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Abstract. Feynman’s path integral reformulates the quantum Schrödinger differential
equation to be an integral equation. It has been being widely used to compute inter-
nuclear quantum-statistical effects on many-body molecular systems. In this Review,
the molecular Schrödinger equation will first be introduced, together with the Born-
Oppenheimer approximation that decouples electronic and internuclear motions. Some
effective semiclassical potentials, e.g., centroid potential, which are all formulated in
terms of Feynman’s path integral, will be discussed and compared. These semiclassical
potentials can be used to directly calculate the quantum canonical partition function
without individual Schrödinger’s energy eigenvalues. As a result, path integrations
are conventionally performed with Monte Carlo and molecular dynamics sampling
techniques. To complement these techniques, we will examine how Kleinert’s varia-
tional perturbation (KP) theory can provide a complete theoretical foundation for de-
veloping non-sampling/non-stochastic methods to systematically calculate centroid
potential. To enable the powerful KP theory to be practical for many-body molecu-
lar systems, we have proposed a new path-integral method: automated integration-
free path-integral (AIF-PI) method. Due to the integration-free and computationally
inexpensive characteristics of our AIF-PI method, we have used it to perform ab initio
path-integral calculations of kinetic isotope effects on proton-transfer and RNA-related
phosphoryl-transfer chemical reactions. The computational procedure of using our
AIF-PI method, along with the features of our new centroid path-integral theory at the
minimum of the absolute-zero energy (AMAZE), are also highlighted in this review.
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1 Introduction

1.1 Molecular Schrödinger equation

Ever since quantum mechanics was constructed in the 1920s [1–24], solving the non-
relativistic time-independent Schrödinger equation for a system of nuclei and electrons
has become an essential step to understand every single detail of atomic or molecular
properties [1]. The non-relativistic time-independent Schrödinger equation for a molec-
ular system (hereafter we shorten it as the molecular Schrödinger equation) is [25–27]:

ĤmoleΨn =EnΨn, (1.1)

where Ĥmole is the complete (non-relativistic) molecular Hamiltonian, Ψn and En are an
energy eigenfunction (or wave function) and an energy eigenvalue at an eigenstate n,
respectively. In contrast to the (intra)nuclear or nucleon Hamiltonian [28], the complete
molecular Hamiltonian [4, 5, 25–27, 29] for Nn nuclei and Ne electrons can fortunately be
written in an analytic closed form (thanks to the inverse square-distance proportionality
in Coulomb’s electrostatic force law):

Ĥmole=
Nn

∑
j

− 1

2Mj
∇2

j +
Nn

∑
j<j′

Zj′Zj

xjj′
− 1

2

Ne

∑
i

∇2
i −

Nn

∑
j

Ne

∑
i

Zj

rij
+

Ne

∑
i<i′

1

rii′
. (1.2)

In Eq. (1.2), the units are atomic units [30], Mj is the mass ratio of nucleus j to an electron,
and Zj is the atomic number of nucleus j. The Laplacian operators ∇2

j and ∇2
i denote the

second order differentiation with respect to the coordinates of the jth nucleus and the ith
electron. The first term in Eq. (1.2) represents the kinetic energy operator for nuclei; the
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second term is the Coulomb repulsion between nuclei; the third term is the operator for
the kinetic energy of electrons; the fourth and fifth terms indicate the Coulomb attraction
between electrons and nuclei, and the repulsion between electrons, respectively. The
distance between the jth and the j’th nuclei is xjj′ ; the separation between the ith and the
i’th electrons is rii′ ; the distance between the jth nucleus and the ith electrons is rij.

1.2 Central quantity in quantum thermodynamics: quantum partition
function

Once the energy eigenvalues or the quantized energy spectrum in Eq. (1.1) are deter-
mined, it is straightforward to obtain a central physical quantity in thermodynamics, i.e.,
the quantum canonical partition function Qqm [31], by the following summation of the
Boltzmann energy distribution:

Qqm=∑
n

exp(−βEn), (1.3)

where β=1/kBT, kB is Boltzmann’s constant, and T is temperature. All standard thermo-
dynamic quantities for a system of nuclei and electrons, e.g., free energy, internal energy,
entropy, pressure, etc., can be derived from it [31–34]. In Eq. (1.3), the lowest energy level
E0, which is often called the ground state energy or zero-point energy (ZPE), is usually
the dominant energy level contributing to the partition function. Further, by virtue of
Heisenberg’s uncertainty principle, the ZPE is always larger than the minimum value of
potential energy because a particle can never be at rest anywhere in a given potential or
a particle with a particular momentum can be everywhere in a given potential.

1.3 Origin of potential energy surface: Born-Oppenheimer approximation

Unfortunately, even though all physics and chemistry of a (time-independent) molecular
system are essentially in the molecular Schrödinger equation [Eq. (1.1)] [6, 7], the equa-
tion can be exactly solved only for the simplest one-electron atoms or ions. For other
systems, approximations must be introduced to calculate numerical solutions with the
aid of computers. The most common and perhaps the mildest approximation often made
is the Born-Oppenheimer approximation [19,24–27,35–38]. It decouples internuclear mo-
tions from electrons so that nuclei effectively move on a potential energy surface (PES)
obtained by solving the electronic part of Schrödinger equation.

This approximation is based on the fact that an electron is much lighter than any nu-
cleus (e.g., a proton, the lightest nucleus, is about 1840 times heavier than an electron).
Nuclei move, consequently, much slower. As a result, from the electronic perspective, for
a given set of nuclear positions, electrons adjust their positions ’instantly’ before nuclei
have a chance to move. On the other hand, from the standpoint of nuclei, electrons are
moving so fast that their effects on nuclei are averaged out over the electronic wave func-
tions. Mathematically, to simplify the molecular Hamiltonian, we first solve the electronic
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part of the Schrödinger equation for a particular set of nuclear configurations {xj}. The
electronic part of the complete molecular Hamiltonian [Eq. (1.2)] is called the electronic
Hamiltonian [4, 5, 25–27, 29, 39]:

Ĥelec=−1

2

Ne

∑
i

∇2
i −

Nn

∑
j

Ne

∑
i

Zj

rij
+

Ne

∑
i<i′

1

rii′
. (1.4)

With this electronic Hamiltonian, we can obtain the electronic energy Eelec from the cor-
responding electronic Schrödinger equation:

Ĥelecψelec=Eelec

({

xj

})

ψelec, (1.5)

where ψelec is the electronic wave function. Note that the electronic energy Eelec

({

xj

})

depends parametrically on the nuclear positions {xj}. With this electronic energy, the
molecular Hamiltonian in Eq. (1.2) can be simplified as follows:

Ĥmole≈
Nn

∑
j

− 1

2Mj
∇2

j +
Nn

∑
j<j′

Zj′Zj

xjj′
+

〈

−1

2

Ne

∑
i

∇2
i −

Nn

∑
j

Ne

∑
i

Zj

rij
+

Ne

∑
i<i′

1

rii′

〉

=
Nn

∑
j

− 1

2Mj
∇2

j +

[

Nn

∑
j<j′

Zj′Zj

xjj′
+Eelec

({

xj

})

]

=
Nn

∑
j

− 1

2Mj
∇2

j +V
({

xj

})

, (1.6)

where < ··· > signifies the average over electronic wave functions or the expectation
value. In Eq. (1.6), V is defined as the sum of the nuclear repulsion energy and electronic
energy, which effectively turns out to be the internuclear potential energy function as a
consequence of the Born-Oppenheimer approximation:

V
({

xj

})

≡
Nn

∑
j<j′

Zj′Zj

xjj′
+Eelec

({

xj

})

. (1.7)

There are many systematic and rigorous theories in electronic structure calculations to
derive the internuclear potential energy from first principles (i.e., besides the universal
fundamental constants in physics, there is no other empirical parameter involved in the
calculations), e.g., Hartree-Fock theory, configuration interaction method, Møller-Plesset
perturbation theory, coupled cluster approach, and Kohn-Sham density functional the-
ory. All these quantum mechanical (QM) approaches for electronic structure calculations
are often known as ab initio methods [4, 5, 25–27, 29, 39–45, 162].

In contrast, a complete empirical method to determine an internuclear potential en-
ergy surface is to parameterize an analytic function without treating electronic degrees
of freedom. This type of approach is often referred to as molecular mechanical (MM)
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method and the empirical potential energy is called force-field energy. Comparing to ab
initio approach, MM methods are computationally much less expensive and can be ap-
plied to describe equilibrium properties in macromolecular systems involving over tens
of thousands of heavy atoms [46–50]. But for the process involving electronic redistribu-
tions (e.g., electronic transfer, chemical bond breaking or forming, etc.), MM force field
often is unable to describe it [51, 52].

For the rest of this review, all discussions are limited to the Born-Oppenheimer ap-
proximation, which adiabatically decouples nuclear and electronic degrees of freedom.

