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Abstract. We present a simple, yet general, deep neural network representation of the
potential energy surface for atomic and molecular systems. It is “first-principle” based,
in the sense that no ad hoc approximations or empirical fitting functions are required.
When tested on a wide variety of examples, it reproduces the original model within
chemical accuracy. This brings us one step closer to carrying out molecular simulations
with quantum mechanics accuracy at empirical potential computational cost.
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1 Introduction

A representation of the potential energy surface (PES) for general systems of atoms or
molecules is the basic building block for molecular dynamics (MD) and/or Monte Carlo
(MC) simulations, which are common tools in many disciplines, including chemistry,
physics, biology, and materials science. Until now, this problem has been addressed us-
ing two very different approaches. At one extreme, empirical potentials have been con-
structed by fitting limited experimental and/or numerical data from accurate quantum
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mechanical calculations. Well-known examples include the Lennard-Jones potential [1],
the Stillinger-Weber potential [2], the embedded-atom method (EAM) potential [3], the
CHARMM [4]/AMBER [5] force fields, the reactive force fields [6], etc. These potentials
are computationally efficient, allowing large-scale simulations (up to millions of atoms),
but their construction is very much an art and their accuracy and transferability are lim-
ited. At the other extreme, methods based on first-principle quantum theory such as
density functional theory (DFT) [7] have been proposed, the most well-known example
being the ab initio molecular dynamics (AIMD) [8] scheme. These methods promise to
be much more accurate but they are also computationally expensive, limiting our ability
to handling systems of hundreds to thousands of atoms only. Until recently, the drastic
disparity between these two approaches in terms of accuracy and computational cost has
been a major dilemma to be confronted with in molecular simulation.

Recent advances in machine learning, particularly deep learning, have ushered some
new hope in addressing this dilemma [9–20]. Several promising new ideas have been
suggested, in which deep neural networks are used to represent the potential energy sur-
face. Of particular interest are the Behler-Parrinello neural network (BPNN) [10] and the
deep tensor neural network (DTNN) [9]. BPNN uses the so-called symmetry functions
as input and a standard neural network as the fitting function; DTNN, on the other hand,
uses as input a vector of nuclear charges and an inter-atomic distance matrix, and intro-
duces a sequence of interaction passes where “the atom representations influence each
other in a pair-wise fashion” [9]. Both methods are able to predict with great accuracy
the potential energy surface of materials in condensed phase, in the case of BPNN, and
of small organic molecules, in the case of DTNN. However, the construction of the local
symmetry functions for BPNN contains an ad hoc and often tedious component where
hand-crafted fitting functions and human intervention are required. On the other hand,
methods like DTNN may face difficulties when one tries to transfer them directly to large
systems.

In this work, we develop a new method, called Deep Potential (DP), that successfully
addresses the inadequacies of the existing models. Deep Potential is a simple, yet gen-
eral, end-to-end deep neural network representation of a many-atom potential energy
surface. The network uses as input the raw coordinates of the atoms in a proper frame of
reference, and naturally respects the symmetries of the system. Promising results are ob-
tained in a variety of test cases, including small molecular isomers and condensed-phase
systems. The Deep Potential method brings us closer to performing molecular modeling
with the secure accuracy of first-principle based methods at a computational cost compa-
rable to that of empirical potentials.

2 Results

2.1 Deep Potential framework

Our goal is to formulate a general and direct end-to-end representation of the many-
body potential energy surface that uses the atomic configurations directly as the only
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Figure 1: (color online). Schematic diagram of Deep Potential, using C7O2H10 as an illustrative example. (a)
Transformation from global to local reference frame for a Carbon atom. (b) Sub-network structure for atom
C1. We use the notion ~x

pC1q

rAis
to represent the coordinates of the atom Ai in the list of neighbors of atom C1.

The atoms Ai are assigned to different groups corresponding to the different atomic species. Within each one
of these groups the atoms are listed in order of increasing distance from C1. (c) Full structure of the Deep
Potential network.

input data, without any explicit decomposition of two-body or three-body contributions.
The main challenge to achieve this goal is to design a deep neural network that obeys the
important symmetries of the system like it was achieved, for instance, with the convolu-
tional neural network in computer vision problems [21]. Besides the usual translational
and rotational symmetries, we also have the permutational symmetry with respect to the
chemically equivalent atoms. We represent the potential energy surface by following the
steps that are schematically indicated in Fig. 1.

