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Abstract. Stochastic quantities of interest are expanded in generalized polynomial
chaos expansions using stochastic Galerkin methods. An application to hyperbolic dif-
ferential equations does in general not transfer hyperbolicity to the coefficients of the
truncated series expansion. For the Haar basis and for piecewise linear multiwavelets
we present convex entropies for the systems of coefficients of the one-dimensional
shallow water equations by using the Roe variable transform. This allows to obtain
hyperbolicity, wellposedness and energy estimates.
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1 Introduction

Wellposedness is an important property that systems of partial differential equations
(PDEs) should fulfil. Wellposedness means the solution exists, it is unique and the so-
lution depends continuously on initial conditions [35]. Classical solutions to most hy-
perbolic conservation laws have this property, which explains, why these equations are
widely used to model fluid dynamics [49] and other applications like traffic flow [50].
Most physically motivated systems are endowed with an entropy that describes the de-
cay of energy, which in turn guarantees well-posed classical solutions [9,29,45]. A famous
example is the physical entropy for Euler and shallow water equations, see e.g. [18].

Classical solutions, however, exist in finite time only up to the possible occurrence of
shocks [65]. Therefore, weak solutions are considered which are not necessarily unique.
Existence and uniqueness of bounded weak entropy solutions have been shown in [45]
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using entropy-entropy flux pairs. All of these entropy-entropy flux pairs must satisfy
an entropy inequality. In the scalar case a strictly convex flux function and one entropy-
entropy flux pair is sufficient to characterize the entropy solution uniquely [47, 59]. This
result could not been extended to arbitrary systems, when entropies rarely exist or remain
unknown [47]. A single entropy-entropy flux pair, however, manages to weed out all but
one weak solution, as long as a classical solution exists [18]. Thus, an entropy transfers
the wellposedness of classical solutions to a weak formulation.

When initial data are not known exactly, but are given by their probability law or
by statistical moments, the deterministic entropy concepts should be extended to the
stochastic case. A mathematical framework for random entropy solutions of scalar ran-
dom hyperbolic equations is developed in [55, 75]. It is shown that existing statistical
moments in the initial conditions are transferred to the solution. In this non-intrusive
point of view, first pointwise entropy solutions are determined, then the statistics of inter-
est are computed. If there is only interest in the statistics, non-intrusive methods have
been proven successful in previous works [1, 3, 13, 17, 56, 66, 68, 73, 74, 78] and are often
preferred in practice, since deterministic solvers can be used. In particular for shallow
water equations, results are available in several spatial and random dimensions [57].

Desirable deterministic schemes are in smooth regions high-order accurate, but can
also resolve singularities in an essentially nonoscillatory (ENO) fashion. WENO schemes
consist of a weighted combination of local reconstructions on different stencils. Some
schemes allow unstructured grid in higher dimensions [37, 69]. In particular for balance
laws, centered CWENO schemes [15, 16, 43] can reconstruct also the source term.

In contrast to non-intrusive methods, we investigate the intrusive stochastic Galerkin
method. Stochastic processes are represented as orthogonal functions, for instance or-
thogonal polynomials and multiwavelets. These representations are known as general-
ized polynomial chaos (gPC) expansions [7, 25, 30, 79, 82]. Expansions of the stochastic
input are substituted into the governing equations and they are projected to obtain deter-
ministic evolution equations for the gPC coefficients. The applications of this procedure
have been proven successful for diffusion [22, 83] and kinetic equations [8, 38, 42, 70, 85].
In general, results for hyperbolic systems are not available [20,21,53], since desired prop-
erties like hyperbolicity and the existence of entropies are not transferred to the intrusive
formulation. A problem is posed by the fact that the deterministic Jacobian of the pro-
jected system differs from the random Jacobian of the original system and therefore not
even real eigenvalues, which are necessary for hyperbolicity, are guaranteed in general.

In particular for a stochastic Galerkin formulation of shallow water equations, the
loss of hyperbolicity and hence the loss of all entropy-entropy flux pairs is proven in [21,
Prop. 2]. Also stochastic Galerkin formulations for isothermal Euler equations are in
general not hyperbolic [24, 40].

So far, a serious problem for both non- and intrusive methods remains the conver-
gence in the stochastic space. Methods are desirable that allow estimates and conver-
gence results for a smooth dependency on the stochastic input. Convergence results in
previous works are based on smoothness assumptions, although solutions to hyperbolic
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differential equations admit discontinuities in both physical and random space. Con-
vergence results for smooth solutions of the linear wave equation with random veloc-
ity have been established for stochastic Galerkin [31] as well as stochastic collocation
methods [58, 84]. For the nonlinear Burgers’ equation an entropy concept is used to ob-
tain convergence results [21] and it is used for an a posteriori error estimate [27], which
enables adaptivity also in the stochastic space. This ansatz, however, has not been ex-
tended to stochastic Galerkin formulations of nonlinear hyperbolic systems and it is valid
for smooth solutions only. Convergence of weak solutions remains still an open ques-
tion [21].

Still, stochastic Galerkin methods applied to hyperbolic systems is an active field of
research. At least initial values can be represented in an optimal way. Furthermore, the
knowledge of the whole random space is available in contrast to non-intrusive meth-
ods, where only the solution corresponding to a particular sample or quadrature point
is available. This allows adaptivity in the stochastic space [5, 27] and numerical schemes
were constructed that are well-balanced at any location in the random space [41]. A non-
intrusive method can enforce this property only at the collocation nodes.

It is possible for some systems to first transform the partial differential equations into
non-conserved variables and then apply the Galerkin method. See [80] for quasilinear
systems, [20, 21] for entropy variables, [24, 61] for Euler equations using the Roe variable
transform from [67]. Also, formulations of hyperbolic systems with eigenvectors that
are independent of the uncertainty remain hyperbolic [77]. However, for classical fluid-
dynamic equations, like the shallow water equations, eigenvectors are stochastic.

Even if the Jacobian has real eigenvalues, which implies unique classical solutions, the
system may not be well-posed in the sense that the solution does not depend on initial
conditions in a stable way. For this property at least a complete set of eigenvectors must
exist. Eigenvalues of most physically motivated hyperbolic systems are separated. Then,
there is a complete set of eigenvectors, which implies wellposedness [71]. This argument,
however, cannot be used for stochastic Galerkin formulations, when eigenvalues are no
more separated.

So far, general results on wellposedness can be established for the gPC systems of
scalar conservation laws only [10, 31, 41, 60, 64], since the resulting Jacobian is symmet-
ric and hence diagonalizable with real eigenvalues and a complete set of eigenvectors.
In fact, an entropy-entropy flux pair exists for these symmetric systems [28]. This well-
posedness result can be extended to hyperbolic systems that do not have necessarily a
symmetric Jacobian, but admit an entropy. Then, the system is symmetrizable and hence
classical solutions are well-posed [9, 28, 29]. Therefore, an expansion in entropy vari-
ables [20, 21] transfers the entropy to the stochastic Galerkin formulation. An entropy-
entropy flux pair for the Roe variables, however, has not been established, yet. There are
attempts to make the transforms for entropy variables more competitive [46], but Roe
variables lead to numerically efficient and stable transforms [61].

This research gap makes the entropy variables and Roe variables be complementary.
Furthermore, entropy variables can be used for arbitrary gPC expansions. The use of Roe
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variables is so far restricted to a certain class only, which we will call AgPC bases. This
class includes the Wiener-Haar basis and linear multiwavelets. These wavelet expansions
are motivated by a robust expansion for solutions that depend on the stochastic input in
a non-smooth way and are used for stochastic multiresolution as well as adaptivity in
the stochastic space [2,5,6,44,54,63,76]. This restriction could be weakened in the case of
isothermal Euler equations [24] only.

In general, entropy solutions exist on finite time domains only. For deterministic Euler
and shallow water equations, which have distinct eigenvalues and genuinely nonlinear
or linearly degenerate characteristic fields, an entropy solution exists for all fixed time
domains as long as the total variation of initial values is sufficiently small [4, Th. 7.1].
Although the assumption of genuine nonlinearity can be weakened [4, 51, 52], the eigen-
values of stochastic Galerkin formulations may coincide and the total variation of initial
values may be not sufficiently small. Therefore, we expect that weak solutions exist in
finite time only and we study the following setting:

A weak formulation on a bounded time domain [0,T) is considered, when an entropy solution
exists in the weak sense. If additionally a classical solution exists it should be well-posed also in the
weak sense. Furthermore, the solution should coincide in the deterministic case with a physically
relevant entropy solution.

The main contribution of this paper is to close a gap between the Roe variable and
entropy variable transform by introducing the required entropy-entropy flux pair for a
Roe variable based stochastic Galerkin formulation of shallow water equations.

These Roe variables are used as auxiliary variables that depend in a conservative
formulation on the gPC modes of the physical states and can be obtained as stochastic
Galerkin root. First, we define the transform to these variables as an energy minimiza-
tion problem to obtain a stable and bijective transform. Then, we consider a hyperbolic
stochastic Galerkin formulation and endow this system with an entropy. Our main re-
sults are restricted to AgPC bases. Hence, we state examples and an approach to deter-
mine if a basis belongs to this set.

To make the presented formulation of shallow water equations more competitive to
non-intrusive methods, we quantify truncation errors at least for smooth solutions by
using the similar entropy framework from [18, 21, 26, 27].

