generated on 2024-12-19 03:26:09

528 M. S. Fabien / Commun. Comput. Phys., 27 (2020), pp. 513-545

0.2 0.4 0.6 0.8 1
0

100

200

317

48
0
G
B
/s

Arithmetic Intensity (= GFLOPS/GB)

G
F
L
O
P
S
/s

Roofline
Polynomial degree

0.2 0.4 0.6 0.8 1

20%

35%

P
er
ce
n
ta
ge

of
p
ea
k
th
ro
u
gh

p
u
t

Figure 7: Roofline analysis of the tensor contraction SPMV associated with Fig. 6(a). As k is increased the
throughput performance improves.

3.3 p-multigrid preconditioner

Our global solver is a Krylov-accelerated p-multigrid method (see [22] for a nested HDG
multigrid method). For memory considerations on the GPU, we use the conjugate gradi-
ent method [55].

The p-multigrid preconditioner starts with a full-depth p-multigrid (conducted en-
tirely on the GPU), then switches to an AMG method after the polynomial order has been
reduced to k=0 (conducted on the host), and after the AMG hierarchy a direct solver is
invoked. Fig. 8 has a diagram illustrating the multigrid algorithm.

p-multigrid (GPU)

AMG (CPU)

LU (CPU)

Figure 8: Diagram of the multigrid algorithm.

3.3.1 p–multigrid

The p-multigrid hierarchy is defined by the discretization of Eqs. (2.7)-(2.10) for differ-
ent polynomial degrees. For simplicity, we use a rapid coarsening ratio, so that the p-

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0235 | Generated on 2024-12-19 03:26:09

M. S. Fabien / Commun. Comput. Phys., 27 (2020), pp. 513-545 529

multigrid method consists of two levels, k = kmax > 0 on the fine grid and k = 0 for the
coarse grid.

The associated intergrid transfer operators are the canonical elliptic projection op-
erators, which are applied in a matrix–free context. These operators are binary, as our
basis is hierarchical. We pay careful attention to ensure that the sum of the order of these
operators is strictly greater than the order of the underlying differential equation [30].
As such, the intergrid transfer operations do not reintroduce unwanted frequencies that
have been eliminated by the previous multigrid operations.

3.3.2 Intergrid transfer operators

Finite element methods lend themselves well to multilevel methods, due to the flexibility
in choice of underlying spaces. Consider the nested discontinuous finite element spaces
ΩH⊂Ωh, where ΩH is a coarse space, and Ωh is a fine space. In our application, ΩH=M0

h

(e.g, coarse level corresponds to the k=0 approximation on a fixed mesh), and Ωh=Mkmax

h
(e.g, fine level corresponds to the k= kmax approximation on the same mesh). We define
(ΩH)′ and (Ωh)′ to be the dual spaces of ΩH and Ωh, respectively [48].

The canonical prolongation operator uses the fact that ΩH⊂Ωh. That is, any coarse
grid function can be expanded as a linear combination of fine grid functions. Thus, we
take the prolongation operator to be the natural embedding from ΩH into Ωh. As such,
P : ΩH→Ωh, where P(uH)=uH for any uH ∈ΩH. Hence, given a coarse grid function, it
can be expressed as a linear combination of fine grid functions. For example, for a coarse
grid basis function ΨH

i ∈ΩH, and a fine grid basis function Ψh
j ∈Ωh, one has

ΨH
i =∑

j

cijΨ
h
j ,

where cij are a unique coefficients, and the basis functions Ψ are defined in Eq. (2.12).

Due to our choice of hierarchical basis, the matrix representation for the prolongation cT

is binary.
A canonical restriction is defined by a L2 projection. The restriction operator is given

by R : (Ωh)′→ (ΩH)′,

(Rvh,uH)=(vh,uH), ∀vh∈ (Ωh)′, ∀uH∈ΩH.

Intergrid transfer operators that are effective in the multigrid context are often designed
with a certain criterion. This criterion states that: the orders of sum of the intergrid trans-
fer operators should at the very least equal the order of the underlying PDE that is to
be solved (see [31, 59, 63]). The canonical intergrid transfer operators satisfy this crite-
rion, since piecewise polynomial reconstruction is used on every element. For k=0, state
prolongation is taken to be higher order to ensure this criterion is satisfied. Canonical
intergrid transfer operators are commonly used because they are natural in the finite ele-
ment framework. Other ideas regarding interpolation have been investigated, especially
operator dependent interpolation (see [59, 60]).

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0235 | Generated on 2024-12-19 03:26:09

530 M. S. Fabien / Commun. Comput. Phys., 27 (2020), pp. 513-545

Although the intergrid transfer operators do not dominate the cost of the multigrid
method, they are cheaper for HDG method because the unknowns are on the skeleton
of the mesh. Instead of using intergrid transfer operators for dimension d, the intergrid
transfer operators associated with dimension d−1 are invoked. In other words, for the
intergrid transfer operators, we use the 2D basis functions defined by Eq. (2.12), and not
the 3D basis functions defined in Eq. (2.13). These operators are binary for hierarchical
bases [23], and we apply them in a matrix-free manner on the GPU, as they are essentially
stream operations.

3.3.3 Coarse grid solver

The computations for the k=0 system are handled on the host, as there is a lack of avail-
able GPU-accelerated direct solvers on GPUs. It is assembled into a sparse matrix, as
matrix-free has little benefit for lower orders. An unsmoothed algebraic multigrid (AMG)
method is used to solve the coarse grid system. The k= 0 system is similar to a low or-
der finite volume discretization, and numerically we observe a constant number of AMG
iterations regardless of the mesh size.

Without additional modifications to the k=0 coarse problem, setting the coarse prob-
lem to be associated with k = 1 results in a more effective p-multigrid method, but the
linear system is larger, and lower order discretizations benefit more from utilizing glob-
ally assembled sparse linear systems (e.g, compressed row storage) [6,38]. Also, by using
k=0 as a coarse problem, we can inspect a fully GPU-accelerated lower order locking-free
HDG discretization in our framework.