For a system of N atoms, our neural network consists of N small, almost independent,
copies. Each copy is a sub-network with a scalar output, corresponding to a different
atom in the system. The size of the input data for a sub-network is at most 4Nc (see the
detailed description below), where Nc is the number of atoms within the adopted cut-off
radius Rc (Fig. 1 (b) and (c)). If the number of atoms within Rc fluctuates, Nc is the largest
fluctuating number. We find that adopting a finite Rc is sufficient in all the extended
material systems considered here.

Next, we introduce a local Cartesian coordinate frame for each atom. In this frame,
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the atom under consideration is taken to be at the origin and is labelled as “0”. We fix
the x and y axes in terms of the atom 0 and its two non-collinear nearest neighbors that
we label “1” and “2”, respectively, in order of increasing distance. For organic molecules,
we exclude hydrogen atoms in the definition of “1” and “2”. The x-axis is defined by
the 0-1 direction, the z-axis is along the direction of the cross product of 0-1 and 0-2, and
the y-axis is the cross product of z and x. In this Cartesian frame, the coordinates of all
the atoms falling inside the cut-off radius centered at the origin, excluding atom 0, define
the input data for the corresponding sub-network. In practice, we found that the com-
bination t1{r,cosθ,cosφ,sinφu, where pr,θ,φq are the polar coordinates, is a much better
representation than the Cartesian coordinates px,y,zq. This is so because 1{r automatically
differentiates the atoms according to their inverse distances from the tagged atom at the
origin. Since the number of inputs has been fixed for each sub-network, we feed 0 to
the remaining input entries of the sub-network when the number of atoms falling inside
the cut-off radius centered at atom 0 is less than Nc. This means putting some additional
atoms at infinity and hence has negligible influence on the results upon training. In most
cases (see below) we find that it is sufficient to use the radial and angular coordinates of
a smaller subset of atoms closer to the origin while keeping only the radial coordinates
of all the other atoms within the cut-off radius.

The sub-networks are only coupled through summation in the last step of the scheme,
when we compute the total energy. From a qualitative point of view, one can think about
the sub-networks as providing different local energy contributions to the potential energy
surface. To preserve the permutational symmetry of the input, in each sub-network the
atoms are first assigned to different groups corresponding to the different atomic species,
and then within each one of these groups the atoms are sorted in order of increasing
distance to the origin. Global permutational symmetry is preserved by assigning the
same parameters to all the sub-networks corresponding to atoms of the same species.

The rest of the formulation of the deep neural network as well as the training pro-
cedure is fairly standard. In this work, we use a fully-connected feedforward neural
network [22], sometimes combined with Batch Normalization [23], in the architecture of
the sub-networks. To train the network we employ stochastic gradient descent with the
Adam optimizer [24]. We find that using hidden layers with the number of their nodes in
decreasing order gives better results. Such phenomenon is similar to the coarse-graining
process in the convolutional neural network [21]. The compactness of the input data
has the effect of reducing the number of parameters and thereby the complexity of the
training process. For the systems considered here, it generally takes only a few hours
on a NERSC Cori CPU node to train a small neural network capable of predicting the
energy within chemical accuracy (� 1kcal/mol)§ . See Table 2 for the architecture of the
sub-networks and details of the training process.

§This doesn’t mean that the Deep Potential model is chemically accurate. Only if the electronic structure
data is chemically accurate can the Deep Potential model be chemically accurate.
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2.2 Molecular system

As a representative molecular system, we consider C7O2H10, which comprises the largest
ensemble of stable isomers in the QM9 database [25, 26]. Our goal is to predict the ener-
gies of all the MD trajectories of 113 randomly selected C7O2H10 isomers in this database.
The same collection of data was also used to benchmark the DTNN scheme. Following
the convention of the DTNN benchmark, we measure the accuracy of the energy predic-
tions using Deep Potential in terms of the mean absolute error (MAE) (Table 1).

2.3 Condensed-phase systems

To test the performance of Deep Potential in condensed phase, we use data from EAM
and AIMD simulations. In particular, we use 80000 MD snapshots in a 256 Cu atoms
trajectory generated with the EAM potential. Consecutive snapshots are separated by
0.1 ps and we consider a trajectory in which the temperature is increased by 100 K every
200 ps under zero pressure. After reaching 2400 K, the temperature is decreased with the
same schedule until the system reaches again a temperature of 500 K. We also consider
14000 snapshots along several AIMD trajectories for a solid Zr sample in which the atoms
are randomly displaced to model radiation damage. Finally, we use 100000 snapshots of
a path-integral (PI) AIMD trajectory modeling liquid water at room temperature (300 K)
and standard pressure (1 atm). In this trajectory, almost all the time steps are used for
the training snapshots, so that a significant amount of correlation is present in the data.
For the condensed-phase systems, we follow the convention of BPNN and measure the
accuracy of the energy predictions with Deep Potential in terms of the root mean square
error (RMSE) (Table 1).

