
Commun. Comput. Phys.
doi: 10.4208/cicp.OA-2018-0269

Vol. 25, No. 4, pp. 947-962
April 2019

Model Reduction with Memory and the Machine

Learning of Dynamical Systems

Chao Ma1, Jianchun Wang2 and Weinan E1,3,∗

1 The Program in Applied and Computational Mathematics, Princeton University,
Princeton, NJ 08544, USA.
2 Department of Mechanics and Aerospace Engineering, Southern University of
Science and Technology, Shenzhen 518055, P.R. China.
3 Beijing Institute of Big Data Research, Beijing, 100871, P.R. China.

Received 12 October 2018; Accepted 12 November 2018

Abstract. The well-known Mori-Zwanzig theory tells us that model reduction leads to
memory effect. For a long time, modeling the memory effect accurately and efficiently
has been an important but nearly impossible task in developing a good reduced model.
In this work, we explore a natural analogy between recurrent neural networks and the
Mori-Zwanzig formalism to establish a systematic approach for developing reduced
models with memory. Two training models-a direct training model and a dynami-
cally coupled training model-are proposed and compared. We apply these methods
to the Kuramoto-Sivashinsky equation and the Navier-Stokes equation. Numerical
experiments show that the proposed method can produce reduced model with good
performance on both short-term prediction and long-term statistical properties.

AMS subject classifications: 35Q35, 64P99

Key words: Model reduction, Mori-Zwanzig, recurrent neural networks.

1 Introduction

In science and engineering, many high-dimensional dynamical systems are too compli-
cated to solve in detail. Nor is it necessary since usually we are only interested in a
small subset of the variables representing the gross behavior of the system. Therefore,
it is useful to develop reduced models which can approximate the variables of interest
without solving the full system. This is the celebrated model reduction problem. Even
though model reduction has been widely explored in many fields, to this day there is still

∗Corresponding author. Email addresses: weinan@math.Princeton.edu (W. E), chaom@princeton.edu (C.
Ma), wangjc@sustc.edu.cn (J. Wang)

http://www.global-sci.com/ 947 c©2019 Global-Science Press

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0269 | Generated on 2024-11-17 03:22:29

948 C. Ma, J. Wang and W. E / Commun. Comput. Phys., 25 (2019), pp. 947-962

a lack of systematic and reliable methodologies for model reduction. One has to rely on
uncontrolled approximations in order to move things forward.

On the other hand, there is in principle a rather solid starting point, the Mori-Zwanzig
(M-Z) theory, for performing model reduction [1,2]. In M-Z, the effect of unresolved vari-
ables on resolved ones is represented as a memory and a noise term, giving rise to the so-
called generalized Langevin equation (GLE). Solving the GLE accurately is almost equiv-
alent to solving the full system, because the memory kernel and noise terms contain the
full information for the unresolved variables. However, it does provide a starting point
for making approximations. In this regard, we mention in particular the t-model pro-
posed by Chorin et al. [3]. In [4] reduced models of the viscous Burgers equation and 3-
dimensional Navier-Stokes equation were developed by analytically approximating the
memory kernel in the GLE. Li and E [5] developed approximate boundary conditions for
molecular dynamics using linear approximation of the M-Z formalism. In [6], auxiliary
variables are used to deal with the non-Markovian dynamics of the GLE. Despite all of
these efforts, it is fair to say that there is still a lack of systematic and reliable procedure
for approximating the GLE. In fact, dealing with the memory terms explicitly does not
seem to be a promising approach for deriving systematic and reliable approximations to
the GLE.

One of the most successful approaches for representing memory effects has been the
recurrent neural networks (RNN) in machine learning. Indeed there is a natural analogy
between RNN and M-Z. The hidden states in RNN can be viewed as a reduced represen-
tation of the unresolved variables in M-Z. We can then view RNN as a way of performing
dimension reduction in the space of the unresolved variables. In this paper, we explore
the possibility of performing model reduction using RNNs. We will limit ourselves to
the situation when the original model is in the form of a conservative partial differential
equation (PDE), the reduced model is an averaged version of the original PDE. The crux
of the matter is then the accurate representation of the unresolved flux term.

