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Abstract. In this paper, we reformulate the semi-classical Schrödinger equation in the
presence of electromagnetic field by the Gaussian wave packet transform. With this
approach, the highly oscillatory Schrödinger equation is equivalently transformed into
another Schrödinger type wave equation, the w equation, which is essentially not os-
cillatory and thus requires much less computational effort. We propose two numerical
methods to solve the w equation, where the Hamiltonian is either divided into the
kinetic, the potential and the convection part, or into the kinetic and the potential-
convection part. The convection, or the potential-convection part is treated by a semi-
Lagrangian method, while the kinetic part is solved by the Fourier spectral method.
The numerical methods are proved to be unconditionally stable, spectrally accurate
in space and second order accurate in time, and in principle they can be extended to
higher order schemes in time. Various one dimensional and multidimensional numer-
ical tests are provided to justify the properties of the proposed methods.
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1 Introduction

In this paper, we propose an efficient approach for the semi-classical Schrödinger equa-
tion with external electromagnetic fields. This approach is a natural but worthy exten-
sion of the Gaussian Wave Packet Transform developed in [47, 48] to the cases where
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the Hamiltonians include vector potentials. With this formulation, the highly oscilla-
tory Schrödinger equation is transformed into another Schrödinger type wave equation,
which is much smoother and, as a consequence, requires much less computational effort.
This problem is challenging for various reasons, and has many important applications in
physics and chemistry (see [9, 10, 25, 29]).

Consider the dimensionless Schrödinger equation for a charged particle, with a small
(scaled) Planck constant ε,

iε∂tψ
ε =

1

2
(−iε∇x−A(x))2 ψε+V(x)ψε, t∈R

+, x∈R
3, (1.1)

ψε(x,0)=ψ0(x), x∈R
3, (1.2)

where ψε(x,t) is the complex-valued wave function, V(x)∈R is the scalar potential and
A(x)∈R

3 is the vector potential. The scalar potential and the vector potential are intro-
duced to mathematically describe the external electromagnetic field, or respectively, the
electric field E(x)∈R

3 and the magnetic field B(x)∈R
3 given by

E=−∇V(x), B=∇×A(x). (1.3)

For simplicity, we have assumed that the scalar and the vector potentials are time inde-
pendent, but inclusion of the time dependence will not add intrinsic challenges to the
current problem.

The quantum Hamiltonian in (1.1) is reminiscent of the classical Hamiltonian (see
[26])

H(q,p)=
1

2
(p−A(q))2+V(q).

This is the Schrödinger equation for a charged quantum particle moving in an electro-
magnetic field, where no spin or relativistic effects are considered (see [10]). It also shows
a connection between quantum mechanics and macroscopic scale effects (the classical
electromagnetic fields in this context). Alternatively, Eq. (1.1) above can be derived from
the free-particle Schrödinger equation by local gauge transformation (see [50]).

The quantum dynamics in the presence of external electromagnetic fields results in
many far-reaching consequences in quantum mechanics, such as Landau levels, Zeeman
effect and superconductivity (see, e.g., [10]). Mathematically, it gives new challenges as
well, especially in the semi-classical regime. The presence of the vector potential intro-
duces a convection term in the Schrödinger equation and in the meanwhile effectively
modifies the scalar potential (see [33]).

The electromagnetic field is introduced by the scalar potential V(x) and the vector
potential A(x). One can simplify the potential description by imposing one more condi-
tion, namely, specifying the gauge. In fact, for any choice of a scalar function of position
λ(x)∈R, the potentials can be changed as follows:

A′=A+∇xλ, V ′=V. (1.4)
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Clearly, the electric field E(x)∈R
3 and the magnetic field B(x)∈R

3 do not change at
all under this transformation. One natural choice is to choose λ so that ∇x ·A′= 0. This
is the so-called Coulomb gauge. In this gauge, the right hand side of the Schrödinger
equation (1.1) can be simplified to:

1

2
(−iε∇x−A)2ψ+V(x)ψ=− ε2

2
∆xψ+iεA·∇xψ+U(x)ψ,

where U(x)=(1/2)|A|2+V. Actually, even if the Coulomb gauge is not chosen, one gains
an extra term (iε/2)∇·Aψ in the equation, which is not stiff and can also be incorporated
in the U term. Therefore, from this point on, we instead consider the following form of
the Schrödinger equation

iε∂tψ=− ε2

2
∆xψ+iεA·∇xψ+U(x)ψ. (1.5)

Note that, although the original problem is physically interesting in 3 dimensional cases
(which may reduce to 2 dimensional problems under some circumstances), we aim to
design numerical methods for this model in arbitrary dimensions. Besides, studying this
model facilitates the numerical investigation of other related quantum models, such as
the Pauli equation [3], which can be viewed as a vector version the Schrödinger equation
with electromagnetic fields (1.1) for spin 1/2 particles.

In the semi-classical regime, namely ε≪ 1, the solution to the Schrödinger equation
is highly oscillatory both in space and time on the scale O(ε), so that the wave function
ψε does not converge in the strong sense as ε → 0. Numerically, the oscillatory nature
of the wave function of the semi-classical Schrödinger equation gives rise to significant
computational burdens. If one aims for direct simulation of the wave function, according
to our knowledge, one of the best choices is the time splitting spectral method intro-
duced by Bao, Jin and Markowich in [2, 29], where the meshing strategy ∆t=O(ε) and
∆x=O(ε) is sufficient for moderate values of ε. When the vector potential is present, a
semi-Lagrangian time splitting method has been introduced in [13, 33], with which the
meshing strategy, ∆t=O(ε) and ∆x=O(ε) is needed in approximating the wave func-
tions. Another advantage of the time splitting methods is that if one is only interested
in the physical observables, the time step size can be relaxed to O(1), in other words,
independently of ε, whereas one still needs to resolve the spatial oscillations.

When ε≪ 1, several approximate methods other than directly solving for the wave
function have been proposed, such as the level set method and the moment closure
method based on the WKB analysis and the Wigner transform, see, for example, [6,27–29]
for a general discussion.

The Gaussian beam method (or the Gaussian wave packet approach) is another im-
portant approximate method, which allows accurate computation around caustics and
captures phase information (see [24, 31, 44, 46]). This method reduces the full quan-
tum dynamics to Gaussian wave packets dynamics. Some efficient methods have been
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introduced to decompose general initial data into the sum of Gaussian wave packets
(see [31, 45]). For suitable initial conditions, Gaussian beams are exact solutions to the
Schrödinger equation with harmonic potentials. When the potentials are smooth (and
therefore locally approximated by harmonic potentials), the Gaussian beam method is an
approximate method for the solution of the Schrödinger equation. In recent years, this
method has been extended for piecewise smooth potentials (see [55]). We remark that,
the Gaussian beam methods can be extended to the vector potential cases with no tech-
nical difficulties (see [56]). We remark that there is an apparently similar but fundamen-
tally different asymptotic approach for high frequency wave equations, the frozen Gaus-
sian approximation (see, e.g. [36]), which is also known as the Herman-Kluk propagator,
which has been recently extended to multi-level Schrödinger equations (see [37, 38]). In
theory, we may explore the application of the frozen Gaussian approximation in the vec-
tor potential cases, which we may save for future studies.

However, for general potentials, the (first order) Gaussian beam method gives the
approximate solution with error O(ε1/2), which is not practically satisfactory unless ε
is sufficiently small. To improve accuracy, the higher order Gaussian beam method has
been introduced with error Ck,ε,Tεk/2 (see [32, 52]), where k stands for the approximation
order and T stands for the total simulation time. But still, since the modulus constant in
the error bound Ck,ε,T depends on k explicitly, for fixed ε, increasing the order of approx-
imation in the Gaussian beam methods may not reduce the error. The approximation
errors in high order Gaussian beam methods are especially noticeable when ε is not very
small. It has been shown in [35,56] that, when ε=1/100, in a fairly standard test example,
the second and the third order Gaussian beams give even larger error than the first order
approximation.

Another approach to improve accuracy proposed by Faou, Gradinaru, and Lubich
in [8] is to make use of the Hagedorn wave packets. It has been shown in [23] that
when the vector potential is absent and the scalar potential is of a more general class,
Hagedorn wave packets are asymptotic solutions to the Schrödinger equation with error
O(ε1/2). Furthermore, with higher order Hagedorn wave packets, the error can be re-
duced to O(εk/2), where k∈N

+. It is worth emphasizing that, higher order Hagedorn
wave packets do not rely on cut-off functions, and can be proved to effectively reduce
the approximation error for all ε ∈ (0,1]. In [8], Faou, Gradinaru, and Lubich for the
first time turned the Hagedorn functions into a computational tool for the semi-classical
Schrödinger equation with only scalar potentials. Recently, Gradinaru and Hagedorn
proposed in [17] a new algorithm to solve the semi-classical Schrödinger equation with-
out vector potentials by the Hagedorn wave packets approach, which converges quadrat-
ically in the time step and linearly in ε. In [56], Zhou has extended this method to the
vector potential cases while providing a rigorous proof for the higher order convergence
with the Galerkin approximation.

Recently, Russo and Smereka in [47, 48] proposed a new method based on the so-
called Gaussian wave packet transform, which reduces the quantum dynamics to Gaus-
sian wave packet dynamics together with the time evolution of a rescaled quantity w,
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which satisfies another equation of the Schrödinger type, in which the modified potential
becomes time dependent. This transform is closely related to the Gaussian wave packet
method: the parameters defining the evolution of the packet satisfy a set of ordinary dif-
ferential equations, so it can be accurately solved with small computational effort, while
the rescaled wave function w is much less oscillatory that the original wave function ψ,
and can therefore be accurately represented with a relatively small number of degrees
of freedom. At variance with the standard Gaussian wave packet method, however, the
formulation is actually exact, which means there is no approximation error of any kind.
Furthermore, such rescaled wave function becomes even less oscillatory as the system
approaches the semi-classical limit. This allows direct computation of the Schrödinger
equation near the semi-classical limit even for several space dimensions. The extension
of the approach to the multidimensional cases has been presented in [48].