We illustrate numerically theoretical results for the Wiener-Haar expansion. The re-
sults show the hyperbolic character of the system, the smoothness properties of truncated
gPC expansions and wellposedness, which follows from the decay of entropies. We ap-
plied a third-order central, weighted, essentially nonoscillatory (CWENO) reconstruction
from [16], since it enables also an higher-order reconstruction of the source term.

2 Cauchy problem and weak solutions

We briefly recall basic results from [4, 18, 48, 49]. A function
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y : [0,T)×R→R
n, (t,x) 7→y(t,x)

is a weak solution to the Cauchy problem

yt+ f (y)x =0 with y(0,x)=I(x) for x∈R (2.1)

if the map t 7→y(t,·) is continuous with values in L1
loc, the initial condition is satisfied and

the solution satisfies

∫ T

0

∫

R

[
y(t,x)ϕt(t,x)+ f

(
y(t,x)

)
ϕx(t,x)

]
dxdt=0

for every C1-function ϕ with compact support contained in the open strip (0,T)×R,
where the integral is interpreted componentwise. Given a strictly convex entropy η with
entropy flux µ, a weak solution is called η-admissible if the entropy inequality

η(y)t+µ(y)x ≤0 (2.2)

is satisfied in the distributional sense. For all non-negative testfunctions we have

∫ T

0

∫

R

[
η
(
y(t,x)

)
ϕt(t,x)+µ

(
y(t,x)

)
ϕx(t,x)

]
dxdt≥0.

For this homogeneous system the entropy and the entropy flux are smooth functions
defined on an open ball H⊂Rn [18] and satisfy the compatibility condition

Dyµ(y)=Dyη(y)Dy f (y). (2.3)

3 Stochastic Galerkin and Roe variable transform

Similar to [19, 32, 53, 62, 72, 81] we extend the Cauchy problem (2.1) to have initial con-
ditions depending on a possibly multidimensional random parameter ξ, which we call
similar to [53] germ. We consider the weak formulation

∫ T

0

∫

R

E

[(
y(t,x;ξ)ϕt(t,x)+ f

(
y(t,x;ξ)

)
ϕx(t,x)

)
φk(ξ)

]
dxdt=0

for all k=0,··· ,K, where the orthogonal functions φk form a basis of

L
2(Ω,P) :=

{
Z
∣∣∣ Z : Ω→R measurable, ‖Z‖<∞

}

with 〈Z1,Z2〉 :=
∫

Z1Z2dP.

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2019-0047 | Generated on 2024-12-19 10:39:11



644 S. Gerster and M. Herty / Commun. Comput. Phys., 27 (2020), pp. 639-671

We introduce a generalized polynomial chaos (gPC) as a set of orthogonal sub-
spaces Ŝk ⊂L2(Ω,P) with

SK :=
K⊕

k=0

Ŝk → L
2(Ω,P) for K→∞.

We refer to an orthogonal basis of SK as a gPC basis {φk(ξ)}K
k=0 with germ ξ∼P. We

assume y(t,x;·)∈L2(Ω,P) and approximate for any fixed (t,x) the solution by

GK[y](t,x;ξ) :=
K

∑
k=0

ŷk(t,x)φk(ξ), ŷk(t,x) :=

〈
y(t,x;·),φk(·)

〉

‖φk‖2
, (gPC)

where GK denotes the projection operator of the stochastic process y(t,x;ξ) onto the gPC
basis of degree K∈N0. Using a multi-index notation k :=(k1,··· ,kM)∈K with an index
set K⊆NM

0 , we may extend definition (gPC) to the multidimensional case as

GK[y](t,x;ξ) := ∑
k∈K

ŷk(t,x)φk(ξ) with φk(ξ) :=φk1
(ξ1)···· ·φkM

(ξM).

In the following, we use the notation (gPC) with K+1= |K|. The expansion converges in
the sense

∥∥GK[y](t,x;·)−y(t,x;·)
∥∥→0 for K→∞ [7, 14, 23]. We will assume normed basis

functions with ‖φk‖=1. Then, the Galerkin product is defined as

ĜK[y,z](t,x;ξ) :=
K

∑
k=0

(ŷ∗ ẑ)k(t,x)φk(ξ)

with (ŷ∗ ẑ)k(t,x) :=
K

∑
i,j=0

ŷi(t,x)ẑj(t,x)
〈

φiφj,φk

〉
.

The third and fourth moment are approximated by

Ĝ(ℓ)
k [y](t,x;ξ) :=

K

∑
k=0

ŷℓ∗k (t,x)φk(ξ)

with ŷ3∗ :=
(
(ŷ∗ŷ)∗ŷ

)
and ŷ4∗ :=

(
(ŷ∗ŷ)∗(ŷ∗ŷ)

)
.

(3.1)

Similar to [61, 62], we express these terms with the symmetric matrix

P(ŷ) :=
K

∑
ℓ=0

ŷℓMℓ with Mℓ :=
(
〈φℓ,φiφj〉

)
i,j=0,···,K

(3.2)

such that ŷ∗ ẑ=P(ŷ)ẑ. The Galerkin product is symmetric, but not associative [19, 72],
i.e. (ŷ∗ ẑ)∗ q̂ 6= ŷ∗(ẑ∗ q̂). An intuitive explanation would be the truncation errors that
arise from disregarding the components of the product (yz) which are orthogonal to SK.
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Therefore, the definitions (3.1) are rather arbitrary and we refer the interested reader
to [19, 53], where other approximations of the moments are discussed. In particular, the
choice (3.1) allows for an extension of desired properties, e.g. hyperbolicity and entropy,
to the stochastic case. To this end we adopt the idea of Roe variables [48, 61, 67] by stat-
ing a precise characterization in Lemma 3.1, which allows an interpretation as an energy
minimization.

Definition 3.1 (Roe Variables). With velocity u(y) := q/h as auxiliary variable the Roe

variables are defined as ω :=(α,β) :=
(√

h,
√

hu(y)
)

and the gPC modes as ω̂ :=(α̂, β̂)
for α̂∈H+ defined on the set

H
+ :=

{
α̂∈R

K+1
∣∣∣ P(α̂) is strictly positive definite

}
.

The mapping between Roe and conserved variables is

Y : R
+×R → R

+ ×R, ω̂ 7→
(

α2

αβ

)
=y for K=0,

Ŷ : H
+×R

K+1 →
(
R

+×R
K
)
×R

K+1, ω̂ 7→
(

α̂∗α̂

α̂∗ β̂

)
= ŷ for K∈N.

Note that the expected water height ĥ0 =(α̂∗α̂)0=‖α̂‖2
2 >0 is positive. The inverse

mapping Ŷ−1 involves the Galerkin square root of gPC modes ĥ∈RK+1, which is intro-
duced e.g. in [53] as the solution of the nonlinear system α̂∗α̂= ĥ. It is already remarked
in [19] that the representation of positive physical quantities is difficult. To illustrate the
point, we consider an expansion with Hermite polynomials for K=1. The solutions read
as

α̂+ :=
1

2

(√
ĥ0+ ĥ1+

√
ĥ0− ĥ1√

ĥ0+ ĥ1−
√

ĥ0− ĥ1

)
, α̂− :=−1

2

(√
ĥ0+ ĥ1+

√
ĥ0− ĥ1√

ĥ0+ ĥ1−
√

ĥ0− ĥ1

)
,

α̃(1) :=
1

2

(√
ĥ0+ ĥ1−

√
ĥ0− ĥ1√

ĥ0+ ĥ1+
√

ĥ0− ĥ1

)
, α̃(2) :=−1

2

(√
ĥ0+ ĥ1−

√
ĥ0− ĥ1√

ĥ0+ ĥ1+
√

ĥ0− ĥ1

)
.

We observe that the solution of the nonlinear system α̂∗α̂= ĥ may neither be unique nor
real, which is similar to the deterministic case. In previous works [11,12,24] it is assumed
that the inverse P(α̂) exists. Then, the implicit function theorem guarantees invertibility
at least locally. We introduce in Lemma 3.1 a more precise global characterization, which
is based on the following observations:

(i) Let a deterministic state with ĥ0>0, ĥ1 =0 be given. The solutions α̃(1) and α̃(2) yield
stochastic expansions, which are not meaningful. The solution α̂+ gives the positive
and α̂− the negative root.

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2019-0047 | Generated on 2024-12-19 10:39:11



646 S. Gerster and M. Herty / Commun. Comput. Phys., 27 (2020), pp. 639-671

(ii) The matrix P(α̂+) is positive definite and P(α̂−) is negative definite. Both solutions
are related by P(α̂−)=−P(α̂+). On the other hand, the solutions α̃(1), α̃(2) yield
indefinite matrices.

(iii) If the variance ĥ2
1 is sufficiently large, there is no real valued solution.

Lemma 3.1 generalizes these observations for arbitrary expansions by identifying the
positive square root as the unique minimum of a strictly convex function.

Lemma 3.1 (Stochastic Galerkin Square Root). Let a state ĥ∈R+×RK be given such that
there is α̂∈H+ satisfying α̂∗α̂= ĥ. Then, the minimum

α̂+ :=argmin
α̂∈H+

{
ηĥ(α̂)

}
of the convex function ηĥ(α̂) :=

α̂TP(α̂)α̂

3
− ĥTα̂

on the convex set H+ is unique and it is a solution of stochastic Galerkin square roots,
i.e. α̂+∈

{
α̂∈RK+1

∣∣α̂∗α̂= ĥ
}

.