We propose two kinds of models. In the first kind, the unresolved flux terms in the
equation are learned from data. This flux model is then used in the averaged equation
to form the reduced model. We call this the direct training model. A second approach,
which we call the coupled training model, is to train the neural network together with the
averaged equation. From the viewpoint of machine learning, the objective in the direct
training model is to fit the unresolved flux. The objective in the coupled training model
is to fit the resolved variables (the averaged quantities).

For application, we focus on the Kuramoto-Sivashinsky (K-S) equation and the Navier-
Stokes (N-S) equation. The K-S equation writes as

∂u

∂t
+

1

2

∂u2

∂x
+

∂2u

∂x2
+

∂4u

∂x4
=0, x∈R, t>0; (1.1)

u(x,t)=u(x+L,t), u(x,0)= g(x). (1.2)

We are interested in a low-pass filtered solution of the K-S equation, ū, and want to de-
velop a reduced system for ū. In general, ū can be written as the convolution of u with a

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0269 | Generated on 2024-11-17 03:22:29

C. Ma, J. Wang and W. E / Commun. Comput. Phys., 25 (2019), pp. 947-962 949

low pass filter G(y):

ū(x,t)=
∫ ∞

−∞
G(y)u(x−y,t)dy. (1.3)

Hence, by performing filtering on (1.1), we get

∂ū

∂t
+

1

2

∂ū2

∂x
+

∂2ū

∂x2
+

∂4ū

∂x4
=−1

2

∂τ

∂x
, (1.4)

where τ=uu−ūū is the sub-grid stress. We refer to this as the macro-scale equation, and
the original K-S equation as the micro-scale equation. We refer to ū as the macro-scale
solution. To develop the reduced system for ū, we need to model the sub-grid stress in
(1.4). Later we will see that, from the M-Z theory, this stress can be approximated by a
memory term of ū.

We also apply the same principle to the 2-D shear flow, whose governing equation is
the following N-S equation

∂t~u+(~u·∇)~u+∇p=− 1

Re
∆~u+~f , ∇·~u=0, (1.5)

where ~u = (u,v), ~f = (f ,0). In this problem, the macro-scale solution and the sub-grid
stress are defined similarly as for the K-S equation. We model the sub-grid stress using
the history of the solution. Numerical experiments show that our models give good
performance on both short-term and long-term predictions.

Machine learning tools, especially neural networks, have received much attention in
recent years. Not surprisingly, they have also been used in model reduction such as
large-eddy simulation [7, 8] and Reynolds averaged turbulence modeling [9]. In these
papers, fully-connected neural network models are used to represent the appropriate
stress terms. Other machine learning tools, such as random forest [10] and Bayesian
method [11], are also used in model reduction. A time series method is used to construct
reduced system for the K-S equation in [12]. The difference between our work and these
previous papers is that we attempt to develop a systematic approach starting from M-Z,
and we explore the natural connection between M-Z and RNNs. In later work, we will
further study the mathematical and algorithmic problems along this line.

The paper is organized as follows. Section 2 briefly introduces the idea of M-Z. Section
3 introduces RNNs and LSTMs. In Section 4, we describe the two training models. Nu-
merical results on the Kuramoto-Sivashinsky equation and 2-D shear flow problem are
present in Section 5. Concluding remarks and comments on future work are presented in
Section 6.

2 The Mori-Zwanzig formalism

The starting point of the M-Z formalism is to divide all the variables into resolved and
unresolved ones. The basic idea is to project functions of all variables into the space of

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0269 | Generated on 2024-11-17 03:22:29

950 C. Ma, J. Wang and W. E / Commun. Comput. Phys., 25 (2019), pp. 947-962

functions of only the resolved variables. The original dynamical system then becomes
an equation for the resolved variables with memory and noise. This equation is called
the Generalized Langevin Equation (GLE). Below we first demonstrate the idea of the
M-Z formalism using a simple linear example. We then use the Kuramoto-Sivashinsky
equation as an example to show how M-Z formalism help us develop a reduced model.