1.4 Classical free energy

In practice, quantum effects on internuclear motions are much smaller than those on the
electronic part. In many applications, the internuclear quantum effects are insignificant
and could even be neglected. Thus, the eigenenergy spectrum En in Eq. (1.1) would
become continuous. Given an internuclear potential V, the quantum canonical partition
function in Eq. (1.3) consequently reduces to the classical canonical partition function
as [31, 32, 40–42, 53]:

Qcl =

∞
∫

−∞

∞
∫

−∞

dx3Nn dp3Nn

h3Nn
exp

{

−β

[(

3Nn

∑
j

p2
j

2Mj

)

+V
({

xj

})

]}

, (1.8)

where h is Planck’s constant and pj is an momentum associated with a nuclear coordinate
xj. Subsequently, the classical free energy Gcl of a molecular system can be expressed in
terms of the classical partition function as follows:

Gcl =−kBT lnQcl =−kBT ln

∞
∫

−∞

∞
∫

−∞

dx3Nn dp3Nn

h3Nn
exp

{

−β

[(

3Nn

∑
j

p2
j

2Mj

)

+V
({

xj

})

]}

. (1.9)

1.5 Quantum free energy in terms of Feynman’s path integral

The above discussions (Section 1.3) on internuclear thermodynamics are limited to classi-
cal mechanics (regardless of using QM, MM, hybrid QM/MM to construct potential en-
ergy). However, the real world is described by quantum mechanics, including nuclei. In
some applications, such as hydrogen adsorption in carbon nanotechnology, the transport
mechanism of hydrated hydroxide ions in aqueous solution, and kinetic isotope effects
on a biochemical reaction, internuclear quantum-statistical effects (e.g., quantization of
vibration and quantum tunneling) are not negligible. A popular and robust choice for
incorporating such internuclear quantum-statistical effects in the conventional molecu-
lar dynamics (MD) or Monte Carlo (MC) simulations [54–59] is using Feynman’s path
integral [2, 32–34, 60–69].

This is largely because the essence of Feynman’s path integrals is to transform the
Schrödinger differential equation to become an integral equation [Eq. (2.3)]. As a result,
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the many-body path integrations can be carried out by the conventional MD or MC sam-
pling techniques. In addition, the quantum canonical partition function can be directly
obtained with no need to compute individual energy eigenvalues.

2 Feynman’s path integral

2.1 Relation between Schrödinger’s equation and Feynman’s path integral

After being inspired by Dirac’s earlier works on the action principle in quantum me-
chanics [68, 69], Feynman invented his path-integral (PI) formulation [2, 32–34, 60–75] as
a new space-time approach to non-relativistic quantum mechanics in his 1942 Ph.D. the-
sis [60–62]. In the PI formalism, the kernel describing a wave function to propagate from
(x1,t1) to (x2,t2) can be calculated as follows:

K(x2,t2;x1,t1)=

(x2,t2)
∫

(x1,t1)

D [x(t)]exp

{

i

h̄
S[x(t)]

}

, (2.1)

where K is the propagator (a type of Green’s function), t is time, x(t) describes a trajectory

or a path in space-time,
∫ (x2,t2)
(x1,t1)

D [x(t)] denotes a summation over all possible paths from

(x1,t1) to (x2,t2) (i.e., a functional integration), and S[x(t)] is the action associated with
the Lagrangian L[x(t)] [76]:

S[x(t)]=

t2
∫

t1

dtL[x(t)]=

t2
∫

t1

dt

{

M

2
ẋ2(t)−V [x(t)]

}

. (2.2)

M in Eq. (2.2) denotes the mass of a particle, whereas V is the potential energy acting on
the particle. The propagator K governs how a wave function ψ(x,t) evolves with time. If
the wave function at an initial time t1 is given as ψ(x1,t1) and K is provided as well, then
we can obtain the wave function at an arbitrary time t2 by the following equation:

ψ(x2,t2)=

∞
∫

−∞

K(x2,t2;x1,t1)ψ(x1,t1)dx1. (2.3)

In fact, Eq. (2.3) is the integral equation of quantum mechanics, which are equivalent to
the time-dependent Schrödinger differential equation [32, 70], i.e.,

Ĥψ(x,t)= ih̄
∂

∂t
ψ(x,t)

⇔ ψ(x,t)=

∞
∫

−∞

K(x,t;x1,0)ψ(x1,0)dx1. (2.4)
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Eq. (2.4) is readily generalized to many-body systems [32].
The propagator can also be written in the basis formed by the eigenfunctions of the

time-independent Schrödinger equation, φn(x):

K(x2,t2;x1,t1)=∑
n

φn (x2)φ∗
n (x1)e−(i/h̄)En(t2−t1), (2.5)

where Ĥφn=Enφn and En are the eigenenergies for the eigenstates n. As a result, we have
the following identity connecting the Schrödinger eigenfunctions and eigenenergies to
Feynman’s path integral:

∑
n

φn(x2)φ∗
n(x1)e−(i/h̄)En(t2−t1)=

(x2,t2)
∫

(x1,t1)

D [x(t)]exp

{

i

h̄
S[x(t)]

}

. (2.6)

Kac realized that the above identity is still valid even at pure imaginary time t=−iτ
(where τ is a real number) [63, 64]. Consequently, it can also be applied to statistical
physics. In the imaginary time frame, the propagator K in quantum mechanics is equiv-
alent to the density matrix ρ(x2,x1) [31–34] in quantum statistics by putting t=−iτ:

∑
n

φn (x2)φ∗
n (x1)e−(i/h̄)En(t2−t1)=∑

n

φn(x2)φ∗
n(x1)e−(1/h̄)En(τ2−τ1)

=∑
n

φn(x2)φ∗
n(x1)e−(1/kBT)En

≡ρ(x2,x1), (2.7)

where τ2−τ1 = h̄/kBT (independent of the choices for τ1 or τ2), kB is Boltzmann’s con-
stant, and T is temperature. Hence with the identity in Eq. (2.6), we have the following
quantum-statistical path integrals for the density matrix:

ρ(x2,x1)=

(x2,βh̄)
∫

(x1,0)

D [x(τ)]exp

{

−1

h̄
A[x(τ)]

}

, (2.8)

where β=1/kBT and A[x(τ)] is the quantum-statistical action†

A[x(τ)]=

βh̄
∫

0

dτ

{

M

2
ẋ2(τ)+V [x(τ)]

}

. (2.9)

†The quantum-statistical action is also named the Euclidean action. According to page 122 of Ref. [34], this
name refers to the case that an N-dimensional (N-D) Euclidean space continued by the imaginary time axis
τ = it has the identical geometric properties as an (N+1)-D Euclidean space. For example, a 4-vector in a

Minkowski space-time has a square length dx2 =−(cdt)2+(dx)2, where c is the speed of light. Extended to

imaginary time, this becomes dx2 = (cdτ)2+(dx)2 which is the square distance in an Euclidean 4-D space
with 4 vectors (cτ,x).
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Note after the change of variable t=−iτ for the differential dt and for the kinetic energy
[or ẋ(t)] in Eq. (2.2), the quantum-statistical action in Eq. (2.9) is effectively related to
the Hamiltonian instead of the Lagrangian for the paths running along the imaginary time
axis.

The trace of the density matrix in Eq. (2.7), which is the sum of the diagonal elements
and is invariant with the representing basis functions for the matrix, provides us with
a central physical quantity in quantum statistics, i.e., the quantum canonical partition
function Qqm:

Qqm=Trace(ρ)=

∞
∫

−∞

dxρ(x,x)

=∑
n

e−(1/kBT)En

∞
∫

−∞

|φn(x)|2dx=∑
n

e−βEn . (2.10)

The diagonal element ρ(x,x), in which the eigenfunctions (in position space) are used to
represent the matrix, is also known as the particle density ρ(x):

ρ(x,x)=ρ(x)=∑
n

|φn(x)|2e−βEn . (2.11)

Combining Eq. (2.10) with Eq. (2.8), we have the following expression of the quantum
partition function Qqm in terms of Feynman’s path integral:

Qqm=

∞
∫

−∞

dx

(x,βh̄)
∫

(x,0)

D [x(τ)]exp

{

−1

h̄
A[x(τ)]

}

,

≡
∮

D [x(τ)]exp

{

−1

h̄
A[x(τ)]

}

⇒
∮

D [x(τ)]exp

{

−1

h̄
A[x(τ)]

}

=∑
n

e−βEn . (2.12)

In Eq. (2.12),
∮

D [x(τ)] denotes the summation over all closed paths x(τ) in the time-
interval βh̄, i.e., a functional integration (an integration over a function instead of over a
variable; see Appendix A for more details). The physical interpretation of Eq. (2.12) is
simple and vivid, which can be reflected by the following quote in the Feynman-Hibbs
textbook [32]:

Consider all the possible paths, or ’motions’, by which the system can travel
between the initial and final configurations in the ’time’ βh̄. The density ma-
trix ρ is a sum of contribution from each motion, the contribution from a par-
ticular motion being the ’time’ integral of the ’energy’ divided by h̄ for the
path in question. (See next page for the rest of the quote.)
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The partition function is derived by considering only those cases in which the
final configuration is the same as the initial configuration, and we sum over
all possible initial configurations.