Proof. The set H+ is convex, since for arbitrary α̂, β̂∈H+ the matrix

P
(

λα̂+(1−λ)β̂
)
=

K

∑
k=0

(
λα̂+(1−λ)β̂

)
k
Mk =λP(α̂)+(1−λ)P(β̂)

is strictly positive definite for all λ∈ [0,1] as a sum of strictly positive definite matrices.
The gradient of the auxiliary function η̃(α̂) := 1

3 α̂TP(α̂)α̂ satisfies

3∇α̂η̃(α̂)=∇α̃

[ K

∑
k=0

α̃kα̂TMkα̂

]∣∣∣∣
α̃=α̂

+
K

∑
k=0

α̂k∇α̂

[
α̂TMkα̂

]

=
(

α̂TMkα̂
)

k=0,···,K
+2

K

∑
k=0

α̂kMkα̂

=
(

α̂2∗
k

)
k=0,···,K

+2P(α̂)α̂

=3α̂∗α̂.

Since the Hessian ∇2
α̂ηĥ(α̂)=2P(α̂) is strictly positive definite, the function ηĥ(α̂) is

strictly convex on H+ and its unique minimum is attained for

0=∇α̂ηĥ(α̂)= α̂+∗α̂+− ĥ ⇔ α̂+∗α̂+= ĥ.

This completes the proof.

Fig. 1 shows the sets H± in terms of α̂, where H− denotes states of a negative definite
matrix P(α̂). For given ĥ the function ηĥ(α̂), introduced in Lemma 3.1, and contours are
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Figure 1: Contour plot of the function ηĥ(α̂). Solutions α̂+=(0.8,−0.5)T and α̂−=(−0.8,0.5)T

for ĥ=(0.89,−0.8)T.

plotted in the third dimension. The local extrema, which are projected on the (α̂0,α̂1)-
plane, are the square roots. Contours illustrate that extrema are unique on the sets H±

only. Note that we do not claim that a solution α̂∈H+ with α̂∗α̂= ĥ exists. Lemma 3.1 is
only a uniqueness result and we refer the interested reader to [24, Sec. 4], where existence
has been discussed.

Remark 3.1 (Burgers’ Equation). The stochastic Galerkin method applied to the Burgers’

equation with flux function f (α) := α2

2 leads to the projected system

α̂t+ f̂ (α̂)x =0 for f̂ (α̂) :=
α̂∗α̂

2
and Jacobian Dα̂ f̂ (α̂)=P(α̂). (3.3)

Since the Jacobian is symmetric, the choice η(α̂)=‖α̂‖2
2 gives an entropy [28, Ex. 3.2].

Furthermore, the choices
(

ηĥ(α̂),µĥ(α̂)
)

:=
(

η̃(α̂),µ̃(α̂)
)
−
(

ĥTα̂,ĥT α̂∗α̂

2

)

with
(

η̃(α̂),µ̃(α̂)
)

:=

(
α̂TP(α̂)α̂

3
,
α̂TP2(α̂)α̂

4

)

are entropy-entropy flux pairs on the convex set H+ for all ĥ ∈ RK+1. To see this, we
calculate

∇α̂η̃(α̂)= α̂∗α̂, ∇2
α̂ηĥ(α̂)=2P(α̂), ∇α̂µ̃(α̂)=

1

2
∇α̂

[
P(α̂)α̂

]
P(α̂)α̂= α̂3∗.

The corresponding entropy flux satisfies the compatibility condition

Dα̂µĥ(α̂)=Dα̂η̃(α̂)Dα̂ f̂ (α̂)− ĥTP(α̂)=Dα̂ηĥ(α̂)Dα̂ f̂ (α̂).

Hence, the relation to Burgers’ equation allows to interpret the stochastic Galerkin square
root as a minimization of an energy.
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4 Shallow water equations

We parameterize the shallow water equations by the germ ξ

∂

∂t

(
h(t,x;ξ)
q(t,x;ξ)

)
+

∂

∂x

(
q(t,x;ξ)

q2(t,x;ξ)
h(t,x;ξ) +

1
2 gh2(t,x;ξ)

)
=0 P-a.s. (W(ξ))

where the conserved variables are height h, momentum q and g denotes the gravitational
constant. The system (W(ξ)) can equivalently be represented with Roe variables, i.e.

∂

∂t

(
α2(t,x;ξ)

(αβ)(t,x;ξ)

)
+

∂

∂x

(
(αβ)(t,x;ξ)

β2(t,x;ξ)+ 1
2 gα4(t,x;ξ)

)
=0 P-a.s. (R(ξ))

We substitute the truncated gPC expansions into the systems (W(ξ)) and (R(ξ)). To
obtain a system of equations for the gPC coefficients we make the residues be orthogonal
to the basis functions, i.e.

〈
∂

∂t

(GK[h](t,x;ξ)
GK[q](t,x;ξ)

)
+

∂

∂x

( GK[q](t,x;ξ)
G2

K [q](t,x;ξ)
GK [h](t,x;ξ)

+ 1
2 gG2

K[h](t,x;ξ)
)
)

, φk(ξ)

〉
=0, (4.1)

〈
∂

∂t

(
ĜK[α,α](t,x;ξ)
ĜK[α,β](t,x;ξ)

)
+

∂

∂x

(
ĜK[α,β](t,x;ξ)

ĜK[β,β](t,x;ξ)+ 1
2 gĜ(4)

K [α](t,x;ξ)

)
,φk(ξ)

〉
=0. (4.2)

It is shown in [21] that Eq. (4.1) leads to a non-hyperbolic system due to the term q2/h.
Similarly for isothermal Euler equations, a stochastic Galerkin method that is only based
on conserved variables does not preserve hyperbolicity [24,40]. This issue can be circum-
vented by introducing Roe variables, which preserve the symmetry of the term β2. The
gPC modes of the formulation (4.2) are described by the system

(
α̂∗α̂

α̂∗ β̂

)

t

+

(
α̂∗ β̂

β̂∗ β̂+ 1
2 g (α̂∗α̂)∗(α̂∗α̂)

)

x

=0, (R̂K)

which we will endow with an entropy. We reformulate it in terms of the conserved
variables ŷ= Ŷ(ω̂) to obtain the conservative formulation ŷt+ f̂ (ŷ)=0 with flux func-
tion f̂ (ŷ) := f̂1(ŷ)+ f̂2(ŷ) for

f̂1(ŷ) :=

(
q̂

1
2 gĥ∗ĥ

)
and f̂2(ŷ) := f̃2

(
Ŷ−1(ŷ)

)
:=

(
0

β̂∗ β̂

)
. (4.3)

Note that the first part f1(ŷ) of the flux in Eq. (4.3) is expressed in terms of conserved vari-
ables alone, which motivates the choice of the 4-th moment (3.1). Furthermore, we need
specific properties of a certain class of basis functions, which is introduced in Lemma 4.1.

Lemma 4.1. The following properties are equivalent for the matrix P(α̂), which is defined in
Eq. (3.2):
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(A1) The precomputed matrices Mℓ and Mk commute for all ℓ,k=0,··· ,K.

(A2) The matrices P(α̂) and P(β̂) commute for all α̂, β̂∈RK+1.

(A3) There is an eigenvalue decomposition P(α̂)=VDP(α̂)VT with constant eigenvectors.

Proof. Properties (A2) and (A3) are equivalent, since symmetric matrices are simultane-
ously diagonalizable if and only if they are commutative [36]. If property (A1) holds, we
have

P(α̂)P(β̂)=
K

∑
i,j=0

(α̂iMi)(β̂ jMj)=
K

∑
j,i=0

(β̂ jMj)(α̂iMi)=P(β̂)P(α̂).

In turn, if property (A2) holds, the i, j-th unit vectors yield

MiMj=P(ei)P(ej)=P(ej)P(ei)=MjMi.

This completes the proof.

Property (A1) is easily verified numerically, property (A2) is needed as technical
assumption and property (A3) allows an efficient numerical implementation, since the
eigenvalue decomposition of the matrix P(α̂) is stable and cheap. In the following, we
will

denote gPC bases that satisfy the properties (A1)–(A3) as AgPC bases.

These properties, however, are in general not satisfied. Counterexamples are gPC bases
with Legendre and Hermite polynomials. The assumption of constant eigenvectors is
borrowed from [61]. There, it is shown for a one-dimensional germ, that the Wiener-Haar
basis and piecewise linear multiwavelets form AgPC bases. Under these assumption we
can prove the following Lemma. Its proof is moved to the appendix.

Lemma 4.2. Define the variables û(ω̂) :=P−1(α̂)β̂, û2(ω̂) :=P2(ω̂)β̂ and the matrices
P1(ω̂) :=P(β̂)P−1(α̂), P2(ω̂) :=P(β̂)P−2(α̂). Then, AgPC bases satisfy the equalities

ûT(ω̂)P(ĥ)=(α̂∗ β̂)T, (4.4)

Dω̂

[
β̂TP1(ω̂)β̂

]
=
(
− β̂TP2

1 (ω̂),3β̂TP1(ω̂)
)

, (4.5)

Dω̂

[
(α̂∗α̂)T(α̂∗ β̂)

]
=
(

3α̂TP(α̂)P(β̂),α̂TP2(α̂)
)

, (4.6)

Dω̂

[
û(ω̂)

]
=
(
−P2(ω̂),P−1(α̂)

)
, (4.7)

Dω̂

[
P2(ω̂)β̂

]
=
(
−2P1(ω̂)P2(ω̂),2P2(ω̂)

)
. (4.8)

Finally, we state an entropy-entropy flux pair for shallow water equations in our main
theorem.
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Theorem 4.1 (Shallow Water Equations). Let an AgPC basis be given, which satisfies the
properties (A1)–(A3), and let states in the open, admissible set

H :=
{

ŷ :=(ĥ,q̂)T∈
(
R

+×R
K
)
×R

K+1
∣∣∣ α̂∈H

+ for (α̂, β̂)T= Ŷ−1(ŷ)
}

be given. Then, the Jacobian of the flux function (4.3) is

Dŷ f̂ (ŷ)=

(
O 1

gP(ĥ)−P2
1 (ω̂) 2P1(ω̂)

)

for ω̂=(α̂, β̂) and P1(ω̂)=P(β̂)P−1(α̂).