In this paper, we aim to extend this approach to the vector potential cases. We refor-
mulate the original Schrödinger equation (1.1) so that it is more amenable for numerical
simulation, and the Gaussian wave packet transform is carried out. In the w equation ob-
tained from the transform, a convection term shows up due to the presence of the vector
potential, whose propagation velocity depends on the parameters of the Gaussian wave
packet, and is thus time dependent. We then propose two first-order-in-time numerical
methods to solve the w equation, both of which are based on the spectral approximation
and the operator splitting technique, and can naturally be extended to higher orders. The
first approach is to divide the Hamiltonian into the kinetic part, the convection part and
the potential part, with the first order operator splitting method. The second approach
is to, instead, divide the Hamiltonian into the kinetic part and the convection-potential
part. We argue that both methods can be extended to higher order ones, while in terms of
efficiency, the latter one is the better choice. Rigorous stability analysis is also presented,
which indicates both methods are unconditionally stable.

To give a heuristic presentation of this approach, the rest of the paper is organized
as follows. In Section 2, we carry out the Gaussian wave packet transform in multi-
dimensional cases, from which the w equation is obtained. In Section 3, two first-order-
in-time methods are proposed to solve the w equation in one dimension, whose stability
and accuracy properties are also shown. In the last section, numerous tests are performed
to verify the properties of the numerical methods, where the method are made second-
order in time by Strang splitting.

2 The Gaussian wave packet transform for the Schrödinger

equation with vector potentials

2.1 The wave packet transform

In the semi-classical Schrödinger equation with vector potentials,
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iε∂tψ=
1

2
(−iε∇x−A(x))2

ψ+V(x)ψ,

we call P̂=−iε∇x the canonical momentum, and κ̂= P̂−A is the kinetic momentum (see
[9, 10, 26]). Since the Gaussian wave packet transform is closely related by the Gaussian
beam method, we review the latter method in Appendix A.

In this section, we present the Gaussian wave packet transform for the semi-classical
Schrödinger equation in the presence of electromagnetic field. The transform is similar
to the formulations in [47,48], but the treatment with the vector potential introduces new
challenges and is also partially inspired by some previous work [3, 13, 33, 56].

We start by considering the following ansatz

ψ(x,t)=W(ξ,t)exp( f (ξ,t)) :=W(ξ,t)exp
(

i
(

ξTαRξ+pTξ+γ2

)

/ε
)

, (2.1)

where ξ=x−q, αR is a real-valued symmetric matrix and γ2 is a complex-valued scalar.
As is discussed in [47], we have to require that αR is real so that we can eventually arrive
at a well-posed equation, which is different from other Gaussian wave packet based ap-
proaches because in those methods the Hessian matrix is assumed to be complex-valued.
This ansatz is constructed to capture the oscillatory phase and the Gaussian profile of the
wave packet with the quadratic expansion in space with respect to the beam center, and
uses the quantity W to keep track of the rest of the information. And as we shall see, after
making a change of variable, the equation that W satisfies reduces to a non-oscillatory
equation.

We obtain, by lengthy but direct calculations (the readers may refer to Appendix A
for more detailed calculations)

e− f ∂tψ=
(

Wt−∇ξWT q̇
)

+
i

ε
W
(

ξTα̇Rξ+ξT ṗ+γ̇2−2ξTαRq̇−pT q̇
)

, (2.2)

and

e− f iε

2
∆xψ=

iε

2
∆ξW−∇ξWT (2αRξ+p)−Tr(αR)W

− 2i

ε
ξTα2

RξW− 2i

ε
ξTαR pW− i

2ε
|p|2W. (2.3)

And by expanding the potentials with respect to the beam center, we have

U(x)=U(q)+ξT∇U(q)+
1

2
ξT∇∇U(q)ξ+Ur, (2.4)

and
A(x)=A(q)+∇A(q)ξ+Aq+Ar, (2.5)

where

A(1)=A(ξ+q)−A(q)−∇A(q)ξ, Aq =
1

2
(ξT∇)2A(q), Ar =A(1)−Aq,
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and

Ur =U(ξ+q)−U(q)−ξT∇U(q)− 1

2
ξT∇∇U(q)ξ.

For clarity, we represent Aq in the index form in the following

(

Aq

)

j
=∑

ℓ,ℓ′

∂2 Aj(q)

∂xℓ∂x
ℓ′

ξℓξℓ′ .

Thus, we obtain the following (see Appendix for more details)

e− f A(x)T∇xψ=∇ξWTA(q)+∇ξWT(A(ξ+q)−A(q))+
2i

ε
ξTαRA(q)

+
i

ε
ξT
(

∇A(q)TαR+αR∇A(q)
)

ξW+
2i

ε
AT

(1)αRξW

+
i

ε

(

A(q)+∇A(q)ξ+Aq+Ar

)T
pW.

Here, we have used the fact that

ξT∇A(q)TαRξ=ξTαR∇A(q)ξ,

since αR is symmetric.
We require the same bi-characteristic equations as in the Gaussian beam method

{

q̇= p−A(q),

ṗ=∇A(q)T p−∇U(q).

Hence, with the Gaussian wave packet transform ansatz (2.1), Eq. (1.5) becomes

Wt=− i

ε
WξT

(

α̇R+2α2
R+

1

2
∇∇U(q)−∇A(q)TαR−αR∇A(q)− 1

2
∇∇A(q)·p

)

ξ

+W

(

γ̇2−
1

2
|p|2+U(q)−iεTr(αR)

)

+∇ξWT (A(ξ+q)−A(q))−2ξTαR∇ξW

+
iε

2
∆ξW− i

ε

(

Ur−2ξTαRA(1)−AT
r p
)

W.

Observe that, if we take

γ̇2=
1

2
|p|2−U(q)+iεTr(αR), (2.6)

the W equation can be obviously simplified. However, we should not determine the αR

equation directly from the W equation. As was analyzed in [47,48], in the Gaussian wave
packet transform, αR is considered as the real part of the complexed valued symmetric

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0131 | Generated on 2024-12-21 12:37:07



476 Z. Zhou and G. Russo / Commun. Comput. Phys., 26 (2019), pp. 469-505

matrix α, and α satisfies the same equation for the Hessian matrix in the standard Gaus-
sian beam method. Namely, α satisfies

α̇=−2α2− 1

2
∇∇U(q)+∇A(q)Tα+α∇A(q)+

1

2
∇∇A(q)·p, (2.7)

whose real part is

α̇R =2α2
I −2α2

R−
1

2
∇∇U(q)+∇A(q)TαR+αR∇A(q)+

1

2
∇∇A(q)·p. (2.8)

And, αI , which is the imaginary part of α, is also a real-valued N×N matrix, and it
satisfies

α̇I =−2αI αR−2αRαI+∇A(q)TαI+αI∇A(q).

Then, with (2.6) and (2.8), the W equation reduces to

Wt =∇ξWT (A(ξ+q)−A(q))−2ξTαR∇ξW+
iε

2
∆ξW

− i

ε

(

Ur−2ξTαRA(1)−AT
r p+2ξTα2

I ξ
)

W.

At last, we introduce the change of variables as in [47, 48], W(ξ,t)=w(η,t), where

η=Bξ/
√

ε. (2.9)

Observe that, with this change of variable the W function has O(
√

ε) support in ξ while
the w function has O(1) support in η. As we shall show in the following, due to this
particular relation (2.9), the w function is not oscillatory neither in space nor in time.
Here, B will be specified by the following equation,

Ḃ=−2BαR+B∇A(q) (2.10)

with B(0)=
√

αI(0). Actually, we can relate B to other quantities that we have defined.
By straightforward calculation, one obtains

d

dt
(BTB)=−2BTBαR−2αRBTB+∇A(q)TBTB+BTB∇A(q).

This means, since we take B(0)=
√

αI(0), it holds that

B(t)TB(t)=αI(t), ∀t≥0. (2.11)

Also, note that B(t) may not necessarily be symmetric even though B(0) is symmetric,
because the equation of B(t) does not preserve the symmetry. We remark that it has been
proven in [46, 56] that αI will remain positive definite if initialized properly. According
to (2.11), this implies, B(t) will remain invertible with the initial condition given above.
Therefore, ξ=

√
εB−1η is always well-defined.
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With this change of variable, the W equation becomes the following equation of w

wt=
i

2
Tr
(

BT∇η∇ηwB
)

−2iηT(BT)−1α2
I B−1ηw

+
1√

ε
∇ηwTBA(1)+

1

iε

(

Ur−2
√

εAT
(1)αRB−1η−AT

r p
)

w. (2.12)

Observe that the support of the w function in the η variable is O(1),

A(1)=O(ε), Ar =O(ε3/2), Ur =O(ε3/2).

Thus, we conclude that

1√
ε

A(1)=O(
√

ε),

1

iε

(

Ur−2
√

εAT
(1)αRB−1η−AT

r p
)

=O(
√

ε),

so the w equation does not generate or propagate high frequency wave solutions when
ε≪ 1 and the initial data does not contain ε scaled oscillations. Moreover, if one drops
those O(

√
ε) terms, one expects to recover the leading order Gaussian beam method, as

is shown in [47, 48]. However, note that due to the fact the GWT parameters are time
dependent, the coefficients in the w equation are also time dependent, which gives rise
to additional challenges for numerical implementations.