3.3.4 Relaxation

Relaxation plays a critical role in the multigrid process. Its goal is to remove high fre-
quencies from the error, leaving stubborn low frequencies for coarser grids to address.
We use block smoothers, which are known to work well for high order discontinuous
Galerkin methods [22]. Let the discretization operator H restricted to a face e be denoted
by He. The block smoother is of Jacobi type, and it is posed on faces, that is, given e∈Γh,
from Eq. (2.20),

M=
|Γh|
∑
e=1

Re
T

He
−1Re,

where Re is a binary restriction operator that transfers global DoFs to local DoFs. The
relaxation is applied as follows:

~xn+1=~xn+M(F−H~xn),

where ~xn is the nth iterate. This relaxation takes place on the GPU, where we lever-
age several optimized cuBLAS routines. A batched preprocessing step forms H

−1
e , for all

e∈Γh, simultaneously. These block matrices are small, of dimension d2 for a displacement
component. To apply the block smoother in the cuBLAS framework, one can batch in-
vert the blocks (getri) then apply a batched dense matrix-vector multiplication (gemm) or

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0235 | Generated on 2024-12-19 03:26:09

M. S. Fabien / Commun. Comput. Phys., 27 (2020), pp. 513-545 531

compute a batched LU factorization (getrf) then use batched forward/backward solves
(getrs). The former was found to be more efficient in our implementation, as getrf has
limited parallelism, and the statically condensed stiffness matrix has smaller blocks than
classical DG methods.

For the HDG method, static condensation results in a linear system with its only un-
knowns belonging to the mesh skeleton. Furthermore, static condensation introduces a
significant dimensionality reduction. This manifests itself in all portions of the multigrid
method, including the relaxation. For standard discontinuous finite elements in d dimen-
sions using basis functions of degree k, typical block preconditioners have blocks of the
cell size, O(kd). This means that the cost of inverting this block is approximately O(k3d)
withO(k2d) storage, as inversion is known to costO(N3) work for a of matrix dimension
N. However, the statically condensed HDG system has its blocks of size O(kd−1). As
such, the cost of inverting this block is approximately O(k3(d−1)). In 3D the cost for stan-
dard DG is thus O(k9) with O(k6) storage, and for HDG its is O(k6) with O(k4) storage.
This is an important complexity and storage cost reduction, especially for higher orders.

Algorithm 2 has a description of the p-multigrid method we use. The operators R
and P are restriction and prolongation operators as defined in Subsection 3.3.2. The fine
grid operator Ah corresponds to the HDG discretization for k=kmax. Likewise, the coarse
grid operator AH corresponds to the HDG discretization for k=0.

Algorithm 2 p-multigrid preconditioner

1: Pre-Relax: ~yh =Smooth(~xh,Ah,~bh) ,

2: Residual:~rh =~bh−Ah~yh ,
3: Restriction:~rH =R~rh ,
4: Coarse grid solve: ~eH =(AH)

−1rH ,
5: Coarse correction: ~yh =~xh+P~eH ,

6: Post-Relax: ~xh=Smooth(~yh,Ah,~bh) ,

4 Numerical experiments

In this section we consider numerical examples that verify and validate the HDG dis-
cretization, as well as to test the robustness of our multigrid preconditioner. The pre-
conditioned conjugate gradient iterations are terminated after the relative error of the
residual in the preconditioned norm is less than or equal to 10−7.

4.1 Manufactured solution

In this section we verify convergence rates using a manufactured solution. The solution
takes the following form:

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0235 | Generated on 2024-12-19 03:26:09

532 M. S. Fabien / Commun. Comput. Phys., 27 (2020), pp. 513-545

1 2 3 4 5 6

4

6

8

10

12

Polynomial degree k

T
ot
al

it
er
at
io
n
s

|Th| = 40

|Th| = 320

|Th| = 2560

|Th| = 20480

Figure 9: Total iterations from the multigrid preconditioned conjugate gradient method for the example in
Subsection 4.1. Iteration counts are fairly insensitive to the polynomial order or mesh spacing.

u(x,y,z)=

(1/100)(xsin(2πy)+ycos(2πz))
(1/100)(ysin(2πz)+zcos(2πx))
(1/100)(zsin(2πx)+xcos(2πy))

,

where the load force f is determined from u. The domain is taken as Ω= [−1,1]3, with
a Neumann condition on the face corresponding to x=1, and the remaining boundaries
have Dirichlet boundary conditions. A related problem can be found in [57]. For simplic-
ity we fix µ=λ≡1. We consider a sequence of uniform tetrahedral meshes.

Numerically we expect that all approximate variables except the postprocessing have
errors that behave like O(hk+1) in the L2–norm [43]. The error of the postprocessed vari-
able (with k>0) behaves like O(hk+2) in the L2–norm. The computed L2–norm errors of
the approximate variables for 0≤ k≤ 6 can be found in Table 1. All variables except the
postprocessing converge at the rate of k+1 in the L2–norm. For k>0, the postprocessed
variable superconverges at the rate of k+2 in the L2–norm. We note that numerically, the
trace displacement converges at a rate close to k+3/2, but its error is of the same mag-
nitude as the volume displacement. The postprocessed displacement error is roughly an
order of magnitude smaller than the trace (volume) displacement.

Fig. 9 examines the multigrid preconditioned conjugate gradient performance. Both
the mesh size and polynomial order are varied. We see that for a given polynomial de-
gree, the number of iterations is substantially insensitive to the mesh spacing. Similarly,
for a given mesh, the iteration counts are essentially independent of increasing k.