The eigenvalue decomposition Dŷ f̂ (ŷ)=
[
V T̂(ω̂)

]
Λ̂(ω̂)

[
V T̂(ω̂)

]−1
reads as

Λ̂±(ω̂) :=DP(β̂)D−1
P (α̂)±

√
gDP (ĥ), Λ̂(ω̂) :=diag

{
Λ̂+(ω̂),Λ̂−(ω̂)

}
,

T̂(ω̂) :=

(
1 1

Λ̂+(ω̂) Λ̂−(ω̂)

)
, V :=diag

{
V,V

}
.

An entropy-entropy flux pair is (η,µ)(ŷ) :=
(
η1+η2,µ1+µ2

)
(ŷ) with

η1(ŷ) :=
g

2
‖ĥ‖2

2 and η2(ŷ) := η̃2

(
Ŷ−1(ŷ)

)
:=

1

2
‖β̂‖2

2,

µ1(ŷ) := gĥT q̂ and µ2(ŷ) := µ̃2

(
Ŷ−1(ŷ)

)
:=

1

2
β̂TP1(ω̂)β̂.

Proof. The Jacobian of the flux function and the Jacobian of the entropy read as

Dŷ f̂ (ŷ)=Dŷ f̂1(ŷ)+Dω̂ f̃2(ω̂)[Dω̂Ŷ ]−1(ω̂)

=

(
O 1

gP(ĥ) O

)
+

(
O O

O 2P(β̂)

)(
1
2P−1(α̂) O

− 1
2P2(ω̂) P−1(α̂)

)

=

(
O 1

gP(ĥ)−P2
1 (ω̂) 2P1(ω̂)

)
,

Dŷη(ŷ)=Dŷη1(ŷ)+Dω̂ η̃2(ω̂)[Dω̂Ŷ ]−1(ω̂)=(gĥT,0)+(0, β̂T)[Dω̂Ŷ ]−1(ω̂)

=
(

gĥT− 1

2
β̂TP2(ω̂), β̂TP−1(α̂)

)
.

The compatibility condition (2.3) is equivalent to

Dŷη(ŷ)Dŷ f̂ (ŷ)=Dŷµ(ŷ)=Dω̂µ̃(ω̂)[Dω̂Ŷ ]−1(ω̂) for µ̃(ω̂) :=µ
(
Ŷ(ω̂)

)
.
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This holds due to Lemma 4.2, which yields
(

Dŷη(ŷ)Dŷ f̂ (ŷ)
)
Ŷ(ω̂)

=
(

gûT(ω̂)P(ĥ)−ûT(ω̂)P2
1 (ω̂), gĥT+

3

2
β̂TP2(ω̂)

)
Ŷ(ω̂)

=
(

g(α̂∗ β̂)T−ûT(ω̂)P2
1 (ω̂), gĥT+

3

2
β̂TP2(ω̂)

)
Ŷ(ω̂)

=
(

3g(ĥ∗ β̂)T− 1

2
β̂TP2

1 (ω̂), g(ĥ∗α̂)T+
3

2
β̂TP1(ω̂)

)

=Dω̂µ̃(ω̂).

We define the auxiliary variables ∇̃η(ω̂) :=∇ŷη
(
Ŷ(ω̂)

)
and D1(ω̂) :=DP(β̂)D−1

P (α̂).
With Lemma 4.2 we obtain the eigenvalue decomposition of the Hessian

∇2
ŷη
(
Ŷ(ŷ)

)
=Dω̂∇̃η(ω̂)[Dω̂Ŷ ]−1(ω̂)=

(
g1+P2

2 (ω̂) −P1(ω̂)P−2(α̂)
−P1(ω̂)P−2(α̂) P−2(α̂)

)

=Tη(α̂)Dη(ω̂)T−1
η (α̂)

with Tη(α̂) :=

(
P−1(α̂)V

P−1(α̂)V

)
, Dη(ω̂) :=

(
gD2

P (α̂)+D2
1(ω̂) −D1(ω̂)

−D1(ω̂) 1

)
.

Due to the block diagonal structure of the similar and symmetric matrix Dη(ω̂), the real
eigenvalues are strictly positive if and only if

∣∣DP(α̂)
∣∣ 6=0 holds, since they read as

σ
{

Dη(ω̂)
}
=

1

2

(
gD2

P (α̂)+D2
1(ω̂)+1

)
± 1

2

[(
gD2

P (α̂)+D2
1(ω̂)+1

)2
−4gD2

P (α̂)
]1/2

.

We obtain the eigenvalue decomposition of the Jacobian by calculating

Dŷ f̂ (ŷ)=V
(

O 1

gDP(ĥ)−D2
P(β̂)D−2

P (α̂) 2DP (β̂)D−1
P (α̂)

)
VT

=V
[

T̂(ω̂)Λ̂(ω̂)T̂−1(ω̂)
]
VT=

[
V T̂(ω̂)

]
Λ̂(ω̂)

[
V T̂(ω̂)

]−1
.

This completes the proof.

Note that the entropy-entropy flux pair reduces to the physical entropy in the deter-
ministic case, see e.g. [18] for

η0(y) :=
1

2

q2

h
+

g

2
h2, µ0(y) :=

1

2

q3

h2
+gqh. (4.9)

Remark 4.1. Isothermal Euler equations describe the density of a gas ρ and read as

∂

∂t

(
ρ(t,x)
q(t,x)

)
+

∂

∂x

(
q(t,x)

q2(t,x)
ρ(t,x)

+a2ρ(t,x)

)
=0
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with the speed of sound a>0. An intrusive formulation is

∂

∂t

(
ρ̂(t,x)
q̂(t,x)

)
+

∂

∂x

(
q̂(t,x)

β̂(t,x)∗ β̂(t,x)+a2ρ̂(t,x)

)
=0. (4.10)

It has been shown in [24] for arbitrary gPC bases that the eigenvalues of the system (4.10)
are real and there is a full set of eigenvectors provided that α̂∈H+ holds. We cannot
show symmetric hyperbolicity for arbitrary bases and we cannot state an entropy. At
least for AgPC bases, however, the system remains symmetrizable: We define the matrix

H(ŷ) := H̃
(
Ŷ−1(ŷ)

)
:=

(
P2(β̂)P−4(α̂)+a2P−2(α̂) −P(β̂)P−3(α̂)

−P(β̂)P−3(α̂) P−2(α̂)

)
,

which reduces in the deterministic case to the Hessian matrix ∇2
yη(y)=H(y) for the en-

tropy η(y)= q2/2ρ+a2ρln(ρ). Provided that α̂∈H+ holds, the matrix H(ŷ) is strictly pos-
itive definite and the product H(ŷ)Dŷ f̂ (ŷ) is symmetric.

5 Energy estimates

We summarize our findings and state the notion of hyperbolicity in more detail. Similar
to [28, 33] we call a system

weakly hyperbolic if eigenvalues of the Jacobian are real,

strongly hyperbolic if eigenvalues are real and there is a complete set of

eigenvectors,

strictly hyperbolic if eigenvalues of the Jacobian are real and distinct,

symmetric hyperbolic if a symmetric, strictly positive definite matrix H(ŷ)

exists so that the product H(ŷ)Dŷ f̂ (ŷ) is symmetric.

Note that weakly hyperbolic systems are not necessarily stable [33]. All systems in this
paper are at least strongly hyperbolic and hence stable. As illustrated in Fig. 2, symmetric
and strictly hyperbolic systems form important classes. Deterministic Burgers’, Euler
and shallow water equations are both symmetric and strictly hyperbolic. In general,
stochastic Galerkin formulations fail to have distinct eigenvalues. As an example one
may consider the state α̂ :=(α̂0,0,··· ,0)T, where the Jacobian of Burgers’ equation reads as
P(α̂)= α̂01. The presented formulations, however, remain symmetric hyperbolic, since
they are endowed with entropy-entropy flux pairs [9, 29]. This allows energy estimates,
which do not hold for general strongly hyperbolic systems [33].

In particular, classical solutions are well-posed [18, Th. 5.3.1]. A Lipschitz continuous
classical solution ŷ∗(t,x)∈Hc of the Cauchy problem (2.1) on a finite time domain [0,T)
with initial data Î∗(x) which takes values in a convex, compact subset Hc⊂H and any
η-admissible weak solution ŷ(t,x)∈Hc with initial values Î(x) are related as follows.
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strongly hyperbolic systems
real eigenvalues, independent eigenvectors

symmetric hyperbolicstrictly

hyperbolic
deterministic

Burgers’ and

Euler equations

systems of gPC modes

for Burgers’ and

shallow water equations

arbitrary bases for

for isothermal flow

distinct

eigenvalues

Figure 2: Summary of considered hyperbolic systems

(i) The classical solution exists up to some point in time T>0.

(ii) The classical solution ŷ∗ with initial values Î∗ is the unique η-admissible weak en-
tropy solution.