Feynman and Hibbs 1965

2.2 Effective semiclassical potentials

In contrast to quantum statistics, since the energy spectrum in classical mechanics is al-
ways continuous, the classical canonical partition function is written in terms of the en-
ergy density associated with momenta and positions (which is conceptually or intrinsi-
cally impossible in quantum mechanics to have a simultaneous probability function for
momenta and positions by virtue of Heisenberg’s uncertainty principle [15, 77]):

Qcl = ∑
continuous
energyE

e−βE

=

∞
∫

−∞

∞
∫

−∞

dxdp

h
exp

{

−β

[

p2

2m
+V(x,p)

]}

. (2.13)

The replacement of ∑ continuous
energyE

with
∫ ∞

−∞

∫ ∞

−∞

dxdp
h in Eq. (2.13) can be derived from the

quantum partition function at the high temperature limit [31,32]. In practice, the potential
energy V is usually independent of the momentum p. As a result, the classical partition
function can be expressed in terms of V as a configuration integral:

Qcl =

∞
∫

−∞

∞
∫

−∞

dxdp

h
exp

{

−β

[

p2

2m
+V (x)

]}

=
1

h

∞
∫

−∞

exp

(

−β
p2

2m

)

dp

∞
∫

−∞

dx exp{−β[V (x)]}=
√

MkBT

2πh̄2

∞
∫

−∞

e−βV(x)dx. (2.14)

The inverse of the factor

√

MkBT/2πh̄2 in Eq. (2.14) is the thermal de Broglie wavelength.
It is of particular interest to approximate the quantum partition function in a classical

fashion without explicitly solving the Schrödinger equation. There have been several
studies on rewriting the partition function in terms of an effective semiclassical potential
as a configuration integral, such as the Wigner-Kirkwood expansion [31, 77–83] and the
centroid density of path integrals [32, 84–89].

2.2.1 Effective potentials based on particle density

The basic idea of the Wigner-Kirkwood expansion [31, 77–83], which was developed in
1930s, is to express the particle density in Eq. (2.11) as a power series of h̄:

ρ(x)=ρcl (x)
[

1+qC1(x,β)+q2C2(x,β)+···
]

, (2.15)
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where the classical particle density

ρcl (x)=

√

MkBT

2πh̄2
e−βV(x), (2.16)

and

q=
h̄2

2M
. (2.17)

The h̄-expansion parameter q is in units of [energy]×[length]2. Here, we explicitly show
the first two terms of the quantum correction functions Ci(x,β):

C1(x,β)=
1

12
β3
[

V ′(x)
]2− 1

6
β2V ′′(x), (2.18a)

C2(x,β)=
1

288
β6
[

V ′(x)
]4− 11

360
β5
[

V ′(x)
]2

V ′′(x)

+
1

40
β4
[

V ′′(x)
]2
+

1

30
β4V ′(x)V ′′′(x)− 1

60
β3V(4) (x). (2.18b)

With the h̄ expansion in Eq. (2.15), we may construct the corresponding Wigner-Kirkwood
(WK) effective potential Veff

WK as follows:

√

MkBT

2πh̄2
e−βVeff

WK(x)=ρcl (x)
[

1+qC1(x,β)+q2C2(x,β)+···
]

⇒ Veff
WK(x)=−kBT ln

{

e−βV(x)
[

1+qC1(x,β)+q2C2(x,β)+···
]

}

. (2.19)

In order to include an infinite number of h̄ terms in the expansion approximately, Fu-
jiwara, Osborn, and Wilk [78, 81] (FOW) proposed a cumulant [90, 91] version of the
Wigner-Kirkwood expansion:

ρ(x)=ρcl (x)exp
[

qς1(x,β)+q2ς2(x,β)+···
]

, (2.20)

where the cumulant ς are identified as:

ς1 =C1, (2.21a)

ς2 =C2−
1

2
C2

1. (2.21b)

Thus the corresponding FOW effective potential Veff
FOW,h̄ is:

√

MkBT

2πh̄2
e−βVeff

FOW,h̄ =ρcl (x)exp
[

qς1 (x,β)+q2ς2(x,β)+···
]

⇒ Veff
FOW,h̄(x)=V (x)−kBT

[

qς1 (x,β)+q2ς2(x,β)+···
]

. (2.22)
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In addition, Fujiwara, Osborn, and Wilk also devised an alternative cumulant expansion
version of the effective potential Veff

FOW,h̄ as a power series of β [78, 81]:

Veff
FOW,β(x)=V (x)−

[

β

2
ζ1 (x,q)− β2

6
ζ2(x,q)+···

]

, (2.23)

where
ζ1(x,q)=− q

3
V ′′(x) , (2.24)

and

ζ2(x,q)=− q

2

[

V ′(x)
]2
+

q2

10
V(4) (x) . (2.25)

2.2.2 Centroid effective potential

Based on the centroid density of path integrals [32, 70, 84–89, 92], Feynman and Hibbs
suggested a completely different approach for constructing an effective semiclassical po-
tential [32]. First, we recall that calculations of the quantum partition function requires
a summation of all possible closed paths. Each path is indexed by its initial or final
configuration [Eq. (2.12)]. The difference in the centroid path integrals is that instead of
integrating over all possible initial/final positions of paths to obtain the partition func-
tion, we may group the closed paths in accordance with their time-average positions x̄,
which are also called centroids:

x̄=
1

βh̄

βh̄
∫

0

x(τ)dτ. (2.26)

The quantum partition function is, then, obtained by carrying out the integrations over
the centroid positions (see Appendix A for more details):

Qqm=
∮

D [x(τ)]

∞
∫

−∞

δ(x̄−x0)dx0exp

{

−1

h̄
A[x(τ)]

}

, (2.27)

where δ(x̄−x0) is a delta function picking or constraining a closed path with the centroid
position x̄ at a value of x0. Then the corresponding centroid effective potential W can be
defined as follows (see Appendix A for more details):

W (x0)=−kBT ln





√

2πh̄2

MkBT

∮

D [x(τ)]δ(x̄−x0)exp

{

−1

h̄
A[x(τ)]

}





⇒
√

MkBT

2πh̄2
e−βW(x0)=ρcentroid(x0)=

∮

D [x(τ)]δ(x̄−x0)exp

{

−1

h̄
A[x(τ)]

}

⇒ Qqm=

∞
∫

−∞

ρcentroid(x0)dx0. (2.28)
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As Feynman and Hibbs pointed out [32], a major advantage of categorizing each
closed path in terms of its centroid position over the initial/final position is that the first
non-zero correction term of Eq. (2.27) after a Taylor series expansion for V about x̄ is of
second order:

Qqm=

∞
∫

−∞

dx0

∮

D [x(τ)]δ(x̄−x0)

×exp

{

−1

h̄

βh̄
∫

0

dτ

[

M

2
ẋ2+V(x̄)+(x− x̄)V ′(x̄)+

1

2
(x− x̄)2V ′′(x̄)+···

]

}

=

∞
∫

−∞

dx0

∮

D [x(τ)]δ(x̄−x0)

×exp

{

−1

h̄

βh̄
∫

0

dτ

[

M

2
ẋ2+V(x̄)+

1

2
(x− x̄)2V ′′(x̄)+···

]

}

, (2.29)

where the time integral associated with the first order derivative V ′(x̄) is zero because of
Eq. (2.26), i.e.,

−1

h̄
V ′(x̄)

βh̄
∫

0

dτ(x− x̄)=0. (2.30)

Therefore, in comparison with the effective semiclassical potentials from the Wigner-
Kirkwood or Fujiwara-Osborn-Wilk expansions, the effective semiclassical potential
based on the centroid density of path integrals should be less sensitive to the curvature
or the variation of the original ’classical’ potential V. Consequently, the centroid effective
potential W should be more classical-like.

2.2.3 Comparison of the two semiclassical potentials and path-integral quantum

transition-state theory

To shed some light on the close analogy between the centroid potential W and the orig-
inal ’classical’ potential V, we consider a chemical reaction overcoming a barrier from
the reactant state. The barrier is approximated as an un-truncated or infinite parabola
(i.e., an inverted harmonic potential), while the reactant state is treated approximately as
a harmonic potential well (Fig. 1). The quantum correction to the classical reaction rate
constant due to the reactant state is the ratio of the quantum to classical partition func-
tions [93–104]. Let the angular frequency of the harmonic vibration be ω. The classical
canonical partition function for a linear harmonic oscillator, in which V (x)= Mω2x2/2,
is given as follows:

Qcl =

√

MkBT

2πh̄2

∞
∫

−∞

exp

(

−β
1

2
Mω2x2

)

dx=
1

βh̄ω
. (2.31)
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Figure 1: Schematic diagram for a chemical reaction, in which the reactant is approximated as a harmonic
potential (red dashed-dotted line) and the transition state is approximated as an infinite parabola (blue dashed
line).