4.2 Nearly incompressible materials

This section explores the locking–free behavior of the HDG method. The example solu-
tion we consider is taken from [52]:

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0235 | Generated on 2024-12-19 03:26:09

M. S. Fabien / Commun. Comput. Phys., 27 (2020), pp. 513-545 533

Table 1: Convergence rates for a manufactured solution (µ=λ≡1).

k |Th| ‖H−Hh‖L2(Ω) ‖u−uh‖L2(Ω) ‖p−ph‖L2(Ω) ‖û−ûh‖L2(Ω) ‖u−u∗‖L2(Ω)

0 40 5.1033e-01 6.9164e-02 2.3024e-02 1.2474e-01 6.8904e-02

320 3.7850e-01 5.8414e-02 1.5926e-02 5.8279e-02 5.4165e-02

2560 2.3796e-01 3.4968e-02 1.2691e-02 2.0828e-02 3.1797e-02

1 40 3.9400e-01 5.4954e-02 2.3692e-02 9.7604e-02 2.6094e-02

320 1.6024e-01 2.5917e-02 1.1606e-02 2.2667e-02 5.4598e-03

2560 4.4056e-02 7.2306e-03 2.3228e-03 4.0801e-03 7.4251e-04

2 40 2.2559e-01 3.3473e-02 1.2935e-02 5.6346e-02 1.3493e-02

320 3.7014e-02 6.4845e-03 1.4037e-03 6.1141e-03 1.0967e-03

2560 5.7105e-03 9.6493e-04 2.9360e-04 5.6032e-04 7.7537e-05

3 40 8.9438e-02 1.4638e-02 4.2630e-03 2.4721e-02 4.4644e-03

320 8.7764e-03 1.4913e-03 5.4249e-04 1.3085e-03 1.8969e-04

2560 5.7246e-04 9.9067e-05 2.8198e-05 5.9077e-05 6.1243e-06

4 40 3.3893e-02 5.3837e-03 1.8748e-03 8.9508e-03 1.2864e-03

320 1.2737e-03 2.3045e-04 4.0346e-05 2.2320e-04 2.4324e-05

2560 4.6489e-05 8.2314e-06 2.1932e-06 5.0304e-06 4.1156e-07

5 40 8.8506e-03 1.5380e-03 3.2667e-04 2.6577e-03 3.0108e-04

320 1.9758e-04 3.5136e-05 1.1150e-05 3.2213e-05 2.9995e-06

2560 3.1712e-06 5.7368e-07 1.4295e-07 3.5829e-07 2.4190e-08

6 40 2.3523e-03 3.9781e-04 1.1927e-04 6.8938e-04 6.6713e-05

320 2.1255e-05 3.9637e-06 6.0651e-07 3.9668e-06 3.0352e-07

2560 1.8652e-07 3.4382e-08 8.0346e-09 2.1888e-08 1.2501e-09

u=

200µ(x−x2)2(2y.3−3y2+y)(2z3−3z2+z)
−100µ(y−y2)2(2x3−3x2+x)(2z3−3z2+z)
−100µ(z−z2)2(2y3−32+y)(2x3−3x2+x)

,

where Ω is the unit cube, all boundaries are of Dirichlet type, and f is determined from
u. In terms of locking, we give special attention to the lower order discretizations k< 2.
This is because higher order continuous Galerkin discretizations may not exhibit locking
behavior [27]. The shear modulus is fixed as µ≡ 1. Tables 2 and 3 display the results of
the k=0 and k=1 HDG discretizations for various mesh sizes and Lamé parameters. We

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0235 | Generated on 2024-12-19 03:26:09

534 M. S. Fabien / Commun. Comput. Phys., 27 (2020), pp. 513-545

Table 2: Nearly incompressible material experiments for the k = 0 discretization. Notice that the method is
locking–free for a wide range of λ.

λ |Th| ‖H−Hh‖L2(Ω) ‖u−uh‖L2(Ω) ‖p−ph‖L2(Ω) ‖û−ûh‖L2(Ω) ‖u−u∗‖L2(Ω)

100 40 9.96e-01 2.16e-01 1.42e-02 7.80e-02 2.15e-01

320 6.87e-01 1.27e-01 1.45e-02 4.05e-02 1.24e-01

2560 3.87e-01 6.65e-02 8.98e-03 1.60e-02 6.42e-02

20480 2.01e-01 3.35e-02 4.73e-03 5.80e-03 3.22e-02

103 40 9.96e-01 2.16e-01 4.66e-05 7.77e-02 2.15e-01

320 6.86e-01 1.27e-01 4.39e-05 4.05e-02 1.24e-01

2560 3.87e-01 6.65e-02 2.58e-05 1.60e-02 6.41e-02

20480 2.01e-01 3.35e-02 1.30e-05 5.80e-03 3.21e-02

106 40 9.96e-01 2.16e-01 4.67e-08 7.77e-02 2.15e-01

320 6.86e-01 1.27e-01 4.40e-08 4.05e-02 1.24e-01

2560 3.87e-01 6.65e-02 2.58e-08 1.60e-02 6.41e-02

20480 2.01e-01 3.35e-02 1.30e-08 5.80e-03 3.21e-02

Table 3: Nearly incompressible material experiments for the k= 1 discretization. The method is locking–free
and u∗ superconverges for a wide range of λ.