To summarize, with the Gaussian wave packet transform, the Schrödinger equation
(1.5) equivalently transforms to the w equation (2.12) together with the ODE system of
Gaussian wave packet parameters











































q̇= p−A(q),

ṗ=∇A(q)T p−∇U(q),

α̇=−2α2− 1

2
∇∇U(q)+∇A(q)Tα+α∇A(q)+

1

2
∇∇A(q)·p,

γ̇2=
1

2
|p|2−U(q)+iεTr(αR),

Ḃ=−2BαR+B∇A(q).

(2.13)

Compared with the Gaussian beam method, the equations of the parameters q, p and
α are exactly the same, but the equations for γ and γ2 differ slightly,

d

dt
(γ−γ2)=−εTr(αI).

However, it’s worth emphasizing that the Gaussian wave packet transform is an exact
reformulation, rather than an approximation like the Gaussian beam method.

We remark however that as ε becomes smaller and smaller, then better and better
accuracy is required in the solution of the ODE system for the Gaussian wave packet
parameters, since the phase of the wave function ψ contains a factor 1/ε, and small error
in the phase may be amplified by a large factor.
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2.2 Initial condition and extensions

In this part, we summarize the procedures of the Gaussian wave packet transform meth-
od and discuss the possible initial conditions that this approach can handle. We start with
an initial condition in a Gaussian profile:

ψ(x,0)=exp
(

i
(

ξT
0 Cξ0+ξT

0 p0+δ
)

/ε
)

, (2.14)

where ξ0 = x−x0, C is a symmetric complex valued matrix, with its imaginary part CI

positive definite and δ is a complex valued scalar.
Clearly, it follows from ansatz (2.1) and the change of variable (2.9) that, if we specify

B(0)=
√

CI , the initial condition for the w equation is

w(η,0)= e−ηTη. (2.15)

Note that CI is positive definite, so that B(0) is well defined. Besides, we want to empha-
size that the initial condition for w is actually independent of the Gaussian wave packet
parameters. Now, we are ready to give the initial conditions for the parameters:

q(0)= x0, p(0)= p0, α(0)=C, γ2(0)=δ, B(0)=
√

CI .

Therefore, given the Schrödinger equation (1.5) with initial condition (2.14), one can
alternatively solve the w equation (2.12) and the ODE system (2.13) with initial conditions
defined above, and the solution to the original problem is reconstructed by

ψ(x,t)=w(Bξ/
√

ε,t)exp
(

i
(

ξTαRξ+pTξ+γ2

)

/ε
)

, (2.16)

where we recall that ξ=x−q(t). We remark that, not only the w equation (2.12) and the
system (2.13) contain no stiffness as ε→ 0, but also the high oscillation is removed from
the initial condition for the w equation. Therefore, meshes which do not depend on ε are
allowed for the w equation for accurate numerical approximations.

However, in practice, the initial conditions may not take the form of a Gaussian wave
packet. In case of more general initial functions, one solution is to decompose the func-
tion into a sum of Gaussian wave packets, and solve the problem by the Gaussian wave
packet transform for each wave packet individually. Due to the linearity of the problem,
the sum of all the reconstructed solutions is exactly the solution to the original problem.
The decomposition itself is an active area of research. To our knowledge, one of the best
results is given by Qian and Ying in [45], where they proposed a fast algorithm to decom-
pose a wide class of smooth functions into a superposition of Gaussian wave packets.

On the other hand, due to the flexibility of this transform, as discussed in [47, 48], the
Gaussian wave packet transform if capable of handing more general initial conditions in
a natural way. Now, consider the initial conditions of the following form

ψ(x,0)= f (x−q0)exp
(

i
(

g(x−q0)+(x−q)T p0+δ
)

/ε
)

, (2.17)
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where f and g are complex valued smooth functions, with f bounded. Without loss of
generality, we demand g(0)=0, ∇g(0)=0, Img be convex, and if we define C=CR+iCI=
∇∇g(0)/2, we also require that CI is positive definite. Now the initial condition for the
w equation becomes

w(η,0)= f (ξ)exp
(

i
(

g(ξ)−ξTCRξ
)

/ε
)

,

where ξ=x−q0=
√

εB−1η. And the initial conditions for the system (2.13) are

q(0)=q0, p(0)= p0, α(0)=C, γ2(0)=δ, B(0)=
√

CI .

For another example, we consider the initial condition of the following form

ψ(x,0)= c
(

exp
(

−|x−a|2/ε
)

+exp
(

−|x+a|2/ε
))

, (2.18)

where c is a normalization constant. This is an initial wave function which consists of
two peaks at x=±a respectively, and conventionally, one can treat it as a superposition
of two Gaussian wave packets, and evolve them separately. However, in the view of the
Gaussian wave packet transform, we can set

ψ(x,0)= f (x)exp(−|x|2/ε),

and get

f (x)= c

(

exp

(

−−2aTx+|a|2
ε

)

+exp

(

−2aTx+|a|2
ε

))

.

Thus, if we define C= I, the initial conditions for the system (2.13) are

q(0)=0, p(0)=0, α(0)=C, γ2(0)=0, B(0)=
√

CI .

And the initial condition for the w equation becomes

w(η,0)= cexp(−|η|2/2)

(

exp

(

2
aTη√

ε
− |a|2

ε

)

+exp

(

−2
aTη√

ε
− |a|2

ε

))

.

We observe that, if a=O(
√

ε), then w(η,0) effectively has O(1) support and is not oscil-
latory when ε≪ 1. In other words, it shows the Gaussian wave packet transform has a
potential to reduce the number of wave packets to approximate general wave functions.

From this point of view, the Gaussian wave packet transform can deal with initial
conditions of a wider class, which implies one does not have to necessarily decompose
a smooth initial condition into a superposition of modulated Gaussian wave packets.
We would like to explore in the future whether a better decomposition method can be
introduced so that the whole method will become more efficient.

We remark that, as is pointed out in [47, 48], the Gaussian wave packet transform
facilitates efficient calculation of a large family of physical observables without recon-
structing the wave function. In other words, those physical observables can be expressed
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in terms of the w function and the Gaussian wave packet parameters. In the presence of
the vector potentials, the expressions can be derived without additional difficulties. For
examples, the expectation value of the position can be obtained by

< x>=
∫

x|ψ|2dx=q(t)+
ε(N+1)/2

|B| e−2Im(γ2)/εB−1
∫

η|w|2dη. (2.19)

Here, |B| denotes the determinant of B.
We would like to conclude this section with comments on the computational domain

of the w equation. If the initial condition to the Schrödinger equation (1.5) is of a Gaussian
profile, its effective width is O(

√
ε). And due to the relations between the x variable and

the η variable, we learn that we should truncate the η space to a O(1) domain in order to
enforce the periodic boundary condition with negligible domain truncation error. When
the initial condition is of a general type, clearly for a wide class of initial conditions, it
suffices to prescribe a O(1) domain for the w equation.

3 Numerical implementation

In the section, we propose and analyze numerical methods to implement the Gaussian
wave packet transform approach. The numerical simulation of the ODE system (2.13)
is standard. Besides, since the system does not depend on the w equation (2.12), one
can numerically solve the parameters till any given time with arbitrary time steps and to
arbitrary accuracy. Note that, the time steps in solving the ODE system has to be ε de-
pendent, since the numerical error will be magnified by a factor of ε−1. However, this is
not considered as a challenge due to the existence of various higher ODE solvers. For ex-
ample, if a forth order ODE solver is applied to the system, the time steps in numerically
integrating the ODE system can be taken as O(ε−1/4).

Because in general, solving the ODE system is much cheaper than numerically solving
the partial differential equations, we would assume the parameters are solved firstly with
minimal error and we, therefore, only need to focus on numerical methods for the w
equation.

3.1 Description of the numerical method for the w equation

In this part, we give a full construction of the numerical method for the w equation.
We start with time splitting of the w equation. Here, we propose two ways to split the
Hamiltonian.

Three step scheme. The first way agrees with what is done in [33] for the Schrödinger
equation: for every time step t∈ [tn ,tn+1], one solves the kinetic step

wt=
i

2
Tr
(

BT∇η∇ηwB
)

, t∈ [tn ,tn+1], (3.1)
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followed by the potential step

wt=−2iηT(BT)−1α2
I B−1ηw+

1

iε

(

Ur−2
√

εAT
(1)αRB−1η−AT

r p
)

w, t∈ [tn ,tn+1], (3.2)

and followed by the convection step

wt=
1√

ε
∇ηwTBA(1), t∈ [tn,tn+1]. (3.3)

Two step scheme. The second way is to combine the potential step and the convection
step together. Namely, for every time step t∈ [tn ,tn+1], one solves the kinetic step

wt=
i

2
Tr
(

BT∇η∇ηwB
)

, t∈ [tn ,tn+1], (3.4)

followed by the convection-potential step

wt=−2iηT(BT)−1α2
I B−1ηw+

1

iε

(

Ur−2
√

εAT
(1)αRB−1η−AT

r p
)

w

+
1√

ε
∇ηwTBA(1), t∈ [tn ,tn+1]. (3.5)

Compared to the Schrödinger equation, the w equation is significantly cheaper to
solve because the w function is essentially not oscillatory. However, even with operator
splitting, there is no practical way to solve the w equation by analytical solutions in each
substep because the coefficients are time dependent.

For simplicity, we present the numerical method to solve the w equation (2.12) in one
dimension with periodic boundary conditions. The extension to multidimensional cases
is straightforward with no essential technical difficulties, and some multidimensional
numerical tests will be presented in Section 4.