2.1 A brief review to the M-Z formalism

Consider a linear system

ẋ=A11x+A12y, (2.1)

ẏ=A21x+A22y, (2.2)

with initial value x(0)= x0, y(0)= y0. We take x as the resolved variable, y as the unre-
solved variable, and want to develop a reduced system for x. To achieve this, we can first
fix x in (2.2) and solve for y, and then insert the result into (2.1). In this way we get

ẋ=A11x+A12

∫ t

0
eA22(t−s)A21x(s)ds+A12eA22ty0. (2.3)

There are three terms at the right hand side of (2.3). The first term A11x is a Marko-

vian term of x; the second term A12

∫ t
0 eA22(t−s)A21x(s)ds is a memory term. The third

term A12eA22ty(0) contains the initial value of y, this term will be viewed as a noise term.
Hence, by eliminating y from the original linear system, we obtain an equation for x with
memory and noise.

Similar deduction can be applied to non-linear ODE systems. Assume we have a
system

dφ

dt
=R(φ), φ(0)= x, (2.4)

with φ and x being vectors, and we split φ into φ=(φ̂,φ̃) and take φ̂ as resolved variables,
then by the Mori-Zwanzig formalism we can get a GLE for φ̂,

∂

∂t
φ̂j(x,t)=Rj(φ̂(x,t))+

∫ t

0
Kj(φ̂(x,t−s),s)ds+Fj(x,t). (2.5)

In (2.5), φ̂(x,t) denotes φ̂ at time t with initial value x. Although (2.5) is more complicated
than (2.3), the essential ingredients are similar. The M-Z formalism tells us that model
reduction leads to memory effects, and inspired us to pursuing the application of RNNs
as a tool for performing efficient yet rigorous model reduction.

2.2 Application to the K-S equation

Going back to the K-S equation (1.1), let û and Ĝ be Fourier transforms of solution u and
filter G, respectively. Then, by (1.3), we have ˆ̄uk = Ĝkûk for all frequency k. Here, we take

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0269 | Generated on 2024-11-17 03:22:29

C. Ma, J. Wang and W. E / Commun. Comput. Phys., 25 (2019), pp. 947-962 951

a spectrally sharp filter G which satisfies

Ĝk=

{

1 if |k|≤K,

0 if |k|>K,

for a certain positive integer K. Then, the Fourier transform of ū is a truncation of the
Fourier transform of u, and our resolved variables are those ûk with |k|≤K. Writing the
K-S equation in Fourier space, and put all terms with unresolved variables to the right
hand side of the equation, we can get

∂ûk

∂t
+(k4−k2)ûk+

ik

2 ∑
p+q=k
|p|≤K
|q|≤K

ûpûq=− ik

2 ∑
p+q=k
|p|>K

or |q|>K

ûpûq. (2.6)

Applying Fourier transform to (1.4), and compare with (2.6), we have

τ̂k = ∑
p+q=k

|p|>K or |q|>K

ûpûq, (2.7)

for |k| ≤ K. Using the M-Z theory, the sub-grid stress can be expressed as a memory
term and a noise term. By Galilean invariance, the sub-grid stress can be expressed as a
function of the history of the resolved strain, ∂ū/∂x, when the noise effect is negligible.

3 Recurrent neural networks and LSTM

In this section, we briefly introduce recurrent neural networks and long short-term mem-
ory networks.

3.1 Recurrent neural networks

RNNs are neural networks with recurrent connections, designed to deal with time series.
Usually, a recurrent connection links some units in a neural network to themselves. This
connection means that the values of these units depend on their values at the previous
time step. For a simple example, consider a one-layer RNN with time series {xt} as input.
Let ht and yt be the hidden values and output values at time step t, respectively. Then,
the simplest RNN model is given by

ht+1=σ(Wht+Uxt+1+b), (3.1a)

yt+1=Vht+1+d, (3.1b)

where U, V, W, b, and d are matrices or vectors of trainable parameters, and σ(·) is
a nonlinear activation function. To deal with complicated time series, sometimes the
output of an RNN is fed to another RNN to form a multi-layer RNN.