λ |Th| ‖H−Hh‖L2(Ω) ‖u−uh‖L2(Ω) ‖p−ph‖L2(Ω) ‖û−ûh‖L2(Ω) ‖u−u∗‖L2(Ω)

100 40 3.46e-01 8.23e-02 1.80e-02 5.96e-02 1.30e-02

320 1.26e-01 2.55e-02 6.15e-03 1.50e-02 2.54e-03

2560 3.57e-02 7.05e-03 1.65e-03 2.95e-03 3.91e-04

20480 9.34e-03 1.83e-03 4.18e-04 5.37e-04 5.29e-05

103 40 3.44e-01 8.16e-02 6.03e-05 5.93e-02 1.38e-02

320 1.26e-01 2.55e-02 1.76e-05 1.50e-02 2.64e-03

2560 3.56e-02 7.04e-03 4.49e-06 2.95e-03 4.00e-04

20480 9.33e-03 1.83e-03 1.11e-06 5.37e-04 5.38e-05

106 40 3.44e-01 8.16e-02 6.05e-08 5.93e-02 1.38e-02

320 1.26e-01 2.55e-02 1.76e-08 1.50e-02 2.64e-03

2560 3.56e-02 7.04e-03 4.50e-09 2.95e-03 4.00e-04

20480 9.33e-03 1.83e-03 1.25e-09 5.37e-04 5.38e-05

take λ∈{1,103,106}, which approximately corresponds to the following Young’s moduli
and Poisson ratios:

E∈{2.5e+00,2.99900099900100e+00,2.99999900000100e+00},
ν∈{2.5e−01,4.99500499500499e−01,4.99999500000500e−01}.

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0235 | Generated on 2024-12-19 03:26:09

M. S. Fabien / Commun. Comput. Phys., 27 (2020), pp. 513-545 535

40 320 2560 20480

0

20

40

60

80

100

120

Number of elements |Th|

T
ot
al

it
er
at
io
n
s

λ = 100

λ = 103

λ = 106

Figure 10: Total iterations from the multigrid preconditioned conjugate gradient method for the nearly in-
compressible example in Subsection 4.2 (k= 1 discretization). Different Lamé parameters and mesh sizes are
considered.

All variables converge at the rate of k+1 for k≥ 0 in the L2–norm. It is apparent
no volumetric locking occurs. The postprocessed variable u∗ superconverges for k> 0,
even when the Poisson ratio approaches 0.5. Since the gradient of displacement tensor
converges at the rate of k+1 for polynomials of degree k≥0, other important quantities
also converge at the rate of k+1. For instance, strain, stress, and vorticity.

We next examine the multigrid preconditioned conjugate gradient performance for
the k = 1 discretization. Fig. 10 has the results. For moderate Lamé parameters, the
method performs very well as the mesh size increases. Numerically we observe that
the total number of iterations has a dependence on the Lamé parameter.

4.3 Gravity-induced deflection of a clamped beam

This validation test case models a clamped beam deformed under its own weight. The
beam is given by the following parallelepiped Ω={(x,y,z)∈R

3 : 0≤x≤1, 0≤y,z≤0.2}.
At the plane x = 0, the beam is clamped (zero Dirichlet boundary condition), and the
remaining boundary conditions are traction-free. A forcing function is prescribed f =
(0,0,−ρg)T , with ρ=µ≡1, g=1.6·10−2, and λ=1.25.

A mesh with 20480 elements and piecewise cubic polynomials are used. Fig. 11 shows
the beam in its original position, which is outlined in white. The displacement in the
deformed geometry is also displayed, which acts as expected; the bar is fixed near the
plane x=0 and experiences a vertical deformation elsewhere.

4.4 Tripod under vertical load

Another validation test case for the HDG method is presented here. The example ex-
amines a tripod under vertical load. A similar example is studied in [49]. In Fig. 12 a

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0235 | Generated on 2024-12-19 03:26:09

536 M. S. Fabien / Commun. Comput. Phys., 27 (2020), pp. 513-545

Displacement Magnitude

1.726e-011.000e-16 0.1290.0860.043

Figure 11: Beam in its original position (outline in white), and the resulting gravity-induced deflection.

(a) Tripod mesh

Displacement Magnitude

0.98782

1.9756

2.9635

1.000e-15

3.951e+00

(b) Displacement

Figure 12: Tripod mesh with 2979 elements, and the deformed mesh with a wireframe of the reference state.

visualization of the tripod and its unstructured mesh is given.

We take the Young’s moduli and Poisson ratio as E = 103 and ν = 0.3, respectively.
The bottom of the tripod is fixed to the ground with zero Dirichlet boundary conditions.
All remaining boundary faces are traction-free. A vertical load is applied to the top of
the tripod. The deformed tripod overlaid with its displacement magnitudes is depicted
in Fig. 12(b); and the reference tripod skeleton is outlined in black. An intuitive displace-
ment is exhibited.

A numerical convergence study is conducted in Fig. 13. No exact solution is known,
so we compute a reference maximal displacement magnitude in the vertical direction on
a refined mesh. The reference value is computed on the original tripod mesh (Fig. 12(a))
that is refined uniformly three times. We compute the maximal displacement magnitude
in the vertical direction for polynomial degrees one through six on the original tripod
mesh with 2979 elements, and compare it to the reference value. As the polynomial order
is increased, on the mesh given in Fig. 12(a), we observe convergence to the reference

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0235 | Generated on 2024-12-19 03:26:09

M. S. Fabien / Commun. Comput. Phys., 27 (2020), pp. 513-545 537

1 2 3 4 5 6
10−1

100

101

102

Polynomial degree k

P
er
ce
n
t
E
rr
or

(a) Percent error

1 2 3 4 5 6
4

6

8

10

12

Polynomial degree k

It
er
at
io
n
co
u
n
ts

(b) Iteration counts

Figure 13: Percentage error for a reference maximal displacement magnitude in the vertical direction (Fig. 13(a)).
Iteration counts from the global solver (Fig. 13(b)).

displacement. The percentage error is below 1% for k= 5 and k= 6, which can be seen
in Fig. 13(a). Fig. 13(b) shows that the iteration counts from our global solver remain
robust with respect to the polynomial degree. Even though the mesh is unstructured, the
iteration counts are similar to those found in Subsections 4.2 and 4.1.