(iii) For any r>0, t∈ [0,T), there are positive constants a,b,s≥0 such that

∫

|x|<r

∥∥ŷ∗(t,x)− ŷ(t,x)
∥∥dx≤ aebt

∫

|x|<r+st

∥∥Î∗(x)−Î(x)
∥∥dx.

The constant b depends on the Lipschitz continuity of the classical solution ŷ∗.

For numerical purposes, it is important to quantify the error between a (not known)
reference solution ŷ∗ that satisfies the PDE ŷ∗t + f̂ (ŷ∗)x=0 and a perturbation ŷ, which
may arise due to an adaptive gPC truncation. Similarly to the error estimates in [18,21,27],
we define the residuum

R(ŷ) := ŷt+ f̂ (ŷ)x

as well as the relative entropy and the relative entropy flux as

η(ŷ∗|ŷ) :=η(ŷ∗)−η(ŷ)−Dŷη(ŷ)
(
ŷ∗− ŷ

)
,

µ(ŷ∗|ŷ) :=µ(ŷ∗)−µ(ŷ)−Dŷη(ŷ)
(

f (ŷ∗)− f (ŷ)
)
.

Then, for general systems that are endowed with an entropy the following Lemma is
proven in the appendix. It is similar to [18, Th. 5.2.1], [26, Lemma 2.7], [27, Th. 3.8].
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Lemma 5.1. Assume the approximation ŷ is Lipschitz continuous in space x∈R. Then, the
following inequality holds:

∫

R

η
(

ŷ∗(t,x)
∣∣∣ŷ(t,x)

)
dx≤

∫

R

η
(
Î∗(x)

∣∣∣Î(x)
)

dx

−
∫ t

0

∫

R

RT
(

ŷ(s,x)
)
∇2

ŷη
(

ŷ(s,x)
)(

ŷ∗(s,x)− ŷ(s,x)
)

+ ŷT
x (s,x)∇2

ŷη
(
ŷ(s,x)

)[
Dŷ f̂

(
ŷ(s,x)

)(
ŷ∗(s,x)− ŷ(s,x)

)

−
(

f̂
(
ŷ∗(s,x)

)
− f̂
(
ŷ(s,x)

))]
dxds.

The inner product 〈ŷ∗,ŷ〉∇2 :=
〈
ŷ∗,∇2

ŷη(ŷ)ŷ
〉

is well-defined for strictly convex en-
tropies. Second-order Taylor approximations of the scalar entropy and the vector valued
flux function yield the expressions

η(ŷ∗|ŷ)= 1

2
‖ŷ∗− ŷ‖2

∇2+O
(
‖ŷ∗− ŷ‖2

2

)
,

∥∥∥Dŷ f̂ (ŷ)(ŷ∗− ŷ)−
(

f̂ (ŷ∗)− f̂ (ŷ)
)∥∥∥≤

c f̂ (ŷ)

2
‖ŷ∗− ŷ‖2

∇2 ,

where c f̂ (ŷ) depends only on the flux function and on the approximated states. With

this second-order approximation, Lemma 5.1, Cauchy-Schwarz and Young’s inequality
for products we obtain

∫

R

‖ŷ∗− ŷ‖2
∇2 dx−

∫

R

‖Î∗−Î‖2
∇2 dx

≤2
∫ T

0

∫

R

∣∣∣
〈

ŷ∗− ŷ,R(ŷ)
〉
∇2

∣∣∣+
∣∣∣
〈

Dŷ f̂ (ŷ)(ŷ∗− ŷ)−
(

f̂ (ŷ∗)− f̂ (ŷ)
)
,ŷx

〉
∇2

∣∣∣dxds

≤
∫ T

0

∫

R

‖ŷ∗− ŷ‖2
∇2 +

∥∥R(ŷ)
∥∥2

∇2+‖ŷx‖∇2 c f̂ (ŷ)‖ŷ∗− ŷ‖2
∇2 dxds

≤
∫ T

0
c(s;ŷ)

∫

R

‖ŷ∗− ŷ‖2
∇2 dx+

∫ T

0

∫

R

∥∥R(ŷ)
∥∥2

∇2 dxds

with the constant

c(s;ŷ) :=max
x∈R

{
1+
∥∥ŷx(s,x)

∥∥
∇2c f̂

(
ŷ(s,x)

)}
.

Gronwall’s inequality yields the a posteriori estimate

∫

R

∥∥∥ŷ∗(t,x)− ŷ(t,x)
∥∥∥

2

∇2
dx≤

[∫

R

∥∥∥Î∗(x)−Î(x)
∥∥∥

2

∇2
dx

+
∫ t

0

∫

R

∥∥∥R
(
ŷ(s,x)

)∥∥∥
2

∇2
dxds

]
exp

(∫ t

0
c(s;ŷ)ds

)
. (5.1)
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Once an estimate of the form (5.1), without second-order approximation, is derived, the
convergence of the gPC expansion in the PDE can be quantified – at least for smooth
solutions. We will derive an estimate for shallow water equations without neglecting the
term O(‖ŷ∗− ŷ‖2

2). Similar estimates for Burgers’ equation are given in [21, 27].

Theorem 5.1 (A Posteriori Estimate for Shallow Water Equations). Define the auxiliary
functions

V̂
(
ω̂(t,x)

)
:=P−1

(
α̂(t,x)

) ∂

∂x
β̂(t,x)−P−2

(
α̂(t,x)

)
P
(

β̂(t,x)
) ∂

∂x
α̂(t,x),

P0

(
α̂∗(t,x),α̂(t,x)

)
:=P−1

(
α̂(t,x)

)
P
(
α̂∗(t,x)

)

and assume the approximation ŷ is Lipschitz continuous. For states ŷ∗,ŷ∈Hc⊂H there is a
constant c∈ [1,∞) such that the spectral radius σmax

{
P0(α̂∗,α̂)

}
<
√

c is bounded and there is
the estimate

∫

R

η
(

ŷ∗(t,x)
∣∣∣ŷ(t,x)

)
dx

≤
[∫

R

η
(
Î∗(x)

∣∣∣Î(x)
)

dx

+
c

2

∫ t

0

∫

R

∥∥∥R
(
ŷ(s,x)

)∥∥∥
2

2
dxds

]
exp

(∫ t

0
1+2max

x∈R

{∥∥∥P
(

V̂
(
ω̂(s,x)

))∥∥∥
2

}
ds

)
.

Proof. Due to the equality

Dŷη(ŷ)(ŷ∗− ŷ)=
[

gĥ− 1

2
P2(ω̂)β̂,P−1(α̂)β̂

]T
(ŷ∗− ŷ)

= gĥT(ĥ∗− ĥ)− 1

2
‖β̂‖2

2−
1

2

∥∥P0(α̂
∗,α̂)β̂

∥∥2

2
+ β̂TP0(α̂

∗,α̂)β̂∗,

we obtain the relative entropy

η
(
ŷ∗
∣∣ŷ
)
=
[ g

2
‖ĥ∗‖2

2+
1

2
‖β̂∗‖2

2

]

−
[ g

2
‖ĥ‖2

2+
1

2
‖β̂‖2

2

]
−
[

gĥ− 1

2
P2(ω̂)β̂,P−1(α̂)β̂

]T
(ŷ∗− ŷ)

=
g

2
‖ĥ∗− ĥ‖2

2+
1

2

∥∥β̂∗−P0(α̂
∗,α̂)β̂

∥∥2

2
.

By definition we have V̂(ω̂)=(0,1)∇2
ŷη(ŷ)ŷx and we calculate

∣∣∣∣∣
(

Dŷ f̂ (ŷ)(ŷ∗− ŷ)−
(

f̂ (ŷ∗)− f̂ (ŷ)
))T

∇2
ŷη(ŷ)ŷx

∣∣∣∣∣

=

∣∣∣∣∣

(
0

g
2

(
ĥ∗− ĥ

)2∗
+
(

β̂∗−P0(α̂∗,α̂)β̂
)2∗

)T

∇2
ŷη(ŷ)ŷx

∣∣∣∣∣
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=

∣∣∣∣∣
( g

2

(
ĥ∗− ĥ

)2∗
+
(

β̂∗−P0(α̂
∗,α̂)β̂

)2∗)T
V̂(ω̂)

∣∣∣∣∣

≤
∣∣∣∣
g

2

(
ĥ∗− ĥ

)TP
(
V̂(ω̂)

)(
ĥ∗− ĥ

)∣∣∣∣

+

∣∣∣∣
(

β̂∗−P0(α̂
∗,α̂)β̂

)TP
(
V̂(ω̂)

)(
β̂∗−P0(α̂

∗,α̂)β̂
)∣∣∣∣

≤2
∥∥∥P
(
V̂(ω̂)

)∥∥∥
2
η(ŷ∗|ŷ). (5.2)

For states ŷ∗,ŷ∈Hc and α̂∗,α̂∈H+ the constant c :=max
{

1,c2
1

}
∈ [1,∞) with

c1 :=max
t∈[0,T],

x∈R

{
σ−1

min

{
P
(
α̂(t,x)

)}
σmax

{
P
(
α̂∗(t,x)

)}}
≥σmax

{
P0

(
α̂∗(t,x),α̂(t,x)

)}

is bounded. Then, we obtain the estimate
∥∥ŷ∗− ŷ

∥∥2

∇2 =

(
ĥ∗− ĥ
q̂∗− q̂

)T(
g(ĥ∗− ĥ)−P−2(α̂)P0(α̂∗,α̂)P(β̂)

[
β̂∗−P0(α̂∗,α̂)β̂

]