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0269 | Generated on 2024-11-17 03:22:29

952 C. Ma, J. Wang and W. E / Commun. Comput. Phys., 25 (2019), pp. 947-962

Note that in RNNs the same group of parameters are shared by all time steps. In
this sense, RNNs are stationary models. Among other things, this allows RNNs to learn
information in long time series without inducing too many parameters. The training of
RNNs is similar to the training of regular feed-forward neural networks, except that we
have to consider gradient through time direction, such as the gradient of yt with respect
to hs for s< t. Usually RNNs are trained by the so-called back-propagation through time
(BPTT) method.

3.2 Long short-term memory networks

Theoretically, RNNs is capable of learning long-term memory effects in the time series.
However, in practice it is hard for RNN to catch such dependencies, because of the ex-
ploding or shrinking gradient effects [13], [14]. The Long Short-Term Memory (LSTM)
network is designed to solve this problem. Proposed by Hochreiter et al. [15], the LSTM
introduces a new group of hidden units called states, and uses gates to control the in-
formation flow through the states. Since the updating rule of the states is incremental
instead of compositional as in RNN, the gradients are less likely to explode or shrink.
The computational rule of an LSTM cell is

ft=σ(W f ·[ht−1,xt]+b f),

it =σ(Wi ·[ht−1,xt]+bi),

ot=σ(Wo ·[ht−1,xt]+bo),

S̃t= tanh(WS ·[ht−1,xt]+bS),

St=(1− ft)·St−1+it ·S̃t,

ht = ot ·tanh(St),

where ft, it, ot are called the forget gate, input gate, and output gate, respectively, St is
the state, and ht is the hidden value. The LSTMs can also be trained by BPTT.

4 The two training models

For simplicity, we will focus on learning the memory-dependent terms in the GLE, ne-
glecting for now the noise term. For the K-S equation, as shown in Fig. 2, by directly
fitting the stress using the history of the strain, we can reduce the error to nearly 1%
while maintaining a small gap between the testing and training error. This shows that
we are not overfitting, and the history of the strain determines most of the stress.

We will discuss two models for learning the memory effect: a direct training model
and a coupled training model. For both models, we generate data using direct numerical
simulation (DNS). In the direct training model, after generating the data, we directly
train the RNN to fit the sub-grid stress τ using the time history of the strain. The loss
function is defined as the difference between the output of the RNN and the true stress.

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0269 | Generated on 2024-11-17 03:22:29

C. Ma, J. Wang and W. E / Commun. Comput. Phys., 25 (2019), pp. 947-962 953

The neural network model for the stress is then used in the macro-scale equation for
the reduced system. In the coupled training model, the loss function is defined as the
difference between the solutions of the reduced model (with stress represented by the
neural network) and the ground truth solution. Therefore in the coupled model, the
RNN is coupled with the solver of the macro-scale equation when training.

4.1 The direct training model

In the direct training model, a RNN is used to represent the stress as a function of the
time history of the macrocell strain. The loss function is simply the squared difference
of the predicted stress and the ground truth stress. This RNN model is then used in the
reduced system.

4.2 The coupled training model

In the direct training model, we train an accurate stress model and we hope that this stress
model can help produce accurate results for the macro-scale solution. In the coupled
model, getting accurate macro-scale solutions is ensured by defining the loss function to
be the difference between the solution of the reduced system and the ground truth, with
the stress in the reduced system represented by a RNN. Specifically, in every epoch, we
solve the reduced system for L steps from some initial condition u0 and get a prediction
of the solution L steps later (uL). We use ũL to denote the predicted solution. The loss
function is defined to be some function of uL−ũL. From another perspective, we can also
view this coupled system as a single large RNN, part of the hidden units of this RNN
is updated according to a macro-scale solver. Let ũl be the predicted solution at the l-th
step, and hl , τl , sl be the state of RNN, stress, and strain at the l−th step, respectively.
Then the update rule of this large RNN can be written as

τl+1, hl+1=RNN(hl ,sl), (4.1)

ũl+1, sl+1=Solver(ũl,τl). (4.2)

Fig. 1 shows part of the computational graph of the coupled training model.