5 Time-accuracy inclusive performance analysis

The analysis of the performance of our global solver is continued in this section. We
utilized a roofline analysis in Section 3 to assess the performance of our tensor contrac-
tion SPMV, since it is a fundamental routine in the global solver. However, the classical
roofline model does not include the accuracy of HDG approximations, which leads to an
incomplete analysis. FLOPS and even run-time are not holistic performance measures.
For instance, lower order methods are typically cheaper and may be faster for some appli-
cations as there is less work to do. This does not take into account that low order methods
are less accurate, and may need meshes that are prohibitively large in order to match the
accuracy of higher order methods. Conversely, higher order methods may be able to use
coarser meshes and better utilize computational hardware, but for some problems ob-
tainable accuracy is limited and overall performance is hindered. Other complications
like solver tolerances, material parameters also need to be taken into account.

Digits of efficacy (DoE) is defined in [7] as

DoE=−log10(E·T),

where E=‖û−ûh‖L2(Ω), and T is time (measured in seconds). The DoE measure allows us
to gauge numerical accuracy and computational cost. Another measure we use is degrees

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0235 | Generated on 2024-12-19 03:26:09

538 M. S. Fabien / Commun. Comput. Phys., 27 (2020), pp. 513-545

of freedom per second (DoF/s) which allows us to determine how fast a discretization
processes degrees of freedom.

5.1 Manufactured solution problem revisited

We examine the manufactured solution problem given in Subsection 4.1. Fig. 14 plots the
DoE vs DoF for our solver. For each curve we fix a polynomial order and vary the mesh
spacing. From Figs. 14(a) and 14(b), it is evident that the higher order discretizations are
more efficient, as they have a higher DoE, and processes DoFs faster than the lower order
methods.

The speed ups over a serial CPU implementation is given in Fig. 15. Figs. 15(a)
and 15(b) have the same mesh spacing and polynomial orders. For k > 2, we obtain
significant speed ups for both the global and local solvers. From Fig. 15(a), we see that
the global solver speed ups range from 4× to 14×, depending on the polynomial degree
k> 2. The local solvers also receive great benefit from GPU-acceleration. Fig. 15(b) dis-
plays speed ups ranging from 3.96× to 72.91×, depending on the polynomial degree k>2.
The local solvers give rise to larger speed ups due to the fact that they are completely data
parallel.

According to Figs. 15(a) and 15(b), for k<3 there is limited or no speed up. We refine
the mesh in this case to see if our implementation performs better on a larger workload.
Indeed, Figs. 15(c) and 15(d) show that lower polynomial orders with smaller mesh spac-
ing can obtain large speed ups. Here the global solver experiences speed ups of 6.75×
to 10.31×, depending on the polynomial degree. Similarly, the local solver experiences
speed ups of 4.23× to 18.24×, depending on the polynomial degree.

103 104 105 106

1

2

3

4

5

6

DoF

D
oE

k = 1
k = 2
k = 3
k = 4
k = 5
k = 6

(a) DoE vs DoF

104 105 106 107

104

105

106

DoF

D
oF

/s

k = 1
k = 2
k = 3
k = 4
k = 5
k = 6

(b) DoF/s vs DoF

Figure 14: Time-accuracy performance analysis for the compressible manufactured solution.

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0235 | Generated on 2024-12-19 03:26:09

M. S. Fabien / Commun. Comput. Phys., 27 (2020), pp. 513-545 539

1 2 3 4 5 6

0

5

10

15

0.86 1.56

4

6.63

9.02

14.29

Polynomial degree k

S
p
ee
d
u
p
(C

P
U

ti
m
e/
G
P
U

ti
m
e)

(a) Global solver speed up (h≈0.048)

1 2 3 4 5 6

0

20

40

60

80

0.65 1.4 3.96
12.24

31.14

72.91

Polynomial degree k

S
p
ee
d
u
p
(C

P
U

ti
m
e/
G
P
U

ti
m
e)

(b) Local solver speed up (h≈0.048)

1 2 3

6

8

10

12

6.75

8.22

10.31

Polynomial degree k

S
p
ee
d
u
p
(C

P
U

ti
m
e/
G
P
U

ti
m
e)

(c) Global solver speed up (h≈0.024)

1 2 3

5

10

15

20

4.23

8.42

18.24

Polynomial degree k

S
p
ee
d
u
p
(C

P
U

ti
m
e/
G
P
U

ti
m
e)

(d) Local solver speed up (h≈0.024)

Figure 15: Speed ups for the compressible manufactured solution with respect to different polynomial orders k
and mesh spacings h.

5.2 Nearly incompressible materials problem revisited

The example in Subsection 4.1 assumes compressible materials. In this situation high
order methods are more efficient, according to our TAS spectrum analysis given in Sub-
section 5.1. On the other hand, the problem from Subsection 4.2 assumes nearly incom-
pressible materials. It is not immediately clear if high order discretizations will be advan-
tageous due to the worsening condition number from large k and λ.

The same problem from Subsection 4.2 is taken, with λ=103, where the mesh spacing
and polynomial degree are altered. From Fig. 16, we observe that the situation is different
from Subsection 5.1, particularly for k> 3. The higher order discretizations have better
DoE (Fig. 16(a)), but the discretizations for which k > 2 eventually process DoFs at a
faster rate than k= 6 (Fig. 16(b)). Moreover, for k> 3, the DoE measures are much more
competitive with one another. This is in contrast to the results in Subsection 5.1.

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0235 | Generated on 2024-12-19 03:26:09

540 M. S. Fabien / Commun. Comput. Phys., 27 (2020), pp. 513-545

104 105 106 107

0

1

2

3

4

DoF

D
oE

k = 1
k = 2
k = 3
k = 4
k = 5
k = 6

(a) DoE vs DoF

104 105 106 107
104

105

106

DoF

D
oF

/s

k = 1
k = 2
k = 3
k = 4
k = 5
k = 6

(b) DoF/s vs DoF

Figure 16: Time-accuracy performance analysis for the nearly incompressible problem (λ=103).