The quantum canonical partition function for a linear harmonic oscillator can also be
written in a closed-form expression:

Qqm=
∞

∑
n=0

exp

[

−β

(

n+
1

2

)

h̄ω

]

=
1

2sinh
(

βh̄ω
/

2
) . (2.32)

Hence κ, the factor of the quantum correction to the classical reaction rate constant con-
tributed from the reactant state, is:

κqm/cl (RS)=
Qqm

Qcl
=

βh̄ω
/

2

sinh
(

βh̄ω
/

2
) . (2.33)

For the transition state, the contribution to the quantum correction in this model re-
action is only from quantum tunneling. Suppose the energy barrier from the reactant
to transition states is V0 and the imaginary angular frequency for the parabolic barrier
is iν (Fig. 1). The probability of tunneling transmission Υ(E) as a function of energy
E (Ref. [105]) for an infinite parabolic barrier, in which V(x) =V0−Mν2x2/2, has been
analytically solved by Bell [106, 107]:

Υ(E)=
1

1+exp
(

2π V0−E
h̄ν

) . (2.34)

With the transmission probability, we are in a position to derive the quantum tunneling
correction to the classical reaction rate constant. According to the conventional transition-
state theory [93–104], the classical rate constant is:

kcl =
kBT

h

1

QA
exp(−βV0), (2.35)
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where QA is the reactant partition function.
In the quantum world, we have to modify our way in computing the rate constant to

account for the tunneling effects properly. For a one-dimensional barrier, as long as re-
actants move towards products from the beginning, they are all possible to overcome the
barrier with any initial energy values (the energy is constant throughout the reaction). A
factor governing the ability in passing through the barrier is the tunneling transmission
probability. Therefore, instead of computing the reaction rate as the number of reactants
passing through the transition state per unit time, we should consider the number of
reactants per unit time in which their positions are at negative infinity but moving to-
wards the product. As a result, we obtain the following quantum reaction rate constant
expression for a one-dimensional barrier [108]:

kqm =
1

h

∞
∫

−∞

exp(−βE)Υ(E)dE
1

QA
, (2.36)

where QA is the reactant partition function. Dividing Eq. (2.36) by Eq. (2.35), we obtain
the following quantum tunneling correction to the classical reaction rate constant for a
one-dimensional barrier:

κqm/cl (TS)=
exp

(

V0

/

kBT
)

kBT

∞
∫

−∞

Υ(E)exp
(

−E
/

kBT
)

dE. (2.37)

Substituting Eq. (2.34) into Eq. (2.37), the analytical form of the tunneling correction for
the infinite parabolic barrier can be written as:

κqm/cl (TS)=
exp

(

V0

/

kBT
)

kBT

∞
∫

−∞

exp
(

−E
/

kBT
)

1+exp
(

2π V0−E
h̄ν

)dE

=

∞
∫

0

du

1+u
π

βh̄ν/2

=
βh̄ν

/

2

sin
(

βh̄ν
/

2
) iff βh̄ν

/

2<π, (2.38)

where u= exp[(V0−E)/kBT]. The integrals in Eq. (2.37) diverges when βh̄ν/2>π. This
happens when the barrier is so narrow/sharp (i.e., the frequency ν is so high) or temper-
ature is so low that the tunneling correction from the negative infinity energy weighted
by the Boltzmann factor is not insignificant.

As a result, the total quantum correction to the classical reaction rate constant for
a chemical reaction approximated as overcoming a parabolic barrier from a harmonic
potential well [which is dividing Eq. (2.37) by Eq. (2.33)] is:

κTot
qm/cl =κqm/cl (TS)

/

κqm/cl (RS)

=
βh̄ν

/

2

sin
(

βh̄ν
/

2
)

/

βh̄ω
/

2

sinh
(

βh̄ω
/

2
) . (2.39)
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It is amazing to notice that the quantum corrections for the reactant [Eq. (2.33)] and tran-
sition [Eq. (2.37)] states, appealing to two different natures of quantum effects (i.e., quan-
tization of vibration and quantum tunneling, respectively), are actually in the same math-
ematical closed form:

κqm/cl =
βh̄Ω

/

2

sinh
(

βh̄Ω
/

2
) . (2.40)

By putting Ω = ω for the reactant state and Ω = iν for the transition state, Eq. (2.40)
reduces to Eqs. (2.33) and (2.37), respectively. This correspondence has been described
by Johnston as ”an amusing coincidence” [109] and thought by Bell that it ”may conceal
some fundamental connection which is not yet fully understood” [107].

Interestingly, the truth behind the ’amusing coincidence’ or the ’concealed fundamen-
tal connection’ between the vibrational and tunneling effects could be answered at least
in part by the centroid density of path integrals. The centroid effective potential W for
the linear harmonic oscillator V(x)=Mω2x2/2 is [see Appendix A for more details, e.g.,
see Eq. (A.19)]:

WRS (x)=
1

2
Mω2x2−kBT ln

[

βh̄ω
/

2

sinh
(

βh̄ω
/

2
)

]

. (2.41)

Note that the hyperbolic function
βh̄ω/2

sinh(βh̄ω/2)
is always smaller than unity. Consequently,

W is basically identical to V but the bottom of the potential well is raised by the amount
of energy equal to the free energy difference between the quantum and classical oscilla-
tors (Fig. 2). For the untruncated and infinite parabolic barrier V (x)=V0−Mν2x2/2, the
centroid potential W is [see Appendix A for more details, e.g., see Eq. (A.19)]:

WTS(x)=V0−
1

2
Mν2x2−kBT ln

[

βh̄ν
/

2

sin
(

βh̄ν
/

2
)

]

, for
βh̄ν

2
<π. (2.42)

This time, the trigonometric function
βh̄ν/2

sin(βh̄ν/2)
is always greater than unity. Thus W is

nothing more than the infinite parabolic barrier, except that the original barrier V0 is now

lowered by
∣

∣−kBT ln
[ βh̄ν/2

sin(βh̄ν/2)

]∣

∣. As a result, using the centroid potentials in Eqs. (2.41)

and (2.42) to compute the reaction rate constant in a classical manner, we can obtain the
exact quantum correction shown in Eq. (2.39).

On the contrary, the above classical-like behavior in the centroid potential, which is
basically shifting the ’classical’ potential upward and downward without changing the
frequency of the potential, cannot be observed for the effective potentials constructed
by the particle density [Eq. (2.11)] or by the initial/final positions of closed paths. For
the linear harmonic oscillator V(x) = Mω2x2/2, the closed form of the particle density
is [32, 34]:

ρRS (x)=

√

Mω

2πh̄sinh(βh̄ω)
exp

{

− Mωx2

h̄sinh(βh̄ω)
[cosh(βh̄ω)−1]

}

. (2.43)
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For the untruncated or infinite parabolic barrier V (x)=V0−Mν2x2/2, the corresponding
particle density is [113]:

ρTS(x)= e−βV0

√

Mν

2πh̄sin(βh̄ν)
exp

{

− Mνx2

h̄sin(βh̄ν)
[cos(βh̄ν)−1]

}

. (2.44)

As a consequence, the effective semiclassical potential Veff
ρ constructed by the particle

density, i.e.,

√

MkBT

2πh̄2
e−βVeff

ρ =ρ(x) ⇒ Veff
ρ (x)=−kBT ln



ρ(x)

√

2πh̄2

MkBT



 (2.45)

behaves differently from the original potential V. For a direct comparison, Fig. 2 depicts
these three types of harmonic potentials: V, Veff

ρ , and W. The bottom of the potential Veff
ρ

is shifted upward the most, and its shape is the flattest too. We may recall that W essen-
tially shifts up V by the free energy difference between quantum and classical harmonic
oscillators. Therefore, in contrast to the case of using the centroid potential, if we replace
the original potential V with Veff

ρ to compute the reaction rate constant classically via the
transition state theory, we would not be able to recover the exact quantum correction
[Eq. (2.39)].

Through the above examples on a harmonic potential and an infinite parabola, we
have demonstrated the ability in computing accurate quantum properties in classical for-
malisms by making use of the centroid density of path integrals. Indeed, this ability
has been extensively applied in many theoretical or computational studies to accurately
determine thermodynamic and quantum dynamic quantities [32, 34, 88, 89, 92, 114–120],
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including molecular spectroscopy of quantum fluids [121–124] and the rate constants of
chemical and enzymatic reactions [57–59, 84–88, 110, 125–130]. The mass-dependent na-
ture of W is also of particular interest because isotope effects can be obtained, and it has
been applied to carbon nanotubes [54] in materials science and enzymatic reactions in life
science [57–59, 126–128].

2.3 Path-integral Monte Carlo and molecular dynamics simulations

The success of path-integral calculations in various disciplines of science is partially ow-
ing to the emergence of Monte Carlo (MC) simulations, which started being widely used
at about the same time around the birth of path integrals [87, 88, 131–145]. In practice,
each path in space-time is conventionally either discretized into a set of virtual ’beads’
on a sliced time axis or represented in Fourier space. The mathematical expression
for discretized path integrations over all possible closed paths may be written as fol-
lows [32, 33, 60, 61]:

∮

D [x(τ)]= lim
N→∞
∆τ→0

∞
∫

xN−1=−∞

···
∞
∫

x2=−∞

∞
∫

x1=−∞

dx1

λτ
B

dx2

λτ
B

··· dxN−1

λτ
B

, (2.46)

where N is the number of beads, λτ
B
=
√

2πh̄∆τ
M is the thermal de Broglie wavelength be-

tween two adjacent beads, ∆τ=βh̄/N and xN=x1, for selecting closed paths. In Eq. (2.46),
the path between two adjacent beads is ’approximated’ as a free-particle path. The closed
paths in discretized path integrals sometimes may be referred as polymer rings or neck-
laces. On the other hand, the Fourier path integrations over all closed paths, which are
characterized by the centroid position x̄, may be expressed as follows [34]:

∮

D [x(τ)]=

√

MkBT

2πh̄2

∞
∫

−∞

dx̄
∞

∏
m=1





∞
∫

−∞

∞
∫

−∞

dxIm
m dxRe

m

πkBT
/

Mω2
m



, (2.47)

where ωm=2πm/βh̄, m is the index of Fourier coefficients, and the closed paths x(τ) are
represented in terms of Fourier coefficients xRe

m and xIm
m :

x(τ)= x̄+2
∞

∑
m=1

(

xRe
m cosωmτ−xIm

m sinωmτ
)

. (2.48)

More details about Fourier path integrals can be found in Appendix A.