Computation of the gradient. In the coupled training model, the trainable parameters
are still in the RNN, but to compute the gradient of the loss with respect to the parame-
ters, we have to do back-propagation (BP) through the solver of the macro-scale equation,
i.e. through (4.2). In many applications, this solver is complicated and it is hard to do
BP through the solver. To deal with this problem, we take one step back to perform BP
directly through the differential equations. This is done by writing down the differential
equation satisfied by the gradient, which we call the backward equation. Another solver is
used to solve this backward equation. In this way, BP is done by solving the backward
equation, and is decoupled from the macro-scale solver.

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0269 | Generated on 2024-11-17 03:22:29

954 C. Ma, J. Wang and W. E / Commun. Comput. Phys., 25 (2019), pp. 947-962

Figure 1: The computation graph of the coupled training model.

As an illustration, let û(t) be the solution of the K-S equation at time t in the Fourier
space, and assume that we want to perform back-propagation through the K-S equa-
tion from time t+δ back to t, which means we are going to compute the Jacobian ∂û(t+
δ)/∂û(t). Let

J(s)=
∂û(t+s)

∂û(t)
, (4.3)

then we have J(0)= I and we want to compute J(δ). In the reduced system, we solve the
K-S equation with stress,

dû

dt
=diag(k2−k4)û− i

2
diag(k)û∗û− i

2
diag(k)τ̂, (4.4)

where τ̂ is the sub-grid stress in Fourier space, ∗ means convolution, and diag(v) repre-
sents a diagonal matrix with vector v being the diagonal entries. Taking derivative of J
with respect to s, and assuming that ∂τ̂(t)/∂û(t)=0, we obtain

dJ(s)

ds
=diag(k2−k4)J(s)−ikû(t+s)∗ J(s). (4.5)

Hence, as long as we know the solution û(t+s) for 0≤s≤δ, we can compute the Jacobian
J(δ) by solving Eq. (4.5) from 0 to δ, with initial condition J(0)= I.

5 Numerical experiments

We now present some numerical results of the proposed models for the K-S equation
and the 2-dimensional shear flow problem. Below when we talk about true solution or
ground truth, we mean the exact solution after filtering.

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0269 | Generated on 2024-11-17 03:22:29

C. Ma, J. Wang and W. E / Commun. Comput. Phys., 25 (2019), pp. 947-962 955

5.1 The Kuramoto-Sivashinsky equation

Experiment setting. The K-S equation is considered in the Fourier space. To generate
the training data, we solve the K-S equation with N=256 Fourier modes to approximate
the accurate solution, using a 3rd order integral factor Runge-Kutta method [16]. We set
L= 2π/

√
0.085 and the time step dt= 0.001. The settings are similar to that in [12]. The

micro-scale equation is solved for 1.2×105 time units and filtered outputs are saved for
every 0.1 time units. We drop the results of the first 104 time units, and take the results
from the following 105 time units as the training data, and the results of the last 104 time
units as the testing data.

For the reduced system, we solve (1.4) in Fourier space. We take K=16 Fourier modes
and the time step dtr=0.1. The macro-scale solver is still a 3rd order integral factor Runge-
Kutta method. The solver works in the Fourier space, and takes the output of the RNN
as the sub-grid stress.

On the machine learning side, we use an LSTM to predict the stress. The LSTM has
two layers and 64 hidden units in each layer. An output layer with linear activation is
applied to ensure that the dimension of the outputs is 16. The LSTM works in the physical
space: it takes strains in the physical space as inputs, and outputs predicted stresses in the
physical space. A Fourier transform is applied to the output of the LSTM before feeding
it into the macro solver.