We assume, on the computational domain [a,b], a uniform spatial grid ηj = a+ j∆η,
j = 0,··· ,N−1, where N = 2n0 , n0 is an positive integer and ∆η = (b−a)/N. We also
assume uniform time steps tn =n∆t, n=0,··· ,nmax. The numerical approximation of the
w function at t= tn is denoted by wn, with components denoted by wn

j . The construction

of numerical methods is based on the operator splitting technique. For clarity, we only
discuss the first order splitting for this moment. The extension to higher order splitting
methods will be discussed later.

Kinetic step. The kinetic step can be very effectively solved in Fourier space. In the one
dimensional case, we define the Fourier coefficients of wk in the following way

ζl =
2πl

b−a
, ŵk

l =
N−1

∑
j=0

wk
j e−iζl(ηj−a), l=−N

2
,··· , N

2
−1.
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By applying the Fourier transform to the kinetic step, we obtain

ŵt=− i

2
B2ζ2ŵ.

Thus, the analytical solution to the kinetic step is

ŵ(ζ,t)=exp

(

−i
∫ t

t0

1

2
B2ζ2ds

)

ŵ(ζ,t0). (3.6)

Recall that, we have assumed B(t) has been solved in advance with great accuracy. Then
to numerically solve w(t) with a specific order of accuracy in time, one just needs to apply
some quadrature rules of the corresponding order to approximate the time integral in
(3.6). Note that, in the time approximation with quadratures, the spatial variable ζ acts
as a parameter. We denote the approximation of the time integral at ζ= ζl by Kn

l , namely

Kn
l ≈

∫ tn+1

tn

1

2
B2ζ2

l ds (3.7)

and obviously |exp(−iKn
l )|=1. Then, the numerical solution to the kinetic step is given

by the following:

wn+1
j =

1

N

N/2−1

∑
l=−N/2

e−iKn
l ŵn

l eiζl (ηj−a), j=0,··· ,N−1. (3.8)

Potential step. Next, to simplify the notations, we introduce for the potential step and
the convection step

F(η,t)=−2iηB−1α2
I B−1η+

1

iε

(

Ur−2
√

εA(1)αRB−1η−Ar p
)

,

and

G(η,t)=
1√

ε
BA(1),

where G(η,t) is real-valued and F(η,t) is purely imaginary. Thus, the potential step be-
comes

wt=F(η,t)w, (3.9)

and the convection step becomes

wt=G(η,t)wη. (3.10)

For the potential step (3.9), the analytical solution is

w(η,t)=exp

(

∫ t

t0

F(η,s)ds

)

w(η,t0).
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And to obtain a numerical scheme of certain order, one just needs to apply a correspond-
ing quadrature rule to approximate the time integral. We denote the approximation of
the integral at η=ηj by Fk

j , i.e.

Fn
j ≈

∫ tn+1

tn

F(ηj,s)ds

and obviously |exp(Fj)|=1. Then, the numerical method to the potential step is given by

wn+1
j = e

Fn
j wn

j , j=0,··· ,N−1.

Convection step. The convection part (3.10), however, has to be treated differently be-
cause on the discrete spatial grids, there is no analytical solution that one can make use
of. Here, we use the semi-Lagrangian method as proposed in [33] to solve the convection
part. This method consists of two parts: backward characteristic tracing and interpola-
tion. To compute the data wn+1

j which are approximations of w(ηj,tn+1), we firstly trace

backwards along the characteristic line, along which w remains constant:

dη(t)

dt
=−G(η(t),t), η(tn+1)=ηj, (3.11)

for time interval [tn,tn+1]. If we denote η(tn) = η0
j , obtained by numerically solving

the ODE (3.11) backwards in time, then by the method of characteristics, w(ηj,tn+1) =
w(η0

j ,tn). However, the numerical approximations of w(η0
j ,tn) are not in general known

since η0
j may not be the grid points. Therefore, certain interpolation is needed to calcu-

late wn+1
j ≈w(ηj,tn+1)=w(η0

j ,tn). The semi-Lagrangian method for the convection step

with the polynomial interpolation has been studied in [33], and the one with the spectral
interpolation is studied in [13]. We remark that, with the Nonuniform FFT algorithms,
the numerical cost of the spectral interpolation in the convection step can be reduced to
O(N logN) (see [13, 19]), which is comparable to the numerical cost in the kinetic step.
In this paper, we choose to apply the spectral interpolation to compute {wn+1

j } based on

{η0
j }, which is spectrally accurate in space and unconditionally stable.

In summary, for the convection step, we proposed a semi-Lagrangian method which
consists of numerically solving the characteristic equations backward in time and apply-
ing spectral interpolation to compute the point values.

With the full description of the scheme above, we name the whole scheme the three-
part semi-Lagrangian time splitting spectral method (abbreviated by SL-TS3).

Convection-Potential step. Next, we discuss the numerical approximation for the con-
vection-potential step:

wt=G(η,t)wη+F(η,t)w. (3.12)
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Following the characteristics,
dη(t)

dt
=−G(η(t),t),

we rewrite the convection-potential step as,

wt(η(t),t)=F(η(t),t)w(η(t),t).

So the exact solution to this step is

w(t,η(t))=exp

(

∫ t

t0

F(η(s),s)ds

)

w(t0,η(t0)).

In order to make use of this solution, one can numerically approximate the time inte-
gral

∫ t

t0

F(η(s),s)ds≈Πm F,

where ΠmF is an order m approximation with corresponding quadrature points. For
example, one may take

Π1F=(t−t0)F(η(t0),t0) and Π2F=
1

2
(t−t0)(F(η(t0),t0)+F(η(t),t)) .

Also, note that ΠmF is different from Fj defined before because here η(t) is no longer
constant in time, but it is a time dependent trajectory.

Obviously, if η(t) is exactly known, ΠmF is indeed an order m approximation of that
time integral. However, note that η(t) is yet to be approximated as well with a certain
order of accuracy, so direct discretization ΠmF with approximate η(t) may not yield an
order m accuracy. But, as we show in the following, the error in the backward tracing of
η(t) is much smaller than the numerical approximation error of the time integral of F.

To simplify the analysis, we define H(t)=
∫ t

tn
F(η(s),s)ds, and consider the system















d

dt
H(t)=F(η(t),t), H(tn)=0,

d

dt
η(t)=−G(η(t),t), η(tn+1)=ηj.

And we are solving for η(tn) and H(tn+1), which we call the backward-forward step.
The key observation is, clearly, F=O(1) but G=O(

√
ε). Also, the equation of η(t) is

independent of the equation for H(t). Therefore, we can first apply an ODE solver for the
η(t) equation with the numerical error reduced by a factor

√
ε, and subsequently solve

for H(t) with the same or a different ODE solver. And the accuracy order of H(t) follows
by standard numerical analysis. Note that, even if G=O(1), the accuracy argument is
still valid, but the fact that G=O(

√
ε) makes the error in finding η(t) much smaller than

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0131 | Generated on 2024-12-21 12:37:07



Z. Zhou and G. Russo / Commun. Comput. Phys., 26 (2019), pp. 469-505 485

that in H(t). Besides, it is worth emphasizing that, the backward-forward step has only
O(N) cost, which is much less than the cost of the kinetic step, which is O(N logN).

We remark that, we would introduce the convection-potential step for the w equation
mainly due to the following two reasons:

1. The convection velocity −G=O(
√

ε), and the w function is essentially not oscilla-
tory, which is very different from the original Schrödinger equation. Therefore, the
exact solution to the convection-potential step can easily be approximated numeri-
cally with satisfactory accuracy.

2. If one aims for a higher order method in time for the w equation, a higher order
operator splitting technique needs to be applied. In this sense, a two-part split-
ting is more efficient than a three-part splitting. We shall elaborate this point in
Section 3.2.2.

With the full description of the whole scheme above, we name this whole scheme the
two-part semi-Lagrangian time splitting spectral method (abbreviated by SL-TS2). We
also remark that, the NUFFT algorithms used in the proposed methods can be imple-
mented in multidimensional cases as well (see [13, 19]), and the numerical performances
will be shown in Section 4.

3.2 Stability and accuracy

In this section, we will show that the SL-TS2 and the SL-TS3 methods for the one di-
mensional w equation are unconditionally stable when the error in solving the backward
tracing step is negligible. The extension to the multidimensional cases is straightforward,
and in Section 4 we numerically test the performance of these methods in some multidi-
mensional problems.

3.2.1 Stability

For the stability analysis, because the w equation is linear, in the perspective of the oper-
ator splitting, it suffices to show the stability for each sub-step.

We start by studying the convection step. As is analyzed in [13, 33, 51], if the error
in backward characteristic tracing is negligible, the semi-Lagrangian method for the con-
vection part is unconditionally stable. In the w equation, the convection velocity G(η,t)
is time-dependent due its dependence on the GWT parameters, so one should solve the
characteristic equations for every time step. Thanks to the fact that the convection ve-
locity −G =O(

√
ε), it is affordable to approximate the backward characteristics with

minimal error.

Define wn to be the numerical approximation of the w function at the beginning of
the convection step at t= tn with wn

j as components. And we denote by wn
I the spectral
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approximation of the w function based on wn, namely

wn
I (x)=

1

N

N/2−1

∑
l=−N/2

ŵn
l eiζl (x−a), a< x<b,

where we recall ŵk
l are the Fourier coefficients based on wn

j . One immediate result is,

with the periodic boundary condition,

‖wn‖l2 =‖wn
I ‖L2 =

∥

∥wn
I (ηj)

∥

∥

l2 .

Here, the norms used are defined in the following

‖wn‖l2 =

(

b−a

N

N

∑
j=1

|wn
j |2
)1/2

, ‖wn
I ‖L2 =

(

∫ b

a
|wn

I (x)|2dx

)1/2

.