By using Eq. (2.47) or (2.46), MC or molecular dynamics (MD) sampling techniques
are subsequently performed to calculate the path integrations over a finite number of
Fourier coefficients or beads, which are called PIMC [131–141] or PIMD simulations [87,
88, 142–145], respectively.
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3 Kleinert’s variational perturbation theory

Kleinert’s variational perturbation (KP) theory [34] for the centroid density [32, 70, 84–
89, 92] of Feynman path integrals [2, 32–34, 60–75] provides a complete theoretical foun-
dation for developing non-stochastic/non-sampling methods to systematically incorpo-
rate internuclear quantum-statistical effects in condensed phase systems. Similar to the
complementary interplay between the rapidly growing quantum Monte Carlo simula-
tions [146–149] and the well-established ab initio or density-functional theories (DFT)
for electronic structure calculations [4, 5, 25–27, 29], non-sampling/non-stochastic path-
integral methods can complement the conventional Fourier or discretized path-integral
Monte-Carlo (PIMC) [131, 136, 139–141] and molecular dynamics (PIMD) [87, 88] [e.g.,
Eqs. (2.46) and (2.47)] simulations which have been widely used in condensed phases.

To simplify the illustration of the essence of Kleinert’s variational perturbation the-
ory, we now consider a one-particle one-dimensional system. For a one-particle one-
dimensional system, the classical canonical partition function in Eq. (1.8) reduces to:

Qcl =

√

MkBT

2πh̄2

∞
∫

−∞

e−βV(x0)dx0. (3.1)

The traditional way to obtain the quantum canonical partition function, i.e., Eq. (1.3), is to
solve the internuclear Schrödinger equation to get the individual energy eigenvalues. But
in the path-integral (PI) formulation, we do not know the individual energy eigenvalues
for obtaining the quantum partition function. This is because the PI representation of the
quantum partition function can be written in terms of the centroid effective potential W
as a classical configuration integral [32, 34, 84, 85, 88, 89, 92]:

Qqm=∑
n

exp(−βEn)=

√

MkBT

2πh̄2

∞
∫

−∞

e−βW(x0)dx0. (3.2)

Given the centroid potential W (x0), thermodynamic and quantum dynamic quantities
can be accurately determined, including molecular spectroscopy of quantum fluids and
the rate constant of chemical and enzymatic reactions. The mass-dependent nature of
W (x0) is also of particular interest because isotope effects can be obtained, and it has
been applied to carbon nanotubes [54–56], proton-transfer reactions in solution [150],
and biochemical reactions in protein [57–59] and RNA enzymes [151].

The centroid potential W (x0) in Eq. (3.2) is defined as follows [32,34,84,85,88,89,92]:

W (x0)=−kBT ln





√

2πh̄2

MkBT

∮

D [x(τ)]δ(x̄−x0)exp
{

−A[x(τ)]
/

h̄
}



, (3.3)

where τ is a real number and represents the magnitude/component for pure imaginary
time in path integral, x(τ) describes a path in space-time,

∮

Dx(τ)δ(x̄−x0) denotes a

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.140313.070513s | Generated on 2024-12-26 19:43:18



K.-Y. Wong / Commun. Comput. Phys., 15 (2014), pp. 853-894 871

summation over all possible closed paths in which x̄ is equal to x0 (i.e., a functional inte-
gration), and x̄ is the time-average position, called ’centroid’

x̄≡ 1

βh̄

βh̄
∫

0

x(τ)dτ. (3.4)

In Eq. (3.3), A is the quantum-statistical action:

A[x(τ)]=

βh̄
∫

0

dτ

{

M

2
ẋ2(τ)+V [x(τ)]

}

, (3.5)

where V(x) is the original potential energy of the system. More details can be found in
Appendix A. Generalization of Eq. (3.3) to a multi-dimensional system is straightforward
[32, 34].

A number of non-stochastic approaches have been developed to estimate the centroid
potential. For example, Feynman and Hibbs described a first-order cumulant expansion
by introducing a Gaussian smearing function in a free-particle reference frame to yield
an upper bound on the centroid potential [32]. This was subsequently modified by Doll
and Myers (DM) by using a Gaussian width associated with the angular frequency at the
minimum of the original potential [152]. Mielke and Truhlar employed a free-particle ref-
erence state and approximated the sum over paths by a minimal set of paths constrained
for a harmonic oscillator. The action integral is obtained by using the three-point trape-
zoidal rule for the potential to yield the displaced-point path integral (DPPI) centroid
potential [153].

A closely related theoretical approach to the KP theory is the variational method in-
dependently introduced by Giachetti and Tognetti [154], and by Feynman and Kleinert
(hereafter labeled as GTFK) [155], which formally corresponds to the first order approxi-
mation in the KP theory, i.e., KP1. The GTFK approach is a variational method that adopts
a harmonic reference state by variationally optimizing the angular frequency. This vari-
ational method has been applied to a variety of systems, including quantum dynamic
processes in condensed phases (e.g., water and helium). Although the original GTFK ap-
proach is among the most accurate approximate methods for estimating the path-integral
centroid potential in many applications [153], significant errors can exist in situations
in which quantum effects are dominant, especially at low temperatures. Higher order
perturbations of KP theory can significantly and systematically improve computational
accuracy over the KP1 results [34, 150, 151, 156, 157].

In essence, what Kleinert’s variational perturbation (KP) theory does is to systemat-
ically builds up anharmonic corrections to the harmonic centroid potential calculated in
a harmonic reference state characterized by a trial angular frequency Ω [34]. Given the
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reference, or trial harmonic action:

Ax0
Ω
=

βh̄
∫

0

dτ

{

M

2
ẋ2(τ)+

1

2
MΩ2[x(τ)−x0]

2

}

. (3.6)

the centroid potential W (x0) in Eq. (3.3) can be expressed as a path integral of the har-
monic action which is perturbed by the anharmonicity of the original potential:

e−βW(x0)=

√

2πh̄2

MkBT

∮

Dx(τ)δ(x̄−x0)e
−A

x0
Ω

/

h̄
e
−(A−A

x0
Ω )
/

h̄

=Qx0
Ω

〈

e
−(A−A

x0
Ω )
/

h̄
〉x0

Ω

, (3.7)

where Qx0

Ω
is the local harmonic partition function given as follows:

Qx0
Ω
=

√

2πh̄2

MkBT

∮

Dx(τ)δ(x̄−x0)e
−A

x0
Ω

/

h̄
=

βh̄Ω/2

sinh(βh̄Ω/2)
, (3.8)

and 〈···〉x0
Ω is the expectation value over all closed paths of the action in Eq. (3.6):

〈

e−F[x(τ)]/h̄
〉x0

Ω
=

1

Qx0

Ω

√

2πh̄2

MkBT

∮

Dx(τ)δ(x̄−x0)e−F[x(τ)]/h̄e
−A

x0
Ω

/

h̄
. (3.9)

See Appendix A for more details, e.g., see Eq. (A.19). In Eq. (3.9), F[x(τ)] denotes an
arbitrary functional. It is of interest to note that Eq. (3.7) is the starting point of Zwanzig’s
free-energy perturbation, which has been extensively used in free-energy calculations
through Monte Carlo and molecular dynamics simulations. In Appendix A, we briefly
show how we can perform the functional integrations of Eq. (3.9) in Fourier space.

If we expand the exponential functional in Eq. (3.7) and sum up the prefactors into
an exponential series of cumulants, then the nth-order approximation, WΩ

n (x0), to the
centroid potential W (x0) can be written as follows [34]:

e−βWΩ
n (x0)=Qx0

Ω
exp







−1

h̄

βh̄
∫

0

dτ
〈

Ax0
int

〉x0

Ω,c
+

1

2!h̄2

βh̄
∫

0

dτ1

βh̄
∫

0

dτ2

〈

Ax0
int [x(τ1)]A

x0
int [x(τ2)]

〉x0

Ω,c

+···+
{

n

∏
j=1

βh̄
∫

0

dτj

}

(−1)n

n!h̄n

〈

n

∏
k=1

Ax0
int [x(τk)]

〉x0

Ω,c







, (3.10)

where Ax0
int=A−Ax0

Ω
is the so-called inter-action, representing the perturbation to the har-

monic reference state, 〈···〉x0

Ω,c is a cumulant which can be written in terms of expectation
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values 〈···〉x0

Ω by the cumulant expansion [34, 90, 91], e.g.,

〈

Ax0
int [x(τ)]

〉x0

Ω,c
≡
〈

Ax0
int [x(τ)]

〉x0

Ω
, (3.11)

〈

Ax0
int [x(τ1)]A

x0
int [x(τ2)]

〉x0

Ω,c
≡
〈

Ax0
int [x(τ1)]A

x0
int [x(τ2)]

〉x0

Ω
−
{

〈

Ax0
int [x(τ)]

〉x0

Ω

}2
, (3.12)

〈

Ax0
int [x(τ1)]A

x0
int [x(τ2)]A

x0
int [x(τ3)]

〉x0

Ω,c

≡
〈

Ax0
int [x(τ1)]A

x0
int [x(τ2)]A

x0
int [x(τ3)]

〉x0

Ω

−3
〈

Ax0
int [x(τ1)]A

x0
int [x(τ2)]

〉x0

Ω

〈

Ax0
int [x(τ)]

〉x0

Ω
+2
{

〈

Ax0
int [x(τ)]

〉x0

Ω

}3
, (3.13)

etc.