Direct training. For the direct training model, we train the LSTM to fit the stress as a
(memory-dependent) function of the strains for the last 20 time steps. The network is
trained by the Adam algorithm [17] for 2×105 iterations, with batch size being 64. Fig. 2
shows the relative training and testing error during the training process. We can see that
the two curves go down simultaneously, finally reaching a relative error of about 1%.
There is almost no gap between the training and the testing error, hence little overfitting.
This also suggests that most contribution to the sub-grid stress can be explained by the
time history of the strain.

As a priori results, we checked the quality of the predicted stress. The relative error
of the prediction is about 1%, and the correlation coefficient between the predicted stress
and the true stress is more than 0.999. We can see that the neural network gives good
prediction of the sub-grid stress.

We next examine some a posteriori results. After training the model, we pick some
times in the testing set, and solve the reduced system initialized from the true solution at
these times. Then, we compare the reduced solution with the true solution at later times.
Fig. 3 shows two examples. In these figures, the x-axis measures the number of time
units from the initial solution. From these figures we can see that the reduced solution
given by the direct training model produces satisfactory prediction for 150-200 time units
(1500-2000 time steps of macro-scale solver).

As for the eventual deviation between the two solutions, it is not clear at this point
what is more responsible, the intrinsic unstable behavior in the model or the model error.

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0269 | Generated on 2024-11-17 03:22:29

956 C. Ma, J. Wang and W. E / Commun. Comput. Phys., 25 (2019), pp. 947-962

Figure 2: Relative training and testing error during training.

Figure 3: Comparison of the reduced solution given by the direct training models and the true solution. The
lines shows values of the solutions at a certain location in the physical space.

We will conduct careful studies to resolve this issue in future work.

Next we compare the long-term statistical properties of the solution to the reduced
model with the true solution. We solve the reduced system for a long time (104 time units
in our case). We then compute the distributions and the autocorrelation curves of Fourier
modes of the reduced solution, and compare with that of the true solution. Fig. 4 shows
some results. From these figures we see that the reduced model can satisfactorily recover
statistical properties of the true solution.

Coupled training. For the coupled training model, we train the LSTM together with
the equation solver. A detailed description of this training model is given in Section 4.2.
Here we choose L= 20 during training. The size of the LSTM is the same as that in the
direct training model. A simple one-step forward scheme is used to solve the backward

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0269 | Generated on 2024-11-17 03:22:29

C. Ma, J. Wang and W. E / Commun. Comput. Phys., 25 (2019), pp. 947-962 957

Figure 4: Distribution and auto-correlation of the real part of the Fourier mode with wave number k=1. The
direct training model and the coupled training model.

Figure 5: Relative error at different number of steps from the initial true solution during the training process.

equation for the Jacobian (4.5). 2×104 iterations were performed using an Adam opti-
mizer with batch size 16. During the training process, we measured the relative error of
predicted solutions l steps later from the initial true solution. The results for different l’s
are given in Fig. 5. From the figure we can see that the relative error for different l goes
down to 6−7% after training, and there is no gap between the different curves, which
means that solutions with different steps from the initial time are fitted nearly equally
well.

Short-term prediction and long-term statistical performance are also considered for
the coupled training model. Results are shown on Figs. 6 and 4. From the figures we see
that, the reduced system trained by the coupled training model gives satisfactory predic-
tion for 50−100 time units, which is shorter than the direct training model. However,
the auto-correlation of Fourier modes match better with the true solution, while the dis-

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0269 | Generated on 2024-11-17 03:22:29

958 C. Ma, J. Wang and W. E / Commun. Comput. Phys., 25 (2019), pp. 947-962

Figure 6: Comparison of the reduced solution and the true solution on the physical space.

tribution is as good as the direct training model. This suggests that, compared to the
direct training model, the coupled model is less competitive for short-term prediction,
but performs better for long-term statistical properties.

5.2 The 2-dimensional shear flow

Experiment setting. Consider the 2-dimensional shear flow in channel, whose govern-
ing equation is given by (1.5). We take (x,y)∈ [0,100]×[−1,1] and use periodic boundary
condition in x direction and zero boundary condition at y=±1. We choose Re= 10000,
and f = 2/Re as a constant driving force. To numerically solve the equation, we em-
ploy the spectral method used in [18]. We take 256 Fourier modes in x direction and 33
Legendre modes in y direction. The time step ∆t are chosen to be 0.005.