104 105 106 107
0

1

2

3

DoF

D
oE

k = 1
k = 2
k = 3
k = 4
k = 5
k = 6

(a) DoE vs DoF

104 105 106 107

104

105

106

DoF

D
oF

/s

k = 1
k = 2
k = 3
k = 4
k = 5
k = 6

(b) DoF/s vs DoF

Figure 17: Time-accuracy performance analysis for the nearly incompressible problem (λ=106).

In the next experiment we increase the Lamé parameter to λ = 106. Fig. 17 houses
the results. Due to round off-errors and deterioration of the multigrid preconditioner,
HDG discretizations for k > 3 are no longer more efficient. Fig. 17(a) shows that k = 2
and k = 3 have the best computational efficiency, and are more reliable than the other
discretizations. The processing of DoFs is competitive, as can be seen in Fig. 17(a). High
order is still beneficial, but now we deduce that k=3 is the most effective discretization,
since it has larger DoE and DoF/s measures.

We note that the classical performance analysis conducted in Section 3 does not pro-
vide the same insights as the TAS spectrum. The TAS measures take into account the

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0235 | Generated on 2024-12-19 03:26:09

M. S. Fabien / Commun. Comput. Phys., 27 (2020), pp. 513-545 541

accuracy of our application, which results in a holistic performance model. Although
better device utilization is observed for large k (e.g., Fig. 6(a)), this does not allow us to
infer that larger k yields the best performance for all applications.

6 Conclusions

We presented a GPU-accelerated locking-free HDG method for linear elasticity. Several
numerical experiments verify and validate the method. By conducting a traditional per-
formance analysis, we demonstrated that our implementation efficiently uses the GPU’s
computational hardware. Significant speed ups over a optimized serial CPU code were
obtained for both the global and local solvers, which dominate the run-time of our im-
plementation. In order to accomplish this, a novel treatment of the local solvers tak-
ing advantage of the sparsity pattern was examined. By leveraging the optimized GPU-
accelerated cuBLAS library, we showed how the resulting local solver algorithm can be
efficiently implemented. The performance critical areas of our global solver was analyzed
through a roofline performance model. In addition, we developed a multigrid precondi-
tioner, and assessed its algorithmic performance.

Traditional performance analysis ignores solution accuracy, and a repercussion of this
is that they may yield misleading performance assessments. We deployed the novel time-
accuracy-size spectrum, so that we could arrive at meaningful conclusions about the best
HDG discretization to select for a given application. TAS performance measures enhance
our understanding of the parallel performance of computational software.

Acknowledgments

The author would like to thank Professor R. A. Tapia for directing the XSEDE Scholars
Program (2011-2017), as well as A. Weeden and Dr. R. Panoff for fruitful discussions
that inspired this manuscript. This work used the Extreme Science and Engineering Dis-
covery Environment (XSEDE, 2016), which is supported by National Science Foundation
grant number ACI-1053575.

References

[1] M. ADAMS, M. BREZINA, J. HU, AND R. TUMINARO, Parallel multigrid smoothing: polynomial
versus Gauss–Seidel, Journal of Computational Physics, 188 (2003), pp. 593–610.

[2] E. ANDERSON, Z. BAI, C. BISCHOF, L. S. BLACKFORD, J. DEMMEL, J. DONGARRA,
J. DU CROZ, A. GREENBAUM, S. HAMMARLING, A. MCKENNEY, ET AL., LAPACK Users’
guide, SIAM, 1999.

[3] H. ANZT, S. TOMOV, M. GATES, J. DONGARRA, AND V. HEUVELINE, Block-asynchronous
multigrid smoothers for GPU-accelerated systems, Procedia Computer Science, 9 (2012), pp. 7–
16.

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0235 | Generated on 2024-12-19 03:26:09

542 M. S. Fabien / Commun. Comput. Phys., 27 (2020), pp. 513-545

[4] N. BELL, S. DALTON, AND L. N. OLSON, Exposing fine-grained parallelism in algebraic multi-
grid methods, SIAM Journal on Scientific Computing, 34 (2012), pp. C123–C152.

[5] N. BELL AND M. GARLAND, Cusp: Generic parallel algorithms for sparse matrix and graph com-
putations, Version 0.3. 0, 35 (2012).

[6] C. CANTWELL, S. SHERWIN, R. KIRBY, AND P. KELLY, From h to p efficiently: Strategy selection
for operator evaluation on hexahedral and tetrahedral elements, Computers & Fluids, 43 (2011),
pp. 23–28.

[7] J. CHANG, M. S. FABIEN, M. G. KNEPLEY, AND R. T. MILLS, Comparative study of finite
element methods using the Time-Accuracy-Size (TAS) spectrum analysis, ArXiv e-prints, (2018).

[8] J. CHANG, K. B. NAKSHATRALA, M. G. KNEPLEY, AND L. JOHNSSON, A performance spec-
trum for parallel computational frameworks that solve PDEs, Concurrency and Computation:
Practice and Experience, 30 (2018), p. e4401.

[9] G. CHEN AND X. XIE, A robust weak Galerkin finite element method for linear elasticity with strong
symmetric stresses, Computational Methods in Applied Mathematics, 16 (2016), pp. 389–408.

[10] J. CHENG, X. LIU, T. LIU, AND H. LUO, A parallel, high-order direct discontinuous Galerkin
method for the Navier-Stokes equations on 3D hybrid grids, Communications in Computational
Physics, 21 (2017), pp. 1231–1257.

[11] P. CIARLET, The Finite Element Method for Elliptic Problems, Studies in Mathematics and its
Applications, Elsevier Science, 1978.

[12] B. COCKBURN, An introduction to the discontinuous Galerkin method for convection-dominated
problems, in Advanced numerical approximation of nonlinear hyperbolic equations,
Springer, 1998, pp. 150–268.

[13] , Static condensation, hybridization, and the devising of the HDG methods, in Building
bridges: connections and challenges in modern approaches to numerical partial differen-
tial equations, Springer, 2016, pp. 129–177.