More importantly, Kleinert and co-workers derived a math equation for expressing the

expectation value
{

∏
n
j=1

∫ βh̄
0 dτj

}

〈∏n
k=1 Fk [x(τk)]〉x0

Ω from the functional-integral form to be

in terms of Gaussian smearing convolution integrals [34], which are ordinary integrals:

{

n

∏
j=1

βh̄
∫

0

dτj

}〈

n

∏
k=1

Fk [x(τk)]

〉x0

Ω

=

{

n

∏
j=1

βh̄
∫

0

dτj

}{

n

∏
k=1

∞
∫

−∞

dxkFk (xk)

}

× 1
√

(2π)nDet
[

a2
τkτk′

(Ω)
]

exp

{

−1

2

n

∑
k=1
k′=1

(xk−x0)a−2
τkτk′

(Ω)(xk′−x0)

}

, (3.14)

where Det
[

a2
τkτk′

(Ω)
]

is the determinant of the n×n-matrix consisting of the Gaussian

width a2
τkτk′

(Ω), a−2
τkτk′

(Ω) is an element of the inverse matrix of a2
τkτk′

(Ω), and the Gaus-
sian width is a function of the trial frequency Ω:

a2
ττ′ (Ω)=

1

βMΩ2

{

βh̄Ω

2

cosh[(|τ−τ′|−βh̄/2)Ω]

sinh(βh̄Ω/2)
−1

}

. (3.15)

In Appendix A, we briefly show a derivation of the Gaussian smearing convolution inte-
gral for the first order of WΩ

n (x0), i.e., n=1.

In contrast to the functional-integral expression shown in Eq. (3.10), we can now fi-
nally use the smearing potentials given in Eq. (3.14) to express the nth-order Kleinert

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.140313.070513s | Generated on 2024-12-26 19:43:18



874 K.-Y. Wong / Commun. Comput. Phys., 15 (2014), pp. 853-894

variational perturbation (KPn) approximation, WΩ
n (x0) in terms of ordinary integrals [34]:

WΩ
n (x0)=−kBT lnQx0

Ω
+

kBT

h̄

βh̄
∫

0

dτ
〈

Vx0
int [x(τ1)]

〉x0

Ω

− kBT

2!h̄2

βh̄
∫

0

dτ1

βh̄
∫

0

dτ2

〈

Vx0
int [x(τ1)]V

x0
int [x(τ2)]

〉x0

Ω,c

+···+kBT
(−1)n+1

n!h̄n







n

∏
j=1

βh̄
∫

0

dτj







〈

n

∏
k=1

Vx0
int [x(τk)]

〉x0

Ω,c

, (3.16)

where Vx0
int [x(τ)]=V [x(τ)]− 1

2 MΩ2[x(τ)−x0]
2 (the kinetic energy terms in Eq. (3.5) and

Eq. (3.6) cancel out with one another).
As n tends to infinity, WΩ

n (x0) approaches the exact value of the centroid potential
W (x0) in Eq. (3.3), which is independent of the trial Ω. But the truncated sum in Eq. (3.16)
does depend on Ω, and the optimal choice of this trial frequency at a given order of KP
expansion and at a particular centroid position x0 is determined by the least-dependence
of Wx0

n (Ω) on Ω itself. This is the so-called frequency of least dependence, which pro-
vides a variational approach to determine the optimal value of Ω, i.e., Ωopt,n(x0) [34].

Of particular interest is the special case when n= 1, which turns out to be identical
to the original GTFK variational approach. An important property of KP1 or the GTFK
variational approach is that there is a definite upper bound for the computed WΩ

1 (x0) by
virtue of the Jensen-Peierls inequality, i.e., from Eqs. (3.7) and (3.10):

e−βW(x0)=Qx0
Ω

〈

exp

(

−A−Ax0
Ω

h̄

)〉x0

Ω

≥Qx0
Ω

exp

〈

−A−Ax0
Ω

h̄

〉x0

Ω

= e−βWΩ
1 (x0). (3.17)

Note that by choosing Ω= 0 (i.e., the reference state is for a free particle), KP1 or GTFK
[154, 155] reduces to the Feynman-Hibbs approach [32]. For higher orders of n, unfor-
tunately, it is not guaranteed that a minimum of Wx0

n (Ω) actually exists as a function
of Ω. In this case, the least dependent Ω is obtained from the condition that the next
derivative of Wx0

n (Ω) with respect to Ω is set to zero. Consequently, Ω is considered as
a variational parameter in the Kleinert perturbation theory such that Wx0

n

[

Ωopt,n (x0)
]

is
least-dependent on Ω.

This variational criterion relies on the uniformly and exponentially convergent prop-
erty of the KP theory. Kleinert and coworkers proved that his theory exhibits this prop-
erty in several strong anharmonic-coupling systems. More importantly, this remarkably
fast convergent property can also be observed even for computing the electronic ground
state energy of a hydrogen atom (3 degrees of freedom). The ground state energy was
determined by calculating the electronic centroid potential at the zero-temperature limit.
The accuracies of the first three orders of the KP theory for a hydrogen atom are 85%,
95%, and 98%, respectively [34].
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In practice, for odd n, there is typically a minimum point in Ω, but due to the alter-
nating sign of the cumulants in Eq. (3.16), there is usually no minimum in Ω for even n.
Nevertheless, the frequency of least-dependence for an even order perturbation in n can
be determined by locating the inflexion point, i.e., the zero-value of the second deriva-
tive of Wx0

n (Ω) with respect to Ω. Since the KP expansion is uniformly and exponen-
tially converged, Kleinert has demonstrated that the least-dependent plateau in Wx0

n (Ω),
which is characterized by a minimum point for odd n or by an inflexion point for even n
(Fig. 3 [157]), grows larger and larger with increasing orders of n [34].
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Figure 3: The minimum and inflexion points of the centroid potential calculated from the first three orders of
Kleinert’s variational perturbation theory. The first three order centroid potentials are denoted as W1, W2, W3,
respectively, which are plotted as a function of the variational angular frequency Ω [157]. W∞ is the exact value
of W.

4 Automated integration-free path-integral (AIF-PI) method

An especially attractive feature of Eq. (3.16) is that the if the real system potential is ex-
pressed as a series of polynomials or Gaussians, analytic expressions of Eq. (3.16) can
be obtained, making the computation extremely efficient because the time-demanding
Monte Carlo samplings for multi-dimensional numerical integrations could be avoided.
Hereafter, the level of calculations up to nth order KP expansion for an mth-order-
polynomial potential is denoted as KPn/Pm. For other potentials, KPn theory still in-
volves elaborate n-dimensional space-time (2n degrees of freedom) smearing integrals
in Eq. (3.14). The intricacy of the smearing integrals increases tremendously for multi-
dimensional potentials, where Ω becomes a 3N×3N matrix Ωij for N nuclei. This com-
plexity is a major factor limiting applications of the KP theory beyond KP1, the original
FK approach.

To render the KP theory feasible for many-body systems with N particles, we decou-

ple the instantaneous normal mode (INM) coordinates {qx0}3N for a given configuration

{x0}3N [150, 151, 156–158]. Hence the multidimensional V effectively reduces to 3N one-
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dimensional potentials along each normal mode coordinate. Note that INM are naturally
decoupled through the 2nd order Taylor expansion. The approximation of decoupling
the INM coordinates has also been used elsewhere [159, 160]. This approximation is par-
ticularly suited for the KP theory because of the exponential decaying property of the
Gaussian convolution integrals in Eq. (3.14). In the decoupling INM approximation, the
total effective centroid potential for N nuclei can be simplified as:

WΩ
n

(

{x0}3N
)

≈V
(

{x0}3N
)

+
3N

∑
i=1

wΩ
i,n

(

qx0

i

)

, (4.1)

where wΩ
i,n

(

qx0

i

)

is the centroid potential for normal mode i. Although the INM approxi-
mation sacrifices some accuracy, in exchange, it allows analyses of quantum mechanical
vibration and tunneling, and their separate contributions to the W. Positive and negative
values of wi raise (vibration) and lower (tunneling) the original potential, respectively.
In practice, real frequencies from the INM analysis often yields positive wi’s in Eq. (4.1)
with dominant contributions from zero-point-energy effects. By contrast, for imaginary
frequencies in the INM, the values of wi are often negative, due to tunneling contribu-
tions.

To obtain analytical expressions for the expectation values in Eq. (3.16), we use an mth
order polynomial (Pm) to approximate or interpolate the potential along qi. Hereafter, an
mth order polynomial representation of the original potential energy function obtained
with an interpolating step size q Å both in the forward and backward directions along
the normal mode coordinate at x0 is denoted as Pm-qA. Note that analytical results for P4
have been used by Kleinert for a quadratic-quartic anharmonic potential and a double-
well potential [34]; however, higher order polynomials are needed to achieve the desired
accuracy in real systems. We have thus derived the analytical closed forms of Eq. (3.16)
up to P20 [150, 151, 156–158]. Consequently, the W as a function of an arbitrary Ω can be
promptly obtained. This provides a convenient way to determine the least dependent Ω

value without computing the complicated smearing integrals [Eq. (3.14)] iteratively for
different trial values of Ω by Monte Carlo multi-dimensional numerical integrations. In
fact, after the interpolating potential along each instantaneous normal-mode coordinate
is determined, there is little computational cost for obtaining the W. Thereby, high level
ab initio or density-functional (DFT) methods can be used to evaluate the potential energy
function for ab initio path-integral calculations [150, 151].