For ease of implementation, we only do model reduction for Fourier modes in x di-
rection, and keep all Legendre modes in y direction. The macro solution has 64 Fourier
modes in x direction. Still, we generate accurate solution by DNS and compute the
macro-scale strain and stress, and use an LSTM to fit the stress as a function of the history
of the strain. In this experiment, the neural network we use is a 4-layer LSTM with 256
hidden units in each layer. As for the K-S equation, the input and output of the LSTM are
in the physical space.

In this problem, the stress has 3 components (τ11=uu−ūū, τ12=uv−ūv̄, τ22=vv−v̄v̄).
Since each component has 33×64=2112 modes in the spectral space, we need at least 2112
variables in the physical space to represent the stress. If directly fit the stress, our LSTM
will have about 6 thousand outputs. This can make the training very difficult. Here,
noting that both the stress and the strain are periodic in the x direction, we choose to fit
the stress by column. We train an LSTM to predict one column of the stress (the stress
at the same x in the physical space), using strains at this column and the neighboring
columns. Fig. 7 shows this idea. In practice, when predicting the k-th column of the
stress, we use strains from the (k−2)-th to the (k+2)-th column.

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0269 | Generated on 2024-11-17 03:22:29

C. Ma, J. Wang and W. E / Commun. Comput. Phys., 25 (2019), pp. 947-962 959

Figure 7: The LSTM predicts one column of the stress each time, using strains at this column and the neighboring
columns.

For the 2-dimensional shear flow problem, we only show results from the direct train-
ing model. The LSTM is trained by an Adam optimizer for 105 steps, with batch size being
64. Still, the stress is predicted using the strains from the last 20 time steps.

Numerical results. After training, the relative training error goes down to 3−4%, while
the relative testing error is about 5%. Fig. 8 shows the correlation coefficients of the
predicted stress and the true stress at different y. The three curves represent three com-
ponents of the stress, respectively. we can see that the correlation coefficients are close
to 1 except in the area close to the boundary. Considering the boundary condition, the
stress near the boundary is close to 0. Hence, its reasonable for the prediction to have a
low correlation with the true stress.

Next, we solve the reduced system initialized from a true solution, and compare the
quality of the reduced solution at later times with the solution given by the Smagorinsky

Figure 8: Correlation coefficients of predicted stress and true stress at different y.

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0269 | Generated on 2024-11-17 03:22:29

960 C. Ma, J. Wang and W. E / Commun. Comput. Phys., 25 (2019), pp. 947-962

Figure 9: Distance of the reduced solution and the true solution, compared with the Smagorinsky method.

model [19]. The Smagorinsky model is a classical and widely used model for large eddy
simulation (LES). In the two dimensional case, the Smagorinsky model for the sub-grid
stress can be written as

τij−
1

2
τkkδij=−2νt S̄ij, (5.1)

where τkk =τ11+τ22, νt is called the turbulent eddy viscosity, and

S̄11=
∂ū

∂x
, S̄12= S̄21=

1

2

(

∂ū

∂y
+

∂v̄

∂x

)

, S̄22=
∂v̄

∂y
.

The turbulent eddy viscosity can be expressed as

νt =(Cs∆)
2
√

2S̄ijS̄ij, (5.2)

with ∆ being the grid size and Cs being a constant. In Fig. 9, we compare the deviation
of our reduced solution and Smagorinsky solution from the true solution. We see that
the prediction given by our reduced system is much better than that by the Smagorinsky
model. Fig. 10 shows the vorticity vx−uy of the true and reduced solution at t = 50 in
Fig. 9. We see that the two solutions are very close.