According to the stability analysis in [13, 33, 51], if η0
j are computed with negligible

error,
∥

∥

∥
W̃n+1

∥

∥

∥

l2
=
∥

∥

∥
wn

I (η
0
j )
∥

∥

∥

l2
6 (1+C∆t)

∥

∥wn
I (ηj)

∥

∥

l2 =(1+C∆t)‖wn‖l2 ,

where the constant C can be taken as maxt‖∂ηG(η,t)‖L∞ . In particular, C is independent
of ∆t, and C = 0 when G(η,t) is divergence free. Here, the inequality follows from the
fact that the norm of the projection operator on the pseudo-spectral subspace is no larger
than 1 and by a standard estimate of the analytical evolution operator of the convection
equation, see [13, 51].

Next, in the potential step, recalling that Fj are purely imaginary, we conclude that,

|wk+1
j |= |eFj wk

j |= |wk
j |,

which implies ‖wk+1‖l2 = ‖wk‖l2 . Hence, the numerical method for the potential step is
unconditionally stable.

Based on the results in the convection step and the potential step, we can easily show
that the numerical method for the convection-potential step in SL-TS2 is also uncondi-
tionally stable.

Finally, we aim to prove that the numerical method for the kinetic step as in (3.7)
and (3.8) is unconditionally stable. The calculation is similar to that in [2], but to our best
knowledge, the stability analysis with time dependent coefficient has not been considered
before. Unlike the cases considered in [2] where the time integration is exact for each
Fourier coefficient, with time dependent coefficients in Eq. (3.4), the time integration may
be approximated in the numerical scheme. However, the numerical approximation in
(3.7) does not violate the unitariness of the time evolution corresponding to the kinetic
operator, so as is shown below the l2 norm is still conserved. The proof is given by the
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following calculations

1

b−a
‖wk+1‖l2 =

1

N

N−1

∑
j=0

|wk+1
j |2= 1

N

N−1

∑
j=0

∣

∣

∣

∣

∣

1

N

N/2−1

∑
l=−N/2

e−iKk
l ŵk

l eiζl (ηj−a)

∣

∣

∣

∣

∣

2

=
1

N3

N−1

∑
j=0

N/2−1

∑
l1=−N/2

N/2−1

∑
l2=−N/2

e
−i(Kk

l1
−Kk

l2
)
ŵk

l1
ŵk

l2
ei(ηj−a)(ζl1

−ζl2
)

=
1

N3

N−1

∑
j=0

N/2−1

∑
l1=−N/2

N/2−1

∑
l2=−N/2

e
−i(Kk

l1
−Kk

l2
)
ŵk

l1
ŵk

l2
ei2π j(l1−l2)/N

=
1

N2

N/2−1

∑
l=−N/2

|ŵk
l |2,

where ŵk
l denotes the Fourier coefficients. Then, we obtain

1

b−a
‖wk+1‖l2 =

1

N2

N/2−1

∑
l=−N/2

∣

∣

∣

∣

∣

N−1

∑
j=0

wk
j e−iζl(ηj−a)

∣

∣

∣

∣

∣

2

=
1

N

N−1

∑
j=0

|wk
j |2=

1

b−a
‖wk‖l2

.

Here, we have used the identities

N−1

∑
j=0

exp

(

i
2π(k−l)j

N

)

=
N/2−1

∑
l=−N/2

exp

(

i
2π(k−l)j

N

)

=Nδkl ,

where δkl=1 when k−l=mN, m∈Z, otherwise δkl=0. We remark that, this result suggests
that no matter how accurate Kl are in approximating the phase multiplier in the kinetic
step, the spectral method preserves the l2 norm exactly.

To sum up, we have shown that both the SL-TS2 method and the SL-TS3 method for
the w equation are unconditionally stable, which facilitates us to study the convergence
results.

3.2.2 Accuracy and other comments

The numerical error of a scheme based on the Gaussian wave packet transform is mainly
due to the following three sources: numerical approximation for the Gaussian wave
packet parameters, the operator splitting for the w equation, the numerical approxima-
tion for the w function in each sub step. The errors introduced by the numerical approxi-
mation of the Gaussian wave packet parameters and by operator splitting are standard.

For the operator splitting error, if one aims for a high order method, compared with
SL-TS3, the SL-TS2 method would be more efficient because as is analyzed in [12], it
is harder and takes more sub-steps to construct a high order operator splitting methods
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with three parts. For example, to our best knowledge, the fourth order operators splitting
method with two parts requires at least 5 steps, while the fourth order operator splitting
method with three parts requires at least 12 steps (see [12, 54]).

Next, we turn to discuss the error in solving the w equation for each sub-step. Observe
that the smoothnesses of the vector potential A and the scalar potential V(x) indicate that
F(η,t), G(η,t) and their derivatives are of order O(1) and order O(

√
ε), respectively. In

addition, recall the w function is not oscillatory. By standard arguments, one concludes
that the method has spectral accuracy in space for the potential and kinetic step. If one
chooses to use spectral interpolation for the semi-Lagrangian method in the convection
part, the method also has spectral accuracy in space in the convection or convection-
potential step. Also, one safely concludes that the accuracy in time for each step is dom-
inated by the quadrature rules used and the ODE solver chosen for the characteristic
equations.

To conclude this section, we want to emphasize that the domain of the w equation is
chosen in an ad hoc way, which may introduce some noticeable error as well. This issue
has been discussed in [47, 48], and in numerical tests we numerically check whether the
computational domain has been chosen large enough.

3.3 Reference solution and error evaluation

As discussed in the introduction, one of the alternative approach to solve the Schrödinger
with vector potentials is the semi-Lagrangian time-splitting method introduced in [13,33]
(abbreviated by SL-TS). This method is based on the Fourier spectral method for the po-
tential and the kinetic step, and a semi-Lagrangian method in the convection step. The
method is unconditionally stable, has spectral accuracy in space if a spectral interpola-
tion method is used in the convection step, and can be constructed to be arbitrary order
accurate in time. However, in the semi-classical regime, due to the O(ε) small scale os-
cillation in space and time, one has to take the following meshing strategy to get the
accurate approximation of the wave function:

∆t=O(ε), ∆x=O(ε).

In the numerical tests of time convergence, we will use this method with sufficiently fine
mesh to compute the reference solution.

Note that, by the Gaussian wave packet transform approach, the computation domain
is fixed in the η space. However, the corresponding domain in the x space is varying in
time due to the relation:

x=q(t)+
√

εB(t)−1η.

Therefore, we need to apply certain interpolation to match the data points with the refer-
ence solution. Here, we choose to use spectral interpolation to maintain high accuracy.

Besides, note that the corresponding domain in the x space may not be square. Then
in one dimensional tests, it is still reasonable to compute the absolute error, but in high di-
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mensional cases, it is more convenient to compute the relative error instead. The readers
may refer to [48] to see more discussions on this issue.

4 Numerical examples

In this section, we aim to test the SL-TS2 method and the SL-TS3 method proposed in
the previous sections. We would like to remind the readers that the numbers in the ab-
breviations indicate how many parts the Hamiltonian is divided into. We choose to use
the Strang splitting in time and spectral interpolation in the convection step. Hence, we
expect to verify the second order convergence in time and the spectral convergence in
space. Also, we want to test whether the proposed methods can handle more general
initial conditions. Both one dimensional and two dimensional tests are provided. All the
numerical tests are implemented on Matlab R2017a by a Lenovo Thinkpad laptop (CPU:
Intel(R) Core(TM) i5-6200U; RAM: 8.00GB) with a Windows 10 system. The interested
readers are welcome to contact the authors for the codes.

Example 4.1. In this problem, we consider the one dimensional Schrödinger equation
with the scalar potential and the vector potential given by

V(x)=1+cos(x), A(x)=sin(x).

The initial condition is given by a Gaussian wave packet

ψ0(x)=

(

2Im(α0)

πε

)1/4

exp

(

i
α0(x−q0)2

ε
+i

p0(x−q0)

ε
+i

γ0

ε

)

, (4.1)

where

q0=
π

4
, p0=−1

2
, α0= i, γ0=0.

Note that, the initial wave function has been properly normalized.
Before investigating the convergence behavior in time and in space separately, we

want to compare the respective errors from time discretization and from spatial dis-
cretization. To this end, we fix ε= 1/256, and compare the solutions of the GWT based
SL-TS3 method with various ∆η and ∆t to the reference solution at t=0.5. The reference
solution is computed by the SL-TS method with highly resolved mesh: ∆x = 2πε/32,
∆t= ε/32. And L2 errors are plotted in Fig. 1, from which we clearly see that when the
spatial mesh is highly coarse, the numerical error is dominated by the spatial error, which
are manifested by the ”plateaus” the error curves reach when ∆t decreases for ∆η=π/4,
∆η =π/5 and π/6. But, when the spatial mesh is fine enough (e.g. ∆η ≤π/8), the nu-
merical error is dominated by the time discretization. And we can clearly observe second
order convergence in time for ∆η=π/8, ∆η=π/9 and π/10. Similar tests have been done
with the GWT based SL-TS2 method, but the results are rather similar, so we choose to
omit them in this work. We carry out detailed convergence studies in the following.
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Figure 1: (Example 4.1) ε=1/256. Reference solution SL-TS: ∆x=2πε/32, ∆t= ε/32. GWT based SL-TS3
method: ∆η=π/4, ∆η=π/5, ∆η =π/6, ∆η=π/7, ∆η=π/8, ∆η =π/9 and ∆η=π/10; ∆t= 1/4, 1/8,
1/16, 1/32, 1/64, 1/128, 1/256 and 1/512.