3 Discussion

3.1 Generality

By design Deep Potential is a very general framework. We obtain satisfactory results for
finite and extended systems, using data generated either by empirical potentials or by
DFT simulations. Based on the experience gained from the test cases, we expect that the
method should also work well for more complex systems, such as biological molecules.
In addition, we could use for training more accurate data than DFT, if available, such
as, e.g., data from Coupled-Cluster calculations with Single and Double and Perturbative
Triple excitations [27] (CCSD(T)), or Quantum Monte Carlo simulations [28].

3.2 Accuracy

In all the test cases, the Deep Potential predictions reproduce the original data within
chemical accuracy and compare well with either DTNN or BPNN (Table 1). For C7O2H10,
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Table 1: Comparison of energy prediction on the test set obtained by Deep Potential and DTNN/BPNN.

System MAE of DP (DTNN*) (eV)

C7O2H10 0.04 (0.07)

System RMSE of DP (BPNN��) (meV/atom���)

Cu 0.20 (0.20)

Zr 0.09 (0.21)

H2O 1.8 (2)

� The MAE of DTNN is from Ref. [9];
�� The results for Cu and Zr come from our implementation of BPNN on the same training and
test set, with the symmetry functions for Cu in Ref. [29]; the result for H2O is from Ref. [30],
which is tested on a different set of configurations.
��� The unit of RMSE for H2O is meV/molecule.

using the same training/testing protocols, we obtain the up-to-date best result (0.04 eV)
compared with the existing benchmark (0.07 eV). In the case of EAM Cu, we only use
radial information to train the network, obtaining an accuracy comparable to BPNN. In
the case of Zr with DFT data, Deep Potential with only radial information gives a better
result (0.09 meV/atom) than BPNN (0.21 meV/atom), with the caveat that the symmetry
functions we use for Zr are the same of those of Cu, i.e., they are not redesigned for Zr. In
the case of liquid water, including the radial and the first-shell angular information gives
an error (1.8 meV/H2O) that is one fourth of the error obtained with distance information
only.

In our scheme, rotational and permutational symmetries are imposed by fixing op-
erations. The importance of the symmetry constraints can be assessed by selectively re-
moving corresponding operations. For instance, removing rotational symmetry fixing in
the input data of C7O2H10 gives an MAE of 0.05 eV, slightly larger than the optimal value
for this molecule (0.04 eV). On the other hand, removing permutational symmetry fixing
in the input data of bulk Cu increases substantially the RMSE, from 0.2 meV/atom to 15.6
meV/atom.

3.3 Computational cost

For a system with N atoms and at most Nc atoms inside Rc, the computational cost of
Deep Potential is linear with N, similar to EAM, but requires a larger number of size in-
dependent operations. In all systems, Nc is size independent. Using Cu as an example,
both EAM and Deep Potential require OpNqNc operations to locate the atoms inside Rc.
Within EAM, �10NNc multiplications are needed to fit the potential. Within Deep Poten-
tial, �15NNc logNc operations are needed for the sorting, and �100NNc multiplications
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are needed for the calculation of the energy by the neural network. Both EAM and Deep
Potential are highly parallelizable. Thus, large-scale MD simulations with Deep Potential
are computationally feasible.

Within our framework we have the freedom to tune the size of the sub-networks in
order to achieve a good balance of computational cost and accuracy of the predictions.
In the examples that we report, we use the sub-network sizes of Table 2, but we could
use significantly smaller sub-network sizes with a minor reduction of accuracy. For in-
stance, using a sub-network with 80-40-20-10 nodes in the hidden layers for C7O2H10, we
obtain a still acceptable MAE of 0.07 eV, to be compared with the MAE of 0.04 eV with
the considerably larger 600-400-200-100-80-40-20 sub-network. The smaller sub-network
reduces the computational cost by almost two orders of magnitude.