6 Conclusion

Much work needs to be done to develop the methods proposed here into a systematic and
practical approach for model reduction for a wide variety of problems. For example, in
the coupled training model, it is crucial to find an accurate and efficient way to compute
the Jacobian. How to make the method scalable for larger systems is a problem that
should be studied. For reduced systems where the noise effects cannot be neglected, how

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0269 | Generated on 2024-11-17 03:22:29

C. Ma, J. Wang and W. E / Commun. Comput. Phys., 25 (2019), pp. 947-962 961

Figure 10: Vorticity in area [0,20]× [−1,1] for both true solution (top) and reduced solution (bottom), at 50
time units after the initial solution.

to model the noise term in the GLE is a problem that should be dealt with. Finally, we
also need theoretical understanding to answer questions such as how to choose the size
of the neural network, and how large the dataset should be in order to obtain a good
reduced system.

Acknowledgments

This work is supported in part by ONR grant N00014-13-1-0338, Major Program of NNSFC
under grant 91130005 and NSFC grant 91530322.

References

[1] Mori H (1965) Transport, collective motion, and brownian motion. Progress of theoretical
physics 33(3):423–455.

[2] Zwanzig R (1973) Nonlinear generalized langevin equations. Journal of Statistical Physics
9(3):215–220.

[3] Chorin AJ, Hald OH, Kupferman R (2002) Optimal prediction with memory. Physica D:
Nonlinear Phenomena 166(3-4):239–257.

[4] Parish EJ, Duraisamy K (2017) Non-markovian closure models for large eddy simulations
using the mori-zwanzig formalism. Physical Review Fluids 2(1):014604.

[5] Li X, E W (2007) Variational boundary conditions for molecular dynamics simulations of
crystalline solids at finite temperature: treatment of the thermal bath. Physical Review B
76(10):104107.

[6] Li Z, Lee HS, Darve E, Karniadakis GE (2017) Computing the non-markovian coarse-grained
interactions derived from the mori–zwanzig formalism in molecular systems: Application
to polymer melts. The Journal of chemical physics 146(1):014104.

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0269 | Generated on 2024-11-17 03:22:29

962 C. Ma, J. Wang and W. E / Commun. Comput. Phys., 25 (2019), pp. 947-962

[7] Gamahara M, Hattori Y (2017) Searching for turbulence models by artificial neural network.
Physical Review Fluids 2(5):054604.

[8] Vollant A, Balarac G, Corre C (2017) Subgrid-scale scalar flux modelling based on optimal
estimation theory and machine-learning procedures. Journal of Turbulence 18(9):854–878.

[9] Ling J, Kurzawski A, Templeton J (2016) Reynolds averaged turbulence modelling using
deep neural networks with embedded invariance. Journal of Fluid Mechanics 807:155–166.

[10] Wang JX, Wu JL, Xiao H (2017) Physics-informed machine learning approach for recon-
structing reynolds stress modeling discrepancies based on dns data. Physical Review Fluids
2(3):034603.

[11] Xiao H, Wu JL, Wang JX, Sun R, Roy C (2016) Quantifying and reducing model-form uncer-
tainties in reynolds-averaged navier–stokes simulations: A data-driven, physics-informed
bayesian approach. Journal of Computational Physics 324:115–136.

[12] Lu F, Lin KK, Chorin AJ (2016) Data-based stochastic model reduction for the kuramotosi-
vashinsky equation. Physica D Nonlinear Phenomena 340.

[13] Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies with gradient de-
scent is difficult. IEEE transactions on neural networks 5(2):157–166.

[14] Pascanu R, Mikolov T, Bengio Y (2013) On the difficulty of training recurrent neural net-
works in International Conference on Machine Learning. pp. 1310–1318.

[15] Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural computation 9(8):1735–
1780.

[16] Shu CW, Osher S (1988) Efficient implementation of essentially non-oscillatory shock-
capturing schemes. Journal of computational physics 77(2):439–471.

[17] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

[18] E W, Wang J (2016) A thermodynamic study of the two-dimensional pressure-driven channel
flow. Discrete & Continuous Dynamical Systems-A 36(8):4349–4366.

[19] Smagorinsky J (1963) General circulation experiments with the primitive equations: I. the
basic experiment. Monthly weather review 91(3):99–164.

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.OA-2018-0269 | Generated on 2024-11-17 03:22:29