In this part, we would like to test the convergence in time. The reference solution is
computed on [−π,π], till the comparison time T=0.5. For various ε, the corresponding
meshing strategy is ∆x=2πε/32 and ∆t= ε/32, which is sufficiently refined to generate
benchmark solutions.

To test the convergence in time of the SL-TS3 method, we apply the fourth order
Runge-Kutta method to the ODE system of the parameters with time step δt, and for the
w equation, we choose the computation domain to be [−2π,2π] with well-resolved spa-
tial mesh ∆η=4π/1024. For various ε=1/256, 1/512, 1/1024, 1/2048, and various time
steps ∆t=1/8, 1/16, 1/32, 1/64, 1/128, we calculate the error of the numerical solution
in L2 norm. Note that, with resolved spatial mesh, the error in spatial discretization is
minimal compared to the error in time. Also, since the time step δt for the ODE sys-
tem is independent of the choice of ∆t, and the ODE’s are cheaper to solve, we choose
δt=∆t/40, which makes the error in evolving the parameters negligible. Recall that, the
ODE’s have to be computed very accurately since the error in the phase function is mag-
nified by ε−1. Also, we remark that other accurate ODE integrators can also be applied
here, such as symplectic integrators. Thus, we expect the numerical error is dominated
by the error in time discretization. We plot the results in Table 1, which clearly shows the
second order convergence in ∆t. Besides, we also notice that the error seems to be inde-
pendent of ε, which is expected as well because the Gaussian wave packet transform is
an exact reformulation. Next, we repeat the tests with the SL-TS2 method, and print the
results in Table 2. We see clearly, the errors with the SL-TS2 method is nearly the same as
the previous case.
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Table 1: (Example 4.1) ε=1/256, 1/512, 1/1024, 1/2048. Reference solution SL-TS: ∆x=2πε/32, ∆t=ε/32.
Comparing with GWT based SL-TS3 method: ∆η=4π/1024, ∆t=1/8, 1/16, 1/32, 1/64, 1/128.

L2 error ∆t=1/8 ∆t=1/16 ∆t=1/32 ∆t=1/64 ∆t=1/128

ε=1/256 3.431e-3 8.457e-4 2.056e-4 4.653e-5 1.047e-5

ε=1/512 3.428e-3 8.467e-4 2.071e-4 4.701e-5 1.056e-5

ε=1/1024 3.444e-3 8.491e-4 2.064e-4 4.673e-5 1.035e-5

ε=1/2048 3.447e-3 8.496e-4 2.066e-4 4.676e-5 1.034e-5

Table 2: (Example 4.1) ε=1/256, 1/512, 1/1024, 1/2048. Reference solution SL-TS: ∆x=2πε/32, ∆t=ε/32.
Comparing with GWT based SL-TS2 method: ∆η=4π/1024, ∆t=1/8, 1/16, 1/32, 1/64, 1/128.

L2 error ∆t=1/8 ∆t=1/16 ∆t=1/32 ∆t=1/64 ∆t=1/128

ε=1/256 3.425e-3 8.424e-4 2.049e-4 4.740e-5 1.022e-5

ε=1/512 3.437e-3 8.464e-4 2.058e-4 4.708e-5 1.128e-5

ε=1/1024 3.443e-3 8.483e-4 2.063e-4 4.694e-5 1.081e-5

ε=1/2048 3.446e-3 8.492e-4 2.065e-4 4.689e-5 1.056e-5

Table 3: (Example 4.1) ε=1/1024, 1/2048. Reference solution, GWT based SL-TS2 with ∆η=2π/4096 and
∆t= 1/2048. Comparing with GWT based SL-TS2 method: ∆t= 1/1024, ∆η = π/1, π/2, π/4, π/8 and
π/16.

L2 error ∆η=π/1 ∆η=π/2 ∆η=π/4 ∆η=π/8 ∆η=π/16

ε=1/1024 8.446e-1 2.955e-1 1.269e-2 7.234e-8 7.956e-11

ε=1/2048 8.427e-1 2.888e-1 1.226e-2 6.371e-8 7.953e-11

We now move on to test the spatial convergence. To eliminate the error in time dis-
cretization in comparison, we use the numerical solution by the SL-TS3 method with
sufficiently fine mesh as the reference solution:

∆η=
2π

4096
, ∆t=

1

2048
.

For ε = 1/1024, 1/2048, we compute the numerical solution by the SL-TS3 method
with same time step as the reference solution, but with various spatial mesh size ∆η =
π/1, π/2, π/4, π/8 and π/16. The results are plotted in Table 3, from which we see
clearly that as ∆η decreases, the numerical error decays exponentially fast until it be-
comes minimal. We remark that the same tests have been done with the SL-TS2 method,
and the results are almost the same, so we omit this part in the paper.

After studying the convergence performances of the GWT based SL-TS3 method in
time and in space, we now compare its running times with those of the direct solver
when the numerical errors are similar. We fix ε = 1/1024, and the reference solution
is computed by the direct solver, SL-TS, with sufficiently resolved mesh ∆x = 2πε/32,
∆t= ε/32. We compare the reference solution with the numerical solutions by the direct
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Table 4: (Example 4.1) ε=1/1024. Reference solution SL-TS: ∆x=2πε/32, ∆t= ε/32. Upper table: SL-TS
∆x=2πε/8, various ∆t. Lower table: GWT based SL-TS3 with ∆η=π/16, various ∆t.

ε=1/1024 ∆t=1/128 ∆t=1/256 ∆t=1/512 ∆t=1/1024 ∆t=1/2048

L2 error 2.840e-3 7.101e-4 1.775e-4 4.434e-5 1.105e-5

Running Time 1.614 3.187 6.005 11.36 23.36

ε=1/1024 ∆t=1/10 ∆t=1/20 ∆t=1/40 ∆t=1/80 ∆t=1/160

L2 error 2.201e-3 5.476e-4 1.367e-4 3.415e-5 8.515e-6

Running Time 1.282e-3 2.062e-3 4.286e-3 8.594e-3 1.601e-2

solver with merely resolved spatial mesh ∆x=2πε/8 and various ∆t such that there are
only a few spatial grid points for each wave length, and the numerical error is dominated
by the time discretization error. The running times and the numerical errors are recorded
for each test in Table 4. We repeat the test with the GWT based SL-TS3 method with
∆η = π/16, various ∆t, and the results are shown in Table 4. According the previous
test problems we know that, with this combination of spatial and temporal mesh, the
spatial discretization error is negligible compared with the time discretization error. We
emphasize that, the GWT based SL-TS3 method is far from being optimized, but we
already observe significant amount of savings in computation times. Again, the same
tests have been done with the SL-TS2 method, and the results are almost the same, so we
omit this part in the paper.

To further demonstrate the efficiency of the Gaussian wave packets transform in terms
of spatial meshes, we focus on the case when ε= 1/1024, and numerical solution is ob-
tained by the SL-TS3 method with ∆t = 1/2048 and ∆η =π/16, but the wave function
ψ(x) is reconstructed by the Fourier interpolation in the w function on a refined mesh
with ∆x=π/8192, which is compared with the reference solution computed by the SL-
TS method for the Schrödinger with highly resolved time steps and spatial meshes, see
Fig. 2. The pointwise error is also plotted in Fig. 2 to further manifest the accuracy of the
SL-TS3 method. Besides, we plot the computed grid values of W(ξ−q) (we have shifted
W by the beam center to facilitate comparison) in the same plot and w(η) in the next plot
to show that, the computational grid does not resolve the wave function ψ(x) at all, it
only resolves the non-oscillatory w(η), which is sufficient to ensure accurate reconstruc-
tion of the wave function ψ(x).

Finally, we report the error growth of the GWT method in time in the presence of
vector potentials. In general, the numerical error depends on several factors including
∆t, ∆η, the computation domain and the semi-classical parameter ε. In the work, we only
test the GWT based SL-TS3 method for various ǫ. To single out the effect of the vector
potential, we change the potentials to

V(x)=2x2, A(x)= e−2x2
,
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Figure 2: (Example 4.1) ε= 1/1024. Left: the blue line denotes the real part of reference solution ψ(x), the
red stars denote the real part of the reconstructed wave function ψ(x) by the GWT based SL-TS3 method, the
yellow circles denote the real part of the corresponding computed grid values of W(ξ−q). Middle: e denotes the
point-wise difference between the reference solution and the numerical solution by the SL-TS3 method. Right:
the blue circles denote the real part of the computed grid values of w(η) with ∆η=π/16.
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Figure 3: (Example 4.1) Numerical errors versus time for ε = 1/64, 1/256 and 1/1024. V(x) = 2x2 and

A(x) = e−2x2
. The GWT based SL-TS3 method: ∆t = 1/100, ∆η = π/64, computation domain [−16,16].

Reference solutions: the SL-TS method with ∆t= ε/16 and ∆x=2πε/32.

which means the scalar potential is harmonic and the vector potential effectively vanishes
at the boundary of the computational domain. The initial condition is still given by a
Gaussian wave packet as in (4.1), with

q0=0, p0 =0, α0= i, γ0=0.

We choose ∆t = 1/100, ∆η = π/64 and the computational domain for w equation is
[−16,16], and we plot the errors versus time for ε = 1/64, 1/256 and 1/1024 in Fig. 3.
We observe that for each ε, the error grows exponentially in time, and the accuracy of the
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GWT method is better for smaller ε. This results is basically in line with the numerical
studies in [47, 48], although the presence of the vector potential makes the performance
of the GWT method slightly worse in long time simulations.