The computational procedure for obtaining the first and second order KP approxima-
tions to the centroid potential using our automated integration-free path-integral (AIF-PI)
method is summarized below [150, 151, 156–158]:

1. For each {x0}3N, the mass-scaled Hessian matrix is diagonalized to obtain {qx0}3N .

2. The original potential V is scanned from the configuration {x0}3N along each qx0
i for 10 points

respectively in the forward and backward directions to interpolate V as P20-0.1A. We found that
a step size of 0.1 Å is usually a reasonable choice to yield W within a few percent of the exact.
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3. After the P20-0.1A interpolations, each wΩ
i,n

(

q
x0
i

)

as a function of Ω is readily obtained using

the analytical expressions of KP1/P20 or KP2/P20. Note that the path integrals for these
polynomials have been analytically integrated.

4. The values of wΩ
i,n

(

q
x0
i

)

are determined by numerically locating the least dependence of wΩ
i,n

(

q
x0
i

)

on Ω, i.e., zeroing the lowest order derivative of wΩ
i,n

(

q
x0
i

)

w.r.t. Ω (1st derivative for KP1 and

usually 2nd derivative for KP2).

The procedure presented above is integration-free and essentially automated [150, 151,
156–158]. We hope it could be used by non-path-integral experts or experimentalists as a
”black-box” for any given system. We are currently developing a formalism to systemat-
ically couple instantaneous normal-mode coordinates.

Due to the integration-free feature, our AIF-PI method is computationally efficient
such that the potential energy can be evaluated using ab initio or density-functional the-
ory (DFT) for performing the so-called ab initio path-integral calculations. Consequently,
we used the hybrid density-functional B3LYP to construct the internuclear potential en-
ergy function for computing kinetic isotope effects (KIE) on several series of proton-
transfer chemical reactions in water using the AIF-PI method. These proton-transfer
chemical reactions are highly relevant to the bacterial squalene-to-hopene polycycliza-
tion. And the computed KIE results at the KP2 level are in good agreement with exper-
iment (Fig. 4) [150]. Recently, we also employed the same computational technique to
perform ab initio path-integral calculations of KIE on some RNA-model chemical reac-
tions. Again, the calculated KIE values are in good agreement with experiments, which
is a cover-image paper shown in Fig. 5 [151].
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Figure 4: Our kinetic isotope effects (KIE) calculations on a series of proton-transfer reactions published in J.
Am. Chem. Soc. (Impact Factor: 9.9) [150].
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Figure 5: Cover image for our kinetic isotope effects (KIE) calculations on RNA transphosphorylation models
published in Angew. Chem. Int. Ed. (Impact Factor: 13.5) [151].

5 Concluding remarks and outlook

In this review, we discuss how Feynman’s path integral has been being used in the com-
putations of internuclear quantum-statistical effects (e.g., tunneling, zero-point motion,
and isotope effects) on many-body molecular systems.

Even though every single detail of molecular properties is essentially given in the
molecular Schrödinger equation [Eq. (1.2)], the equation can be exactly solved only for
the simplest one-electron atoms or ions. The most common and perhaps the mildest ap-
proximation often made to the molecular Schrödinger equation is the Born-Oppenheimer
approximation, which adiabatically decouples nuclear and electronic degrees of freedom.

Although quantum effects on internuclear motions are much smaller than that on the
electronic part, internuclear quantum-statistical effects actually could be important for
many applications. A robust and popular choice for including such internuclear quan-
tum effects is using Feynman’s path integral [Eq. (2.12)]. This is largely because the
essence of Feynman’s path integrals is to transform the Schrödinger differential equation
to become an integral equation [Eq. (2.3)]. As a result, the quantum canonical partition
function can be directly obtained with some effective semiclassical potential [Eqs. (2.19),
(2.22), (2.23), and (2.28); Fig. 2], e.g., centroid potential [Eq. (2.28)], without computing
individual energy eigenvalues. In addition, the many-body path integrations can be car-
ried out by the conventional molecular dynamics (MD) or Monte Carlo (MC) sampling
techniques [Eqs. (2.46) and (2.47)].

To complement the conventional MD/MC sampling approach, Kleinert’s variational
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perturbation (KP) theory provides a complete theoretical foundation for developing non-
sampling/non-stochastic methods to systematically compute the centroid potential. In
essence, what KP theory does is to systematically builds up anharmonic corrections to
the harmonic centroid potential that is calculated in a harmonic reference state, which
is characterized by a variational angular frequency [Eq. (3.16)]. Nevertheless, for multi-
dimensional potentials, the complexity of the smearing integrals in the KP theory is in-
creased terrifically. This intricacy is a major factor limiting applications of the KP theory
beyond KP1, the 1st order approximation.

To make the powerful KP theory efficient beyond KP1 and applicable to realistic sys-
tems, we proposed our automated integration-free path-integral (AIF-PI) method (Sec-
tion 4). In our AIF-PI method, a major achievement is to use a polynomial interpolation
of the potential on each instantaneous normal mode (INM) coordinate for many-body
systems to derive analytic expression for the path integrals. The implementation is suffi-
ciently general for any systems described by smooth internuclear potential energy func-
tions. Although the decoupled INM coordinate approximation in the AIF-PI method
neglects correlations between instantaneous normal modes, it provides further insights
into quantum contributions from vibration and tunneling.

In addition, the integration-free feature of our AIF-PI method enables us to perform ab
initio path-integration calculations of kinetic isotope effects (KIE) on both proton-transfer
and phosphoryl-transfer reactions. The calculated KIE results are in good agreement with
experiment that help us to elucidate the enzymatic mechanisms underlying the bacterial
squalene-to-hopene polycyclization and the RNA 2’-O-transphosphorylation (Figs. 4 and
5).

Nonetheless, to go beyond the INM approximation, we are developing a formalism
to systematically couple the INM. And, we are also working on a new centroid path-
integral theory at the minimum of the absolute-zero energy (AMAZE) [161]. Using this
new AMAZE theory, along with other centroid properties reported in the literature, it is
possible that we can accurately calculate many-body quantum free energies, tunneling
splittings, and molecular (anharmonic) spectroscopy simply by minimization. Further,
the long-existing problem in free-energy simulations, which is caused by multiple con-
formers orthogonal to the reaction coordinate, could also potentially be solved by our
new AMAZE theory [161].
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A Path integrals in Fourier space and first order Gaussian

smearing convolution integral

To derive the smearing formula for Kleinert’s variational perturbation theory, we first
determine the universal normalization constant, say Cm, for the quantum-statistical
centroid-path-integrals (functional integration) at imaginary time τ in Fourier space.

Any closed-path x(τ) in space-time with the time-average or the ’centroid’ position

x̄= 1
βh̄

∫ βh̄
0 x(τ)dτ can be written as follows:

x(τ)= x̄+
∞

∑
m=1

(

xmeiωmτ+x∗me−iωmτ
)

= x̄+2
∞

∑
m=1

(

xRe
m cosωmτ−xIm

m sinωmτ
)

, (A.1)

where

ωm≡ 2πm

βh̄
. (A.2)

After defining the notation
∮

D [x(τ)] as the summation over all possible closed paths
x(τ) in space-time (which is dimensionless):

∮

D [x(τ)]≡
√

MkBT

2πh̄2

∞
∫

−∞

dx̄
∞

∏
m=1





∞
∫

−∞

∞
∫

−∞

dxIm
m dxRe

m

Cm



, (A.3)

the quantum canonical partition function Qqm can be expressed in terms of Feynman’s
path integrals:

Qqm=
∮

D [x(τ)]e−
1
h̄ A[x(τ)], (A.4)

where A[x(τ)] is the quantum-statistical action:

A[x(τ)]=

βh̄
∫

0

dτ

{

M

2
ẋ2(τ)+V [x(τ)]

}

. (A.5)

The physical meaning of Eq. (A.4) is that the quantum partition function is the summa-

tion over all closed paths weighted by the exponential factor e−
1
h̄ A[x(τ)].