P−2(α̂)P(α̂∗)
[
β̂∗−P0(α̂∗,α̂)β̂

]
)

= g‖ĥ∗− ĥ‖2
2+
[
β̂∗−P0(α̂

∗,α̂)β̂
]TP2

0 (α̂
∗,α̂)

[
β̂∗−P0(α̂

∗,α̂)β̂
]

≤ g‖ĥ∗− ĥ‖2
2+c2

1

∥∥β̂∗−P0(α̂
∗,α̂)β̂

∥∥2

2

≤2max{1,c2
1}η(ŷ∗ |ŷ). (5.3)

Estimate (5.3), Cauchy-Schwarz and Young’s inequality for products imply

∣∣∣
〈
R(ŷ),ŷ∗− ŷ

〉
∇2

∣∣∣≤
∥∥R(ŷ)

∥∥
∇2

∥∥ŷ∗− ŷ
∥∥
∇2 ≤

∥∥R(ŷ)
∥∥
∇2

√
2max{1,c1}η(ŷ∗|ŷ)1/2

≤ max{1,c2
1}

2

∥∥R(ŷ)
∥∥2

∇2+η(ŷ∗|ŷ). (5.4)

Lemma 5.1 with the estimates (5.2) and (5.4) yield

∫

R

η(ŷ∗
∣∣ŷ)dx

≤
∫

R

η(Î∗|Î)dx+
∫ t

0

∫

R

c

2

∥∥R(ŷ)
∥∥2

∇2+η(ŷ∗|ŷ)+2
∥∥∥P
(
V̂(ω̂)

)∥∥∥
2
η(ŷ∗|ŷ)dxds

≤
∫

R

η(Î∗|Î)dx+
∫ t

0

∫

R

c

2

∥∥R(ŷ)
∥∥2

∇2 dxds

+
∫ t

0

(
1+2max

x∈R

{∥∥∥P
(
V̂(ω̂)

)∥∥∥
2

})∫

R

η(ŷ∗|ŷ)dxds.

The claim follows from Gronwall’s inequality.
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6 Numerical results

First, we illustrate theoretical results. To this end, we show the solutions and the en-
tropies for truncated Wiener-Haar expansions. In particular, we highlight their smooth-
ness properties and state statistics of interest. Then, we illustrate the decay of entropies,
which mimics the stability of the system. Finally, we show an application to balance laws.

To this end, an interval [0,xend] is divided into N cells by a space discretization ∆x>0
with ∆xN= xend. The centers are xj :=(j+ 1

2)∆x and the edges are xj+1/2 := j∆x. The evo-
lution of cell averages

ŷj(t) :=
1

∆x

xj+1/2∫

xj−1/2

ŷ(t,x)dx

of a balance law ŷt+ f̂ (ŷ)x =−Ŝ(ŷ;x) is described by the ordinary differential equation

d

dt
ŷj(t)=− 1

∆x

[
f̂
(

ŷ(t,xj+1/2)
)
− f̂
(

ŷ(t,xj−1/2)
)]

− 1

∆x

xj+1/2∫

xj−1/2

Ŝ
(

ŷ(t,x);x
)

dx.

To obtain a semi-discretization in space, we use the local Lax-Friedrichs flux

f̂(ŷℓ,ŷr) :=
1

2

(
f̂ (ŷℓ)+ f̂ (ŷr)

)
− 1

2
max
j=ℓ,r

{
σ
{

Dŷ f̂ (ŷ)
∣∣
ŷ=ŷj

}}(
ŷr−ŷℓ

)
,

where the spectrum σ
{

Dŷ f̂ (ŷ)
}

is given in Theorem 4.1. Furthermore, the central,
weighted, essentially non oscillatory (CWENO) reconstruction from [16] is applied. A
third-order reconstruction is of the form

CWENO :
[
ŷj−1,ŷj,ŷj+1

]
7→ Poly3(x),

where Poly3(x) denotes a third-order reconstruction polynomial. We denote the recon-
struction at the right side of a cell interface by ŷ+

j−1/2
(t) :=Poly3(xj−1/2), at the left side

by ŷ−
j+1/2

(t) :=Poly3(xj+1/2) and at the cell center by ŷc
j (t) :=Poly3(xj). The source term is

discretized by the Gauss-Lobatto rule with three quadrature nodes. Then, the resulting
semi-discretization with the local Lax-Friedrichs flux reads as

d

dt
ŷj(t)=− 1

∆x

[
f̂
(

ŷ−
j+1/2

(t),ŷ+
j+1/2

(t)
)
− f̂
(

ŷ−
j−1/2

(t),ŷ+
j−1/2

(t)
)]

− 1

6

[
Ŝ
(
ŷ+

j−1/2
(t);xj−1/2

)
+4Ŝ

(
ŷc

j (t);xj

)
+Ŝ
(
ŷ−

j+1/2
(t);xj+1/2

)]
+O

(
∆x3

)
.

It is approximated in time with a strong stability preserving (SSP) Runge-Kutta method
with three stages [39]. All simulations are done with Matlab. The CWENO reconstruction
is borrowed from the authors of [16] and compiled in Matlab as C-implementation.
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6.1 Illustration of the theoretical results

We illustrate the analysis using a dam break problem [49]. The solution consists of a
rarefaction wave, moving with negative speed, and a shock wave with positive speed.
Both waves are connected by an intermediate state ym. For given states ȳℓ=(h̄ℓ,q̄ℓ)

T

and ȳr =(h̄r,q̄r)T with h̄ℓ≥ h̄r >0 and q̄ℓ= q̄r =0, the dam break problem with initial
states y(0,xℓ)= ȳℓ and y(0,xr)= ȳr for xℓ<0< xr is solved by

y(t,x)=





ȳℓ if x< tλ−(ȳℓ),

yrf(t,x;ȳℓ,ȳr) if tλ−(ȳℓ)≤ x< tλ−(ym(ȳℓ,ȳr)
)
,

ym(ȳℓ,ȳr) if tλ−(ym(ȳℓ,ȳr)
)
≤ x< ts(ȳℓ,ȳr),

ȳr if ts(ȳℓ,ȳr)< x.

(6.1)

The expressions for the rarefaction wave yrf, intermediate state ym and shock speed s are
found in [49]. We consider uniformly distributed left initial values h̄ℓ(ξ)∼U(3,4) and
the deterministic right state h̄r =1.

The Haar sequence [34, 53, 62] with level J∈N0 generates a gPC basis SK with
K+1=2J+1 elements by

SK :=
{

1,ψ(ξ),ψj,k(ξ)
∣∣ k=0,··· ,2j−1, j=1,··· , J

}

for ψj,k(ξ) :=2
j/2ψ
(
2jξ−k

)
and ψ(ξ) :=





1 if 0≤ ξ< 1/2,

−1 if 1/2≤ ξ<1,

0 else.

Using a lexicographical order we identify the relation φ1=ψ, φ2=ψ1,0 and φ3=ψ1,1 with
the supports supp{ψ}=[0,1), supp{ψ1,0}=[0,1/2) and supp{ψ1,1}=[1/2,1).

For the theoretical results, we use the equidistant space discretization ∆x=10−3,
statistics are determined by a standard Monte-Carlo method with 105 samples. In Fig. 3
we consider a dam break problem, where the left initial state is uniformly distributed,
i.e. ȳℓ(ξ)=3+ξ∼U(3,4). The Wiener-Haar expansion in the intrusive formulation with
level J=1 approximates the continuous function ȳℓ(ξ) as step function (blue, left sub-
plot). While the first element φ0 yields the mean (green), the remaining functions give the
details (black). A zoom in the area of the shock, which are the diagrams in the lower left
corners, reveals that it is described mostly by the mean φ0 and the first detail function φ1.
In fact, we have ĥ2(t,x)= 0 close to the right half of the shock, since the corresponding
basis element φ2 describes low initial heights, which result in slow shock speeds. Fur-
thermore, the 1.0-confidence region and realisations, corresponding to the jumps in the
approximated input distribution, are shown. The entropy according to Theorem 4.1 is
plotted with respect to the right y-axis in red. For initial states ȳ=(h̄,0)T, when the mo-
mentum is zero, we have the relation

E

[
η0

(
GK

[
ȳ(ξ)

])]
=E

[ g

2
GK

[
h̄(ξ)

]2
]
=

g

2

∥∥ĥ
∥∥2

2
=η(ŷ), (6.2)
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Figure 3: Solution of the dam break problem for the intrusive formulation of Theorem 4.1 compared to a
Monte-Carlo simulation in t=0.5.

where η0 is the pointwise entropy (4.9). This motivates the choice of the mean of point-
wise entropies as a quantitative comparison. This choice is completely independent from
our new results and only based on a Monte-Carlo simulation. Although the entropies of
the intrusive formulation converge to the mean for the initial values, we do not claim that
there is a convergence also for t>0.

Apart from the shock, good agreement is observed for both the entropy and the pre-
sented statistics of interest. The main difference is that there is no longer a smooth ex-
pectation of the shock. This issue has been observed also for continuous input distribu-
tions [21, 24, 60].

Fig. 4 consists of the amplifications of shocks and visualizes the regularity of trun-
cated gPC expansions in more detail. For states satisfying Λ̂−

i (ω̂)<0< Λ̂+
j (ω̂) for

all i, j=0,··· ,K the initial discontinuity splits into at most K+1 distinct waves that
have positive speed. Here, K+1 waves move at slightly different speeds to the
right. We choose as reference solution the level J=4 with K+1=32 basis elements.
The gPC modes are determined in a semi-intrusive way as ŷref

k :=E
[
yref(t,x;ξ)φk(ξ)

]
,

where yref :=(href,qref)T denotes the reference solution (6.1).