Example 4.2. In this problem, we consider the one dimensional Schrödinger with the
scalar potential and the vector potential given by

V(x)=1+cos(x), A(x)=sin(x),

which is the same as the previously one. But the initial wave function is chosen as

ψ0(x)= aexp

(

− (x−q0)2+(x−q0)4

ε

)

exp

(

i
cos(x−q0)

ε

)

,

where q0 =π/4, and a is chosen so that ψ0(x) is normalized. Clearly, this initial wave
function is not of a Gaussian profile, but it satisfies the form (2.17), where

f (y)= a, g(y)= i(y2+y4)+cos(y)−1, p0=0, δ=1.

In this part, we aim to repeat the time convergence and spatial convergence test with the
more general initial condition. Again, the reference solution is computed on [−π,π], till
the comparison time T=0.5. For various ε, the corresponding meshing strategy is

∆x=
2πε

32
, ∆t=

ε

32
,

which is sufficiently refined to generate benchmark solutions.
To test the convergence in time of the SL-TS3 method and the SL-TS2 method, we

apply the fourth order Runge-Kutta method to the ODE system of the parameters with
time step δt, and for the w equation, we choose the computation domain to be [−2π,2π]
with well-resolved spatial mesh ∆η=4π/1024. For various ε and various time steps, we
calculate the error of the numerical solution in L2 norm. We plot the results of the SL-TS3
method in Table 5 and those of the SL-TS2 method in Table 6, which clearly show the
second order convergence in ∆t, although the initial condition is no longer of a Gaussian
profile.

Table 5: (Example 4.2) ε=1/256, 1/512, 1/1024, 1/2048. Reference solution SL-TS: ∆x=2πε/32, ∆t=ε/32.
Comparing with GWT based SL-TS3 method: ∆η=4π/1024, ∆t=1/8, 1/16, 1/32, 1/64, 1/128.

L2 error ∆t=1/8 ∆t=1/16 ∆t=1/32 ∆t=1/64 ∆t=1/128

ε=1/256 4.627e-3 1.155e-3 2.918e-4 7.633e-5 2.266e-5

ε=1/512 4.619e-3 1.153e-3 2.914e-4 7.630e-5 2.267e-5

ε=1/1024 4.615e-3 1.152e-3 2.912e-4 7.629e-5 2.268e-5

ε=1/2048 4.613e-3 1.152e-3 2.911e-4 7.629e-5 2.269e-5
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Table 6: (Example 4.2) ε=1/256, 1/512, 1/1024, 1/2048. Reference solution SL-TS: ∆x=2πε/32, ∆t=ε/32.
Comparing with GWT based SL-TS2 method: ∆η=4π/1024, ∆t=1/8, 1/16, 1/32, 1/64, 1/128.

L2 error ∆t=1/8 ∆t=1/16 ∆t=1/32 ∆t=1/64 ∆t=1/128

ε=1/256 4.627e-3 1.158e-3 2.950e-4 7.859e-5 2.434e-5

ε=1/512 4.619e-3 1.155e-3 2.930e-4 7.762e-5 2.353e-5

ε=1/1024 4.615e-3 1.153e-4 2.921e-4 7.695e-5 2.311e-5

ε=1/2048 4.613e-3 1.152e-4 2.915e-4 7.662e-5 2.290e-5

Table 7: (Example 4.2) ε=1/1024, 1/2048. Reference solution, GWT based SL-TS2 with ∆η=2π/4096 and
∆t= 1/2048. Comparing with GWT based SL-TS2 method: ∆t= 1/1024, ∆η = π/1, π/2, π/4, π/8 and
π/16.

L2 error ∆η=π/1 ∆η=π/2 ∆η=π/4 ∆η=π/8 ∆η=π/16

ε=1/1024 9.392e-1 3.434e-1 1.282e-2 5.744e-8 8.079e-11

ε=1/2048 7.874e-1 2.888e-1 1.075e-2 4.646e-8 6.793e-11

Then, we test the spatial convergence. Again, to eliminate the error in time discretiza-
tion in comparison, we use the numerical solution by the SL-TS3 method with sufficiently
fine mesh as the reference solution. For ε= 1/1024, 1/2048, we compute the numerical
solution by the SL-TS3 method with the same time step as the reference solution, but
with various spatial mesh size. The results are summarized in Table 7, from which we
see clearly that as ∆η decreases, the numerical error decays exponentially fast until it be-
comes minimal. We remark that the same tests have been done with the SL-TS2 method,
and the results are almost the same, so we omit this part in the paper.

Example 4.3. In this test, we consider the three dimensional problem demonstrated in
Appendix C, where the whole problem naturally decomposes into a two dimensional
problem with vector potentials in (x,y) and a quantum harmonic oscillator in z. Although
the problem is three dimensional, it suffices to apply the GWT method to solve for the
two dimensional wave function u(x,y,t).

The initial condition is chosen as a Gaussian wave packet in (x,y) multiplied by φ0(z),

ψ0(x)= ψ̃0(x,y)φ0(z)= aexp

(

i
ξ0 ·Cξ0+p0 ·ξ0+γ0

ε

)

φ0(z),

where ξ=(x,y)T−q0, a is a normalization constant. And for the potentials, we take

A1(y)=sin(y), A2(x)=sin(x), Ṽ(x,y)=cos(x)+cos(y),

and the corresponding magnetic field is given by

B=(0,0,cos(x)−cos(y))T .
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Figure 4: (Example 4.3) GWT based SL-TS3 method, T= 0.5, ε= 1/64. Left: real part of W(ξ−q). Right:
real part of ψ.

The reference solution is computed on [−π,π]2, till the comparison time T = 1. For
various ε, the corresponding meshing strategy is

∆x=∆y=
πε

16
, ∆t=

ε

16
,

which is sufficiently refined to generate benchmark solutions.
To test the convergence in time of the SL-TS3 method, we choose Gaussian wave

packet parameters as

q0=(0.5,0)T , p0=(−2,0)T , C= iI2, γ0=0,

where I2 is the 2×2 identity matrix. We apply the fourth order Runge-Kutta method to
the ODE system of the parameters with time step δt, and for the w equation, we choose
the computation domain to be [−8,8]2 with well-resolved spatial mesh ∆η = 8/512. For
various ε= 1/16, 1/32 and 1/64, and various time steps ∆t= 1/8, 1/16, 1/32, 1/64, we
calculate the relative error of the numerical solution in L2 norm at time t = 0.5 (more
details in calculating the relative error can be found in [48]). We first plot the (real parts
of) numerical solutions in Fig. 4. To make the comparison convenient, we have shifted
the W by the beam center q, and we observe that the W function is much smoother than
the oscillatory wave function ψ, but its support is O(

√
ε), and clearly, the w(η) is smooth

with O(1) sized support.
Note that with resolved spatial mesh, the error in spatial discretization is minimal

compared to the error in time. Also, since the time step δt for the ODE system is indepen-
dent of the choice of ∆t, and the ODE’s are cheaper to solve, we choose δt=∆t/40, which
makes the error in evolving the parameters negligible. Thus, one expects the numeri-
cal error is dominated by the error in time discretization. We plot the results in Table 8,
which clearly shows the second order convergence in ∆t. We remark that the same tests
have been done with the SL-TS2 method, and the results are almost the same, so we omit
this part in the paper.
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Table 8: (Example 4.3) ε=1/16, 1/32 and 1/64. Reference solution SL-TS: ∆x=2πε/32, ∆t=ε/32. Comparing
with GWT based SL-TS3 method: ∆η=4π/1024, ∆t=1/8, 1/16, 1/32 and 1/64.

Relative error ∆t=1/8 ∆t=1/16 ∆t=1/32 ∆t=1/64

ε=1/16 6.103e-3 1.569e-3 4.241e-4 1.322e-4

ε=1/32 6.145e-3 1.624e-3 4.707e-4 1.616e-4

ε=1/64 6.083e-3 1.154e-3 4.030e-4 1.148e-4
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Figure 5: Classical trajectory (dash-dot line) versus the expectation value of the position (solid lines) for ε=1/8,
1/16 and 1/32. Left: Overview plot. Right: Zoom-in plot of the dotted rectangle on the left. Three marks on
the trajectory: A, t=0; B, t=1; C, t=2.

Finally, to explore the dynamical behavior of a quantum wave packet due to the vector
potential, we choose Gaussian wave packet parameters as

q0=(0.4,0.3)T , p0=(0,0)T, C= iI2, γ0=0,

and we set Ṽ=0 and keep the vector potential unchanged. Since the initial wave packet
momentum is zero and the scalar potential is zero, the motion of the (classical) wave
packet trajectory is solely determined by the initial position and the vector potential.
For ε= 1/8, 1/16 and 1/32, we compute the expectation of the position with the GWT
based SL-TS3 method till t=2, which are compared with the classical trajectory in Fig. 5.
Here, the expectation values are computed by (2.19), namely, they are directly computed
using the w function without reconstructing the wave function. We observe clearly from
the zoom-in plot that, as ε → 0, the trajectories of the spatial averages converge to the
classical one. We can further examine the snapshots of the wave function ψ and the
density function ρ= |ψ|2 at t=0, t=1 and t=2 respectively, as plotted in Fig. 6. First, we
observe that initially the wave function does not have an oscillatory phase, but it picks
up phase oscillations through dynamics. Second, the wave packet quickly spreads out as
it evolves in time, which implies long time simulation based on wave packet approaches
might be more challenging.
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Figure 6: (Example 4.3) Time snapshots of the real parts of the wave function and density function ρ= |ψ|2 at
the three marks in Fig. 3. Left: A, t=0. Middle: B, t=1. Right: C, t=2.

5 Conclusion

In this paper we extend the Gaussian wave packet transform method to the Schrödinger
equation with vector potentials, thus being able to describe, among other things, the
behavior of a quantum particle in an electromagnetic field, and in particular the small
deviation of the expectation value of position and momentum of the particle from the
classical counterpart, with great accuracy.