[14] B. COCKBURN, D. A. DI PIETRO, AND A. ERN, Bridging the hybrid high-order and hybridizable
discontinuous Galerkin methods, ESAIM: Mathematical Modelling and Numerical Analysis, 50
(2016), pp. 635–650.

[15] B. COCKBURN AND G. FU, Devising superconvergent HDG methods with symmetric approximate
stresses for linear elasticity by M-decompositions, IMA Journal of Numerical Analysis, 38 (2017),
pp. 566–604.

[16] B. COCKBURN, N. NGUYEN, AND J. PERAIRE, HDG methods for hyperbolic problems, in Hand-
book of Numerical Analysis, vol. 17, Elsevier, 2016, pp. 173–197.

[17] B. COCKBURN AND K. SHI, Superconvergent HDG methods for linear elasticity with weakly sym-
metric stresses, IMA Journal of Numerical Analysis, 33 (2012), pp. 747–770.

[18] D. COPPERSMITH AND S. WINOGRAD, Matrix multiplication via arithmetic progressions, Pro-
ceedings of the nineteenth annual ACM symposium on Theory of computing, (1987), pp. 1–
6.

[19] B. DALLY, Computer architecture in the many-core era, in Computer Design, 2006. ICCD 2006.
International Conference on, IEEE, 2007, pp. 1–1.

[20] D. A. DI PIETRO AND A. ERN, A hybrid high-order locking-free method for linear elasticity on
general meshes, Computer Methods in Applied Mechanics and Engineering, 283 (2015), pp. 1–
21.

[21] M. DUBINER, Spectral methods on triangles and other domains, Journal of Scientific Computing,
6 (1991), pp. 345–390.

[22] M. S. FABIEN, M. G. KNEPLEY, AND B. RIVIERE, Heterogeneous computing for a hybridizable
discontinuous Galerkin geometric multigrid method, arXiv preprint arXiv:1705.09907, (2017).

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0235 | Generated on 2024-12-19 03:26:09

M. S. Fabien / Commun. Comput. Phys., 27 (2020), pp. 513-545 543

[23] K. J. FIDKOWSKI, T. A. OLIVER, J. LU, AND D. L. DARMOFAL, p-multigrid solution of high-
order discontinuous Galerkin discretizations of the compressible navier–stokes equations, Journal of
Computational Physics, 207 (2005), pp. 92–113.

[24] D. FORTUNATO, C. H. RYCROFT, AND R. SAYE, Efficient operator-coarsening multigrid schemes
for local discontinuous Galerkin methods, ArXiv e-prints, (2018).

[25] G. FU, B. COCKBURN, AND H. STOLARSKI, Analysis of an HDG method for linear elasticity,
International Journal for Numerical Methods in Engineering, 102 (2015), pp. 551–575.

[26] A. GRUNDMANN AND H.-M. MÖLLER, Invariant integration formulas for the n-simplex by com-
binatorial methods, SIAM Journal on Numerical Analysis, 15 (1978), pp. 282–290.

[27] H. HAKULA, Y. LEINO, AND J. PITKÄRANTA, Scale resolution, locking, and high-order finite
element modelling of shells, Computer methods in applied mechanics and engineering, 133
(1996), pp. 157–182.

[28] A. HEINECKE, H. PABST, AND G. HENRY, Libxsmm: a high performance library for small matrix
multiplications, Technical Report, (2015).

[29] B. HELENBROOK, D. MAVRIPLIS, AND H. ATKINS, Analysis of“p”-multigrid for continuous
and discontinuous finite element discretizations, in 16th AIAA Computational Fluid Dynamics
Conference, 2003, p. 3989.

[30] P. HEMKER, On the order of prolongations and restrictions in multigrid procedures, Journal of
Computational and Applied Mathematics, 32 (1990), pp. 423–429.

[31] P. W. HEMKER, On the order of prolongations and restrictions in multigrid procedures, Journal of
Computational and Applied Mathematics, 32 (1990), pp. 423 – 429.

[32] J. HUANG, T. M. SMITH, G. M. HENRY, AND R. A. VAN DE GEIJN, Strassen’s algorithm
reloaded, Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, (2016), p. 59.

[33] A. HUERTA, A. ANGELOSKI, X. ROCA, AND J. PERAIRE, Efficiency of high-order elements for
continuous and discontinuous Galerkin methods, International Journal for numerical methods
in Engineering, 96 (2013), pp. 529–560.

[34] A. HUNGRIA, D. PRADA, AND F.-J. SAYAS, HDG methods for elastodynamics, Computers &
Mathematics with Applications, 74 (2017), pp. 2671–2690.

[35] H. KABARIA, A. J. LEW, AND B. COCKBURN, A hybridizable discontinuous Galerkin formula-
tion for non-linear elasticity, Computer Methods in Applied Mechanics and Engineering, 283
(2015), pp. 303–329.

[36] D. E. KEYES, L. C. MCINNES, C. WOODWARD, W. GROPP, E. MYRA, M. PERNICE, J. BELL,
J. BROWN, A. CLO, J. CONNORS, ET AL., Multiphysics simulations: Challenges and opportu-
nities, The International Journal of High Performance Computing Applications, 27 (2013),
pp. 4–83.

[37] J. KING, S. YAKOVLEV, Z. FU, R. M. KIRBY, AND S. J. SHERWIN, Exploiting batch processing
on streaming architectures to solve 2D elliptic finite element problems: A hybridized discontinuous
Galerkin (HDG) case study, Journal of Scientific Computing, 60 (2014), pp. 457–482.

[38] M. G. KNEPLEY, K. RUPP, AND A. R. TERREL, Finite element integration with quadrature on the
GPU, arXiv preprint arXiv:1607.04245, (2016).

[39] T. KOORNWINDER, Two-variable analogues of the classical orthogonal polynomials, in Theory and
application of special functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin,
Madison, Wis., 1975), Academic Press New York, 1975, pp. 435–495.