Table 1 reports on numerical errors for the mean and the variance

E
(E)
K (t,x) :=

∣∣∣E
[
href(t,x;ξ)

]
− ĥ0(t,x)

∣∣∣,

E
(V)
K (t,x) :=

∣∣∣∣Var
[
href(t,x;ξ)

]
−

K

∑
k=1

ĥ2
k(t,x)

∣∣∣∣.
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Figure 4: Zoom on shock; semi-intrusive reference solution (dashed) with K+1=32.

Table 1: Observed numerical errors for the dam break problem.

L∞-error: rarefaction wave shock units

level J 0 1 2 3 0 1 2 3

Ê
(E)
K 4.43 1.63 0.86 0.56 56.93 28.05 13.03 5.44

[
10−2

]

Ê
(V)
K 16.69 5.57 2.39 1.12 32.40 24.77 13.52 5.44

[
10−2

]

L1-error: rarefaction wave shock units

level J 0 1 2 3 0 1 2 3

Ê
(E)
K 6.76 3.06 2.01 1.65 35.31 13.16 5.84 2.68

[
10−3

]

Ê
(V)
K 137.89 45.97 19.68 9.16 36.77 14.55 6.47 2.89

[
10−3

]

relative entropy for Cauchy problem units

level J 0 1 2 3

η(ŷ∗|ŷ) 108.05 27.60 9.89 5.66
[
10−3

]

Table 1 is divided into the rarefaction wave for x∈ [−1.5,0] and the shock for x∈ [0,1.5].
Then, for each level J=0,··· ,3 with corresponding gPC order K+1=2,4,8,16 the L1-and
L∞-norms

∫
|·|dx and supx |·| are stated. Indeed, we observe a convergence for the mean

and the variance. Furthermore, we show the relative entropy and use again the semi-
intrusively computed gPC modes ŷref

k ∈R64 as reference solution. We observe the ex-
pected decay also for this error measure. To verify the compatibility condition (2.3), we
consider the L2-error

E
(C)
K (t,x) :=

∥∥Dŷµ(ŷ)−Dŷη(ŷ)Dŷ f̂ (ŷ)
∥∥

2
(t,x)
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Figure 5: Time evolution of entropies according to inequality (6.3).

and we expect it to be close to zero for smooth solutions. The compatibility condition is
fulfilled up to numerical errors, which are two powers smaller than the spatial discretiza-
tion ∆x.

The entropy inequality (2.2) guarantees a decaying entropy, since spatial integration
yields

d

dt

∫

R

η
(
ŷ(t,x)

)
dx≤0 =⇒

∫

R

η
(
ŷ(t,x)

)
dx≤

∫

R

η
(
Î(x)

)
dx. (6.3)

Fig. 5 aims to show this decay over time. We choose both the semi-intrusively computed
gPC modes ŷref

k ∈R64 and the mean of the pointwise entropies (6.2) as reference solution.
Indeed, all computed entropies are decreasing. For a high refinement level J the entropies
are close to the reference solutions.

6.2 Applications to balance laws with multiple sources of uncertainty

Common choices for multidimensional bases, see e.g. [53, 81], are the

tensor basis KT :=
{

k∈N
M
0 | ‖k‖0≤KPC

}
with |KT|=(KPC+1)M,

sparse basis KS :=
{

k∈N
M
0 | ‖k‖1≤KPC

}
with |KS|=(M+KPC)!(M!KPC!)−1,

where KPC∈N0 denotes the one-dimensional gPC truncation. It has already been ob-
served for linearized shallow water equations that the sparse basis leads to a loss of hy-
perbolicity [64, Sec. 4.2]. Due to KS⊆KT, it is argued to enlarge the gPC basis to obtain
a hyperbolic system. Also our theoretical results for the nonlinear shallow water equa-
tions cannot be directly applied to a Wiener-Haar expansion as sparse multidimensional
basis, since property (A1) in Lemma 4.1 is violated. The choice KPC = 1, M=2 serves
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Figure 6: Shallow water equations with uncertain bottom topography, ∆x=0.005, KPC=7.

as a counter example. For the full basis, however, we can verify property (A1) for the
following problem.

We assume as initial values a constant free-water surface
w(0,x) :=h(0,x;ξ)+B(x,ξ1)=1. The source term S(y;x,ξ1) :=(0,gSq(h;x,ξ1))

T with

Sq(h;x,ξ1) :=hB′(x,ξ1) and B(x,ξ1) :=

{
1
2 exp(−20x2) with probability 0.5,

0 with probability 0.5

models the random space-varying bottom topography B(x,ξ1). We define the gPC
modes B̂(x) := 1

4 exp(−20x2)(1,1,0,··· ,0)T to represent the bottom topography exactly in a

Wiener-Haar expansion as B(x,ξ1)= B̂0(x)+ B̂1(x)ψ(ξ1). Then, the projected source term
reads as Ŝq

(
ĥ(t,x)

)
= ĥ(t,x)∗ B̂′(x). The left subplot in Fig. 6 shows the mean and the con-

fidence region of the free-water surface with initial momentum q(0,x)=1. In the second
subplot the initial momentum with P

[
q(0,x;ξ2)=1

]
=P

[
q(0,x;ξ2)=−1

]
is an additional

source of uncertainty.
Finally, we give an example for the sparse basis KS. Since the properties (A1)–(A3) in

Lemma 4.1 are not satisfied, we consider isothermal Euler equations. It has been proven
in [24] that the formulation (4.10) is strongly hyperbolic for arbitrary gPC bases. How-
ever, it is not necessarily endowed with an entropy, as discussed in Remark 4.1. In exten-

sion to the results in [24] we use the space-varying source term S(y;x) :=(0,
f (x)
2D Sq(y))T

with Sq(y) := q|q|
ρ to model friction. It is convenient to express the nonlinear term Sq(y)

in Roe variables, i.e. Sq(y)= |β|β, to obtain the Galerkin formulation Ŝq(ŷ)=
∣∣P(β̂)

∣∣β̂.
For illustration, we consider the constant diameter of the pipe D=1 and the random,
space-varying friction factor fr(x,ξ1)∼U(0,20exp(−20x2)). It is exactly represented in

normalized Legendre polynomials fr(x,ξ1) := f̂r0(x)+ f̂r1(x)φ1(ξ1), where the gPC modes
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Figure 7: Isothermal Euler equations with uncertain friction factor, ∆x=0.005, KPC=6.

read as f̂r(x) :=10exp(−20x2)(1,1,0,··· ,0)T. The left subplots in Fig. 7 are based on deter-
ministic initial values y(0,x)=(1.5,1). Then, a second source of uncertainty is introduced
as random initial momentum q(0,x;ξ2)∼U(−1,1). The right subplots show three pertur-
bations. There, also the initial density ρ(0,x;ξ3)∼U(1.5,1.5+exp(−20x2)) is uniformly
distributed.

7 Summary

For certain basis functions we have analyzed a stochastic Galerkin formulation of shallow
water equations that is based on the Roe variable transform [61]. This transform involves
the stochastic Galerkin square root, which we have defined uniquely as a minimization
problem. An important consequence is the bijective mapping between conserved and
Roe variables. For the hyperbolic Galerkin formulation a generalization of the physical
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entropy to the stochastic Galerkin formulation has been presented. As important conclu-
sions wellposedness of classical solutions as well as energy estimates have been stated.
Our analysis covers also the case of multiple random dimensions. Sparse basis, however,
may violate properties that guarantee hyperbolicity. This confirms findings for random
linearized shallow water equations in previous works [64]. Numerical experiments have
confirmed the theoretical findings. While symmetric hyperbolic systems in multiple spa-
tial dimensions can also be expanded in entropy variables [20], similar results for Roe
variables are not yet known.
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Appendix

For the proof of Lemma 4.2 we recall Dα̂k
P−1(α̂)=−P−1(α̂)Dα̂k

P(α̂)P−1(α̂).

Proof of Lemma 4.2. Eq. (4.4) follows from

ûT(ω̂)P(ĥ)= β̂TP(ĥ)P−1(α̂)= α̂TP(α̂)P(β̂)P−1(α̂)=(α̂∗ β̂)T,

where we have used symmetry and the commutativity property (A2). We calculate

P(β̂)=

[( K

∑
j=0

β̂ j〈φiφj,φ0〉
)∣∣∣∣···

∣∣∣∣
( K

∑
j=0

β̂ j〈φiφj,φK〉
)]

i=0,···,K
=
[
M0β̂

∣∣∣···
∣∣∣MK β̂

]
,

P
(
û(ω̂)

)
γ̂=P(γ̂)P−1(α̂)β̂=P1(ω̂)γ̂,

P
(
û2(ω̂)

)
γ̂=P(γ̂)P−2(α̂)P(β̂)β̂=P2

1 (ω̂)γ̂

to obtain Eqs. (4.5) and (4.6) as

Dα̂

[
β̂TP1(ω̂)β̂

]
=−

[
β̂TP(β̂)P−1(α̂)MkP−1(α̂)β̂

]
k=0,···,K

=−β̂TP2
1 (ω̂),

Dβ̂

[
β̂TP1(ω̂)β̂

]
=Dβ̄

[
β̄TP1(ω̂)β̄

]∣∣∣
β̄=β̂

+Dβ̄

[
β̂TP(β̄)û(ω̂)

]∣∣∣
β̄=β̂

=2β̂TP1(ω̂)+ β̂TP
(
û(ω̂)

)

=3β̂TP1(ω̂),
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Dα̂

[
(α̂∗α̂)T(α̂∗ β̂)

]
=Dᾱ

[
ᾱTP(α̂)P(β̂)ᾱ

]∣∣∣
ᾱ=α̂

+Dᾱ

[
α̂TP(ᾱ)P(β̂)α̂

]∣∣∣
ᾱ=α̂

=2α̂TP(α̂)P(β̂)+
[
α̂TM0P(β̂)α̂

∣∣∣···
∣∣∣α̂TMKP(β̂)α̂

]

=3α̂TP(α̂)P(β̂),

Dβ̂

[
(α̂∗α̂)T(α̂∗ β̂)

]
=Dβ̂

[
α̂TP2(α̂)β̂

]
= α̂TP2(α̂).