3.3.1 Scalability

The scalability (and extensivity) of the energy of Deep Potential is intimately related to
the fact that the “local energies” Ei depend only on a finite environment of site i. This is
consistent with physical intuition because most of the interactions can be captured with
a large enough Rc. Typically including the first two shells of neighbors would allow us to
describe covalent bonding interactions, such as bond stretching and bending, and dihe-
dral angle forces. Van der Waals effects have longer range but we find that including up
to the third shell of neighbors is usually sufficient. A small number of neighboring shells
is also sufficient in metals due to screening effects. Longer range effects are present in
ionic and/or dipolar systems. The long-range part of the Coulombic interactions in such
systems is typically treated exactly with techniques such as the Ewald summation [31].
We have not included explicitly these effects in the current implementation of Deep Po-
tential, although in the cases in which these effects are important they are included in
the training data. A possible way of explicitly including these effects in neural network
potentials was presented in Ref. [32]. We leave the issue of how to include long-range ef-
fects into Deep Potential to future studies. As a limited test of scalability, we use the Deep
Potential model trained from the sample of 256 Cu atoms, mentioned earlier, to predict
the potential energy of systems with 864, 2048, and 4000 atoms in periodic simulation
cells. Comparison with EAM calculations for these systems gives an RMSE per atom of
0.10, 0.07, and 0.06 meV/atom, respectively.

4 Summary

Deep Potential is a simple, yet general, end-to-end deep neural network representation
of the potential energy function for atomic and molecular systems. It should enable us to
evaluate the many-atom potential energy surface with the accuracy of quantum mechan-
ics models at a computational cost comparable to that of empirical models.
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5 Methods

5.1 Reference data sets

The AIMD data set and the training/testing protocols for C7O2H10 are available at http:
//quantum-machine.org/datasets/. The simulation of Cu uses the MD package
LAMMPS 2016 [33]. We adopt the EAM potential for Cu [34] with an MD integration time
step of 1 fs. The training system contains 256 atoms in a cubic cell with periodic bound-
ary conditions. We adopt a Nosé-Hoover thermostat and barostat following Ref. [35].
80000 configurations at intervals of 0.1 ps along the EAM trajectory for Cu are stored. Of
these, 72000 are used for training and 8000 to test the predictions. The AIMD data for Zr
are generated with VASP [36] and consist of 14000 snapshots from 30 short trajectories
that are used to determine the threshold displacement energies (TDE) along symmetric
directions. These simulations use large supercells with 8000 atoms. Each trajectory runs
for 1 ps with a variable time step ensuring that the atom with the largest velocity moves
by less than 0.1 Å in each time step. 90% of the corresponding snapshots are used for
training and 10% to test the energy predictions. The PI-AIMD trajectory for liquid water
is obtained with Quantum Espresso [37] interfaced with i-PI [38]. The system contains
64 water molecules in a cubic box under periodic boundary conditions. The exchange-
correlation functional PBE0 [39] is adopted, and the long-range dispersion interactions
are approximated self-consistently with the Tkatchenko-Scheffler model [40]. The gener-
alized Langevin equation [41] in i-PI requires 8 beads for a converged representation of
the Feynman paths. The trajectory is approximately 10 ps long with a time step of 0.48
fs. 100000 snapshots are randomly selected along the PI-AIMD trajectory. Of these, 90000
are used for training and 10000 to test the energy predictions.

5.2 Details on the Deep Potential method

After generating and standardizing the input data from the atomic configurations, the
implementation of the method follows standard deep learning procedures [22]. We use
a fully connected neural network with the rectifier (ReLU) as the activation function. We
use the Adam optimizer [24] to train the neural network with a batch size of 128. See
Table 2 for the detailed architecture of the sub-networks, the total training epochs, the
learning rate scheme, and the decay rate of the moving-average parameter for the Batch
Normalization procedure. It is widely observed that Batch Normalization can effectively
reduce the training time and improve the predictions of a deep and large neural network,
like in the case of the C7O2H10 isomers, but for neural networks that are not deep and
large, Batch Normalization is less effective. Thus, we use it for C7O2H10 and H2O, but,
after testing it, we decide not to use it for Cu or Zr. The adopted cutoff radii are 6.0 Å,
7.0 Å, and 5.8 Å for Cu, Zr, and H2O, respectively.
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Table 2: Details of training process.

System Architecture� Training epochs LR scheme�� Batch Normalization���

C7O2H10 600-400-200-100-80-40-20 300 (0.01, 0.96, 1.5) used

Cu 80-40-20-10 600 (0.005, 0.96, 3.6) not used

Zr 80-20-5-5 1200 (0.005, 0.96,7.2) not used

H2O 160-40-10-10 300 (0.01, 0.96, 1.6) used

� The architecture is given by the number of nodes in each hidden layer, from input to output.
�� The parameters (a, b, c) in the learning rate (LR) scheme are the starting learning rate, the
decay rate, and the decay epoch, respectively. If the current training epoch is x, then the learning

rate will be a�bx{c.
���If Batch Normalization is used, the parameter for moving average will be a�b0.6x{c.
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