[40] M. LARSON AND F. BENGZON, The Finite Element Method: Theory, Implementation, and Appli-
cations, Texts in Computational Science and Engineering, Springer Berlin Heidelberg, 2013.

[41] C. L. LAWSON, R. J. HANSON, D. R. KINCAID, AND F. T. KROGH, Basic linear algebra sub-

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0235 | Generated on 2024-12-19 03:26:09

544 M. S. Fabien / Commun. Comput. Phys., 27 (2020), pp. 513-545

programs for fortran usage, ACM Transactions on Mathematical Software (TOMS), 5 (1979),
pp. 308–323.

[42] I. MASLIAH, A. ABDELFATTAH, A. HAIDAR, S. TOMOV, M. BABOULIN, J. FALCOU, AND

J. DONGARRA, High-performance matrix-matrix multiplications of very small matrices, European
Conference on Parallel Processing, (2016), pp. 659–671.

[43] N. C. NGUYEN AND J. PERAIRE, Hybridizable discontinuous Galerkin methods for partial dif-
ferential equations in continuum mechanics, Journal of Computational Physics, 231 (2012),
pp. 5955–5988.

[44] N. C. NGUYEN, J. PERAIRE, AND B. COCKBURN, A hybridizable discontinuous Galerkin method
for Stokes flow, Computer Methods in Applied Mechanics and Engineering, 199 (2010),
pp. 582–597.

[45] J. NICKOLLS AND W. J. DALLY, The GPU computing era, IEEE micro, 30 (2010).
[46] NVIDIA, cuBLAS library, NVIDIA Corporation, Santa Clara, California, 15 (2008), p. 31.
[47] , CUDA. https://developer.nvidia.com/cuda-zone, 2008. Accessed: 2017-05-30.
[48] M. A. OLSHANSKII AND E. E. TYRTSHNIKOV, Iterative methods for linear systems: theory and

applications, vol. 138, SIAM, 2014.
[49] L. N. OLSON, J. SCHRODER, AND R. S. TUMINARO, A new perspective on strength measures in

algebraic multigrid, Numerical Linear Algebra with Applications, 17 (2010), pp. 713–733.
[50] R. G. OWENS, Spectral approximations on the triangle, Proceedings of the Royal Society of

London A: Mathematical, Physical and Engineering Sciences, 454 (1998), pp. 857–872.
[51] J. PRORIOL, Sur une famille de polynomes á deux variables orthogonaux dans un triangle, Comptes

rendus hebdomadaires des seances de l’Academie des sciences, 245 (1957), pp. 2459–2461.
[52] H. QI, L.-H. WANG, AND W.-Y. ZHENG, On locking-free finite element schemes for three-

dimensional elasticity, Journal of Computational Mathematics, (2005), pp. 101–112.
[53] W. QIU, J. SHEN, AND K. SHI, An HDG method for linear elasticity with strong symmetric

stresses, arXiv preprint arXiv:1312.1407, (2013).
[54] X. ROCA, N. C. NGUYEN, AND J. PERAIRE, GPU-accelerated sparse matrix-vector product for a

hybridizable discontinuous Galerkin method, in 49th AIAA Aerospace Sciences Meeting includ-
ing the New Horizons Forum and Aerospace Exposition, 2011, p. 687.

[55] Y. SAAD, Iterative methods for sparse linear systems, vol. 82, siam, 2003.
[56] R. SEVILLA, M. GIACOMINI, AND A. HUERTA, A locking-free face-centred finite volume (FCFV)

method for linear elasticity, arXiv preprint arXiv:1806.07500, (2018).
[57] R. SEVILLA, M. GIACOMINI, A. KARKOULIAS, AND A. HUERTA, A super–convergent hy-

bridisable discontinuous Galerkin method for linear elasticity, arXiv preprint arXiv:1802.02123,
(2018).

[58] S.-C. SOON, B. COCKBURN, AND H. K. STOLARSKI, A hybridizable discontinuous Galerkin
method for linear elasticity, International journal for numerical methods in engineering, 80
(2009), pp. 1058–1092.

[59] C. W. O. U. TROTTENBERG AND A. SCHÜLLER, Multigrid, Academic Press, 2001.
[60] W. L. WAN, T. F. CHAN, AND B. SMITH, An energy-minimizing interpolation for robust multi-

grid methods, SIAM Journal on Scientific Computing, 21 (1999), pp. 1632–1649.
[61] S. WANDZURAT AND H. XIAO, Symmetric quadrature rules on a triangle, Computers & Math-

ematics with Applications, 45 (2003), pp. 1829–1840.
[62] R. WANG AND R. ZHANG, A weak Galerkin finite element method for the linear elasticity problem

in mixed form, Journal of Computational Mathematics, 36 (2018), pp. 469–491.
[63] P. WESSELING, An introduction to multigrid methods, Pure and applied mathematics, John

Wiley & Sons Australia, Limited, 1992.

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0235 | Generated on 2024-12-19 03:26:09

M. S. Fabien / Commun. Comput. Phys., 27 (2020), pp. 513-545 545

[64] S. WILLIAMS, A. WATERMAN, AND D. PATTERSON, Roofline: an insightful visual performance
model for multicore architectures, Communications of the ACM, 52 (2009), pp. 65–76.

[65] V. V. WILLIAMS, Multiplying matrices in o(n2.373) time, Technical Report, (2014).
[66] Q. ZHANG, C. ZHU, AND M. ZHU, Three-dimensional numerical simulation of droplet evapora-

tion using the lattice Boltzmann method based on GPU-CUDA accelerated algorithm, CCommuni-
cations in Computational Physics, 23 (2018), pp. 1150–1166.

[67] J. ZHAO AND H. TANG, Runge-Kutta Central Discontinuous Galerkin Methods for the Special
Relativistic Hydrodynamics, Communications in Computational Physics, 22 (2017), pp. 643–
682.

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0235 | Generated on 2024-12-19 03:26:09