The new method is a non-trivial generalization of the GWT technique applied to the
semi-classical Schrödinger equation with scalar potential. Indeed, the new approach
combines the GWT method with recently developed techniques for the treatment of time
dependent Schrödinger equation with vector potentials (see [13, 33]), resulting in a very
effective strategy for detailed computation of quantum systems in conditions close to the
semi-classical limit.

As in the case of GWT for the Schrödinger equation with scalar potential, the method
is based on a factorization of the wave function into a fast oscillating phase factor and a
slowly varying function, w, which satisfies another Schrödinger type equation which is
more amenable for numerical computation. Very few modes are needed to resolve the
rescaled wave function w, thus allowing accurate direct computation in several space
dimensions. Also, the potential in the equation for w is an O(

√
ε) perturbation of a har-

monic oscillator, and therefore, the equation becomes easier to solve when approaching
the semi-classical limit. Compared to the scalar case, the equation with vector potentials
has an additional convection term, which poses some challenge for accurate computa-
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tion. Such a problem has been successfully dealt with a very effective semi-lagrangian
approach, in which Fourier interpolation at the foot or characteristics allows spectral
accuracy in space. Such Fourier interpolation requires the computation of the inverse
Fourier transform on scattered points. In order to avoid the double summation, we have
adopted the Nonuniform FFT algorithms by Greengard (see [13, 19]) to significantly re-
duce the cost in the spectral interpolation.

Two splitting methods are presented in the paper: SL-TS2 and SL-TS3, based, respec-
tively, on a two-step and a three-step splitting of the equation. Second order accurate
Strang splitting has been used for all the numerical tests reported in the paper. For such
a splitting, the two approaches are comparable in term of cost and accuracy, when using
the same space resolution and time step. The resulting method is spectrally accurate in
space, while only second order actuate in time.

High order splitting methods can be used, for improving the accuracy. In [47, 48], the
fourth order splitting by Chin and Chen in [4, 5] was adopted with a suitable extension
to the Schrödinger equation with time dependent kinetic energy. Compared to other
more standard fourth order splitting method, the Chin and Chen’s method is particularly
accurate and inexpensive, because of the special structure of the Schrödinger equation. It
would be interesting to investigate the extension of such a method to the case studied in
this paper.

Finally, we observe that in our tests, the error in the numerical solution increases
exponentially in time, in agreement with other wave packet based approaches (see, e.g.
[23, 35, 45]). The phenomenon is however not fully understood and deserves further
investigation. In particular, it would be interesting to explore the possibility of following
the semi-classical behavior of the system for much longer time.
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Appendices

A Review of the Gaussian wave packet method

In this part, we present a brief summary of the Gaussian beam method for the semi-
classical Schrödinger equation with vector potentials (see [56] for a broad discussion).
Due to the intimate relations between the Gaussian wave packet based approximation
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methods and classical dynamics, we summarize below some basic results from classical
electrodynamics. The readers may refer to, for example, [26] for a general discussion. Let
q and p be the canonical position and momentum associated to the particle in external
electromagnetic fields, and we obtain the Hamiltonian equations of motion

q̇= p−A(q), ṗ=∇A(q)T p−∇U(q),

of the classical Hamiltonian H(q,p) = p2−A(q)·p+U(q). If we denote by q̃ and p̃ the
classical (physical) position and momentum, which are defined by the following change
of variables

p̃= p−A(q), q̃=q,

the classical coordinates satisfy the following equations of motion (see, e.g., Chapter 12
of [26] for details)

d

dt
q̃= p̃,

d

dt
p̃=F(q̃, p̃)=−∇U(p̃)+

d

dt
q̃×(∇×A(p̃)).

Here, F is referred to as the Lorentz force.

For simplicity of notation, we denote the spatial coordinate with respect to the wave
packet center q by ξ=x−q(t). Then

∇xξ= I, ∂tξ=−q̇,

where I is the identity matrix.

The Gaussian beam method firstly proposed by Heller [24] is to represent the solution
by a summation of parameterized Gaussian wave packets, which take the form

ϕGB=exp

(

i

ε
(ξ ·αξ+p·ξ+γ)

)

,

where α is a complex valued symmetric matrix, γ is a complex valued scalar, and q and
p are considered as the position and the momentum of the wave packet. When the scalar
potential is quadratic in x and the vector potential is linear in x, it is shown in, for exam-
ple, [23, 24] that the wave packets are exact solutions to the Schrödinger equation if the
parameters satisfy the following system of equations:



































q̇= p−A(q),

ṗ=∇A(q)T p−∇U(q),

α̇=−2α2− 1

2
∇∇U(q)+∇A(q)Tα+α∇A(q)+

1

2
∇∇A(q)·p,

γ̇=
1

2
|p|2−U(q)+iεTr(α),
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where Tr(·) means taking the trace of a matrix. For clarity, we present the index form of
some terms involved in the ODE systems to avoid confusion:

(

∇A
)

jk
=

∂Aj

∂xk
,
(

∇∇U
)

jk
=

∂2U

∂xj∂xk
,
(

∇∇A·p)jk =∑
ℓ

∂2 Aℓ

∂xj∂xk
pℓ.

This system of equations are well behaved as ε≪1, and if properly initialized, will not
develop singularities in the Riccati-type equation of α because α is complex valued and its
imaginary part of is always positive definite for all t>0. When the potentials are smooth,
the Gaussian wave packets become approximate solutions of the Schrödinger equation
with error of order O(

√
ε) within O(1) time. Besides, it is worth pointing out that, the

approximation based on the lowest order semi-classical wave packets by Hagedorn is the
same as that of Heller’s Gaussian wave packets.

The Gaussian wave packet transform (abbreviated by GWT), which is introduced and
analyzed in [47,48] for the Schrödinger equations with scalar potentials, is highly related
to the Gaussian wave packets approach, but one of the most significant differences is
that the former one is an exact reformulation rather than an approximation. We shall
provide a detailed presentation of GWT applied to the Schrödinger equation with vector
potentials in the next section.

B Derivation of the Gaussian wave packet transform

In this section, we present the detailed calculation in the application of the Gaussian
wave packet transform to the semi-classical Schrödinger equation with vector potentials.
Recall that, the Gaussian wave packet transform takes the following ansatz

ψ(x,t)=W(ξ,t)e f (ξ,t)=W(ξ,t)exp
(

i
(

ξTαRξ+pTξ+γ2

)

/ε
)

, (B.1)

where q, p, γ2 and αR are solely functions of t. And for convenience, we recall that
ξ= x−q satisfies

∇xξ= I, ∂tξ=−∂tq,

where I stands for the identity matrix.

Then, by direct calculations, we have

∂tψ=∂tWe f +W∂t f e f = e f
(

Wt−∇ξWT q̇
)

+
i

ε
e f W

(

ξTα̇Rξ+ξT ṗ+γ̇2−2ξTαRq̇−pT q̇
)

,

∇xψ=∇xWe f +W∇x f e f = e f∇ξW+
i

ε
e f (2αRξ+p)W,
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and

∆xψ=∆xWe f +2∇xW ·∇x f e f +W|∇x f |2e f +W∆x f e f

=∆ξWe f +
i

ε
∇ξWT (4αRξ+2p)e f +

i

ε
2WTr(αR)e

f

− 1

ε2
W
(

4ξTα2
Rξ+4ξTαR p+|p|2

)

.

C A three dimensional example: magnetic field along the

z direction

We consider the three dimensional Schrödinger equation with a magnetic field B =
(0,0,B(x,y))T along the z axis, a harmonic scalar potential in the z direction and an arbi-
trary scalar potential V0(x,y), where B(x,y) is the z component of the magnetic field. We
further assume that the scalar potential and the vector potential take the following forms

V=
1

2
z2+V0(x,y), A=(A1(y),A2(x),0)T.

We remark that, the vector potentials may take other forms but we only consider this spe-
cific form for simplicity of calculation. Obviously, with this choice of the vector potentials
we have ∇·A=0, and

B(x,y)=
d

dx
A2−

d

dy
A1.

Note that, in this case, the quantum Hamiltonian naturally admits the following decom-
position

H=Hxy+Hz,

where

Hxy=
1

2
(−iε∂x−A1(y))

2+
1

2
(−iε∂y−A2(x))2+V0(x,y)

=− ε2

2
(∂xx+∂yy)+iε(A1∂x+A2∂y)+Ṽ,

Ṽ=
1

2
(A2

1+A2
2)+V0,

and

Hz =− ε2

2
∂zz+

1

2
z2.

Note that Hz corresponds to the well-known quantum harmonic oscillator in the z vari-
able with eigenvalues Ek = (k+1/2)ε and associated eigenfunctions denoted by φk(z).
Due to the completeness and orthogonality of φk(z), if the initial condition is chosen as

ψ(x,0)= ψ̃0(x,y)φk(z),
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then we have
ψ(x,t)= ψ̃(x,y,t)φk(z),

where ψ̃ satisfies
iε∂tψ̃=(Hxy+Ek)ψ̃. (C.1)

Thus, we have reduced the three dimensional quantum dynamics to a two dimensional
quantum dynamics and a harmonic oscillator in the z direction. Clearly, if we take
u(x,y,t)=ψ(x,y,t)eiEk t/ε, then u satisfies

iε∂tu=Hxyu, u(x,y,0)= ψ̃0(x,y). (C.2)

Hence, for simplicity of simulation, we can numerically solve (C.2) for u(x,y,t), and the
total wave function is obtained by

ψ(x,t)= ψ̃(x,y,t)φk(z)=u(x,y,t)e−iEk t/εφk(z).
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