The matrices (4.7) and (4.8) follow from

Dα̂

[
û(ω̂)

]
=−

[
P−1(α̂)M0P−1(α̂)β̂

∣∣∣···
∣∣∣P−1(α̂)MKP−1(α̂)β̂

]

=−P2(ω̂),

Dα̂

[
P2(ω̂)β̂

]
=2Dᾱ

[
P1(ω̂)P−1(ᾱ)β̂

]∣∣∣
ᾱ=α̂

=−2P1(ω̂)
[
P−1(α̂)M0P−1(α̂)β̂

∣∣∣···
∣∣∣P−1(α̂)MKP−1(α̂)β̂

]

=−2P1(ω̂)P2(ω̂),

Dβ̂

[
P2(ω̂)β̂

]
=Dβ̂

[
P−2(α̂) β̂∗ β̂

]
=2P2(ω̂).

This completes the proof.

The proof of Lemma 5.1 is similar to [18, 26, 27, 45]. It is a slight adaptation which
follows from exploiting the fact that systems endowed with entropies are symmetrizable,
see e.g. [28, Th. 3.1]. Then, the matrix ∇2

ŷη(ŷ)Dŷ f̂ (ŷ) is symmetric.

Proof of Lemma 5.1. Due to the compatibility condition (2.3) and due to the symmetry of
the matrix ∇2

ŷη(ŷ)Dŷ f̂ (ŷ), we obtain

Dŷη(ŷ)R(ŷ)=Dŷη(ŷ)ŷt+Dŷµ(ŷ)ŷx =η(ŷ)t+µ(ŷ)x, (A.1)

f̂ (ŷ)T
x∇2

ŷη(ŷ)(ŷ∗− ŷ)= ŷT
xDŷ f̂ (ŷ)T∇2

ŷη(ŷ)(ŷ∗− ŷ)

= ŷT
x∇2

ŷη(ŷ)Dŷ f̂ (ŷ)(ŷ∗− ŷ). (A.2)

For every non-negative C1-function ϕ with compact support Rademacher’s theorem
yields that the approximation ŷ and hence the auxiliary function ϕ̃ :=∇ŷη(ŷ)ϕ are dif-
ferentiable almost everywhere. We obtain in the distributional sense

ϕ̃t=∇2
ŷη(ŷ)ŷt ϕ+∇ŷη(ŷ)ϕt=∇2

ŷη(ŷ)
(
R(ŷ)− f̂ (ŷ)x

)
ϕ+∇ŷη(ŷ)ϕt, (A.3)

ϕ̃x =∇2
ŷη(ŷ)ŷx ϕ+∇ŷη(ŷ)ϕx. (A.4)

With Eqs. (A.3) and (A.4) we conclude

0= ϕ̃TR(ŷ)+ ϕ̃T
(
ŷ∗− ŷ

)
t
+ ϕ̃T

(
f̂ (ŷ∗)− f̂ (ŷ)

)
x
,
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0=
∫ T

0

∫

R

ϕ̃T
s

(
ŷ∗− ŷ

)
+ ϕ̃T

x

(
f̂ (ŷ∗)− f̂ (ŷ)

)
− ϕ̃TR(ŷ)dxds+

∫

R

ϕ̃T
0

(
Î∗−Î

)
dx

=
∫ T

0

∫

R

[
ϕ
(
R(ŷ)− f̂ (ŷ)x

)T∇2
ŷη(ŷ)+ϕsDŷη(ŷ)

](
ŷ∗− ŷ

)

+
[

ϕŷT
x∇2

ŷη(ŷ)+ϕxDŷη(ŷ)
](

f̂ (ŷ∗)− f̂ (ŷ)
)
−ϕDŷη(ŷ)R(ŷ)dxds

+
∫

R

ϕ0DÎη(Î)
(
Î∗−Î

)
dx.

We rearrange these terms and use Eq. (A.2) to obtain

∫ T

0

∫

R

Dŷη(ŷ)
(
ŷ∗− ŷ

)
ϕs+Dŷη(ŷ)

(
f̂ (ŷ∗)− f̂ (ŷ)

)
ϕxdxds

=−
∫ T

0

∫

R

(
R(ŷ)− f̂ (ŷ)x

)T
∇2

ŷη(ŷ)
(
ŷ∗− ŷ

)
ϕ− ŷT

x∇2
ŷη(ŷ)

(
f̂ (ŷ∗)− f̂ (ŷ)

)
ϕ

+Dŷη(ŷ)R(ŷ)ϕdxds−
∫

R

DÎη(Î)
(
Î∗−Î

)
ϕ0dx

=−
∫ T

0

∫

R

RT(ŷ)∇2
ŷη(ŷ)(ŷ∗− ŷ)ϕ

− ŷT
x∇2

ŷη(ŷ)
[
Dŷ f̂ (ŷ)(ŷ∗− ŷ)−

(
f̂ (ŷ∗)− f̂ (ŷ)

)]
ϕdxds

+Dŷη(ŷ)R(ŷ)ϕdxds−
∫

R

DÎη(Î)
(
Î∗−Î

)
ϕ0dx. (A.5)

The entropy inequality η(ŷ∗)t+µ(ŷ∗)x ≤0 and Eq. (A.1) imply in the distributional sense

(
η(ŷ∗)−η(ŷ)

)
t
+
(
µ(ŷ∗)−µ(ŷ)

)
x
+Dŷη(ŷ)R(ŷ)≤0

which reads with Eq. (A.5) as

0≤
∫ T

0

∫

R

(
η(ŷ∗)−η(ŷ)

)
ϕs+

(
µ(ŷ∗)−µ(ŷ)

)
ϕx−Dŷη(ŷ)R(ŷ)ϕdxds

+
∫

R

(
η(Î∗)−η(Î)

)
ϕ0dx

=
∫ T

0

∫

R

η(ŷ∗|ŷ)ϕs+µ(ŷ∗|ŷ)ϕx−Dŷη(ŷ)R(ŷ)ϕdxdt

+
∫ T

0

∫

R

Dŷη(ŷ)
(
ŷ∗− ŷ

)
ϕs+Dŷη(ŷ)

(
f̂ (ŷ∗)− f̂ (ŷ)

)
ϕxdxds

+
∫

R

(
η(Î∗)−η(Î)

)
ϕ0dx

=
∫ T

0

∫

R

η(ŷ∗|ŷ)ϕs+µ(ŷ∗|ŷ)ϕxdxds+
∫ T

0

∫

R

−RT(ŷ)∇2
ŷη(ŷ)(ŷ∗− ŷ)ϕ

+ ŷT
x∇2

ŷη(ŷ)
[
Dŷ f̂ (ŷ)(ŷ∗− ŷ)−

(
f̂ (ŷ∗)− f̂ (ŷ)

)]
ϕdxds+

∫

R

η(Î∗|Î)ϕ0dx.
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For all Lebesgue points t∈ [0,T) and

ϕε(s,x;t) :=





1 if s< t,

1− s−t
ε if t< s< t+ε,

0 if t+ε< s,

we obtain

0≤
∫

R

−1

ε

∫ t+ε

t
η
(

ŷ∗(s,x)
∣∣∣ŷ(s,x)

)
dx+

∫

R

η
(
Î∗(x)

∣∣∣Î(x)
)

dx

−
∫ T

0

∫

R

RT
(

ŷ(s,x)
)
∇2

ŷη
(

ŷ(s,x)
)(

ŷ∗(s,x)− ŷ(s,x)
)

ϕε(s,x;t)

+ ŷT
x (s,x)∇2

ŷη
(

ŷ(s,x)
)[

Dŷ f̂
(

ŷ(s,x)
)(

ŷ∗(s,x)− ŷ(s,x)
)

−
(

f̂
(
ŷ∗(s,x)

)
− f̂
(
ŷ(s,x)

))]
ϕε(s,x;t)dxds

ε→0−→−
∫

R

η
(

ŷ∗(t,x)
∣∣∣ŷ(t,x)

)
dx+

∫

R

η
(
Î∗(x)

∣∣∣Î(x)
)

dx

−
∫ t

0

∫

R

RT
(

ŷ(s,x)
)
∇2

ŷη
(

ŷ(s,x)
)(

ŷ∗(s,x)− ŷ(s,x)
)

+ ŷT
x (s,x)∇2

ŷη
(

ŷ(s,x)
)[

Dŷ f̂
(

ŷ(s,x)
)(

ŷ∗(s,x)− ŷ(s,x)
)

−
(

f̂
(
ŷ∗(s,x)

)
− f̂
(
ŷ(s,x)

))]
dxds.

This completes the proof.
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