We determine the normalization constant Cm in Eq. (A.3) by considering a linear har-
monic oscillator, in which the potential is V(x) = 1

2 MΩ2x2. The action associated with
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this harmonic potential is:

A[x(τ)]=

βh̄
∫

0

dτ

{

M

2

[

2
∞

∑
m=1

(

xRe
m ωm(−sinωmτ)−xIm

m ωm(cosωmτ)
)

]2

+
M

2
Ω2

[

x̄2+2x̄
∞

∑
m=1

(

xRe
m cosωmτ−xIm

m sinωmτ
)

+

(

2
∞

∑
m=1

(

xRe
m cosωmτ−xIm

m sinωmτ
)

)2
]}

. (A.6)

Since only the terms
∫ βh̄

0 dτsin2ωmτ and
∫ βh̄

0 dτcos2ωmτ are non-zero and all the other
cross terms are at zero value, the harmonic quantum-statistical action can be simplified
as follows:

A[x(τ)]=

βh̄
∫

0

dτ

{

M

2

[

4
∞

∑
m=1

((

xRe
m

)2
ω2

msin2ωmτ+
(

xIm
m

)2
ω2

mcos2ωmτ
)

]

+
M

2
Ω2

[

x̄2+4
∞

∑
m=1

((

xRe
m

)2
cos2ωmτ+

(

xIm
m

)2
sin2ωmτ

)

]}

⇒ A[x(τ)]=βh̄

{

MΩ2x̄2

2
+M

∞

∑
m=1

[

Ω2+ω2
m

]

[

(

xRe
m

)2
+
(

xIm
m

)2
]

}

. (A.7)

Substituting Eq. (A.7) into Eq. (A.4), the harmonic quantum partition function is:

∮

D [x(τ)]e−
1
h̄ A[x(τ)]

=





∞
∫

−∞

dx̄e−β 1
2 MΩ2 x̄2

√

MkBT

2πh̄2





×
∞

∏
m=1





∞
∫

−∞

∞
∫

−∞

dxIm
m dxRe

m

Cm



×exp

{

−βM
∞

∑
m=1

[

Ω2+ω2
m

]

[

(

xRe
m

)2
+
(

xIm
m

)2
]

}

=

(

1

βh̄Ω

)

∞

∏
m=1

1

Cm

[
√

π

βM(Ω2+ω2
m)

]2

=
1

βh̄Ω

∞

∏
m=1

1

Cm

[

π

βM(Ω2+ω2
m)

]

. (A.8)

For a free particle, we put Ω=0 before integrating x̄ in Eq. (A.8) to obtain the following
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partition function:

Qqm(free particle)=

√

MkBT

2πh̄2
Volume

∞

∏
m=1

1

Cm

[

π

βMω2
m

]

=Qcl (free particle)
∞

∏
m=1

1

Cm

[

π

βMω2
m

]

. (A.9)

Since the classical and quantum partition functions for a free particle are the same (be-
cause the eigen-energy spectrum is continuous), this leads the value of Cm to be

Cm=πkBT
/

Mω2
m. (A.10)

On the other hand, by putting Cm =πkBT/Mω2
m, the quantum canonical partition func-

tion for a linear harmonic oscillator can be re-written as follows:

Qqm(harmonic)=
∮

D [x(τ)]e−
1
h̄ A[x(τ)]

=
1

βh̄Ω

∞

∏
m=1

ω2
m

Ω2+ω2
m

=
1

βh̄Ω

∞

∏
m=1

4π2m2

β2h̄2

4π2m2

β2h̄2 +Ω2

=
1

βh̄Ω

∞

∏
m=1

m2π2

m2π2+
(

βh̄Ω

2

)2
=

1

βh̄Ω

βh̄Ω
/

2

sinh
(

βh̄Ω
/

2
)

=
1

2sinh
(

βh̄Ω
/

2
) =

∞

∑
n=0

e−βh̄Ω(n+ 1
2) (for all real Ω). (A.11)

The proof of

∞

∏
m=1

m2π2

m2π2+
(

βh̄Ω

2

)2
=

βh̄Ω
/

2

sinh
(

βh̄Ω
/

2
) (A.12)

can be found in Refs. [34, 70].
Now using (A.10) and (A.3), we can define the notation

∮

D [x(τ)]δ(x̄−x0)e−
1
h̄ A[x(τ)]

as follows:

∮

D [x(τ)]δ(x̄−x0)e−
1
h̄ A[x(τ)]≡

√

MkBT

2πh̄2

∞

∏
m=1





∞
∫

−∞

∞
∫

−∞

dxIm
m dxRe

m

πkBT
/

Mω2
m

e−
1
h̄ A[x̄0(τ)]



, (A.13)

where x̄0(τ) denotes a closed path in which its average position is equal to x0:

x̄0(τ)= x0+2
∞

∑
m=1

(

xRe
m cosωmτ−xIm

m sinωmτ
)

⇒ 1

βh̄

βh̄
∫

0

x̄0(τ)dτ= x0. (A.14)
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In other words, we also can use Eq. (A.13) to re-express Eq. (A.4) as follows:

Qqm=
∮

D [x(τ)]e−
1
h̄ A[x(τ)]

=
∮

D [x(τ)]

∞
∫

−∞

δ(x̄−x0)dx0e−
1
h̄ A[x̄0(τ)]

=

√

MkBT

2πh̄2

∞
∫

−∞

dx0

∞

∏
m=1





∞
∫

−∞

∞
∫

−∞

dxIm
m dxRe

m

πkBT
/

Mω2
m

e−
1
h̄ A[x̄0(τ)]



. (A.15)

If we define the centroid effective potential W as follows:

e−βW(x0)=
∞

∏
m=1





∞
∫

−∞

∞
∫

−∞

dxIm
m dxRe

m

πkBT
/

Mω2
m

e−
1
h̄ A[x̄0(τ)]





=

√

2πh̄2

MkBT

∮

D [x(τ)]δ(x̄−x0)e−
1
h̄ A[x(τ)], (A.16)

then finally we can express the quantum canonical partition function in a classical fashion
or in terms of classical configuration integral:

Qqm=
∮

D [x(τ)]e−
1
h̄ A[x(τ)] ⇒ Qqm=

√

MkBT

2πh̄2

∞
∫

−∞

dx0e−βW(x0). (A.17)

Next, we define a local harmonic action:

Ax0
Ω [x̄0(τ)]≡Ax0

Ω
≡

βh̄
∫

0

dτ

{

M

2
˙̄x2
0(τ)+

1

2
MΩ2[x̄0(τ)−x0]

2
}

=βh̄

{

M
∞

∑
m=1

[

Ω2+ω2
m

]

[

(

xRe
m

)2
+
(

xIm
m

)2
]

}

(A.18)

in which we have used Eqs. (A.14) and (A.7) for the simplification of the final expression.
From Eqs. (A.8), (A.10), (A.11), and (A.18), the corresponding local harmonic partition
function Q and the harmonic centroid effective potential W can be written as:

Qx0
Ω
= e−βWΩ(x0)=

∞

∏
m=1





∞
∫

−∞

∞
∫

−∞

dxIm
m dxRe

m

πkBT
/

Mω2
m

e−
1
h̄ A

x0
Ω





=
∞

∏
m=1





∞
∫

−∞

∞
∫

−∞

dxIm
m dxRe

m

πkBT
/

Mω2
m

exp

{

−βM
∞

∑
m=1

[

Ω2+ω2
m

]

[

(

xRe
m

)2
+
(

xIm
m

)2
]

}





=
∞

∏
m=1

ω2
m

Ω2+ω2
m

=
βh̄Ω

/

2

sinh
(

βh̄Ω
/

2
) . (A.19)
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The final expression in Eq. (A.19) is true for all real Ω; if Ω is pure imaginary, we need
∣

∣

βh̄Ω

2

∣

∣< π. By using the local harmonic action in Eq. (A.18) as the reference frame, we
now derive Kleinert’s variational perturbation theory as follows. First, we re-write the
expression of the centroid potential W in Eq. (2.28) as Zwanzig’s free-energy perturbation
in the harmonic reference frame:

e−βW(x0)=
∞

∏
m=1





∞
∫

−∞

∞
∫

−∞

dxIm
m dxRe

m

πkBT
/

Mω2
m

e−
1
h̄ (Ax0−A

x0
Ω )e−

1
h̄ A

x0
Ω





=Qx0
Ω

∞

∏
m=1

( ∞
∫

−∞

∞
∫

−∞

dxIm
m dxRe

m

πkBT/Mω2
m

e−
1
h̄ (Ax0−A

x0
Ω )e−

1
h̄ A

x0
Ω

)

∞

∏
m=1

( ∞
∫

−∞

∞
∫

−∞

dxIm
m dxRe

m

πkBT/Mω2
m

e−
1
h̄ A

x0
Ω

)

=Qx0
Ω

〈

e−
1
h̄ (Ax0−A

x0
Ω )
〉x0

Ω
=Qx0

Ω

〈

e−
1
h̄ A

x0
int

〉x0

Ω
, (A.20)

where 〈···〉x0
Ω is the functional average or expectation value over all closed paths in the

harmonic reference frame described by the harmonic action in Eq. (A.18) and Ax0
int=Ax0−

Ax0

Ω
is the so-called inter-action. We expand the functional average in Eq. (A.20) by the

functional cumulant expansion [91]:

e−βW(x0)=Qx0
Ω

〈

e−
1
h̄ A

x0
int

〉x0

Ω

=Qx0
Ω

〈

exp

[

−1

h̄

βh̄
∫

0

dτ

{

V [x̄0(τ)]−
1

2
MΩ2[x̄0(τ)−x0]

2
}

]〉

x0

Ω

=Qx0
Ω

exp







∞

∑
n=1

(−1)n

n!h̄n

βh̄
∫

0

dτ1 ···
βh̄
∫

0

dτn

〈

Vx0
int [x̄0(τ1)]···Vx0

int [x̄0(τn)]
〉x0

Ω,c







, (A.21)

where 〈···〉x0
Ω,c is the cumulant average and Vx0

int [x̄0(τ)] =V [x̄0(τ)]− 1
2 MΩ2[x̄0(τ)−x0]

2.
The cumulant average can be expressed in terms of the following functional average:

〈

Vx0
int [x̄0(τ1)]···Vx0

int [x̄0(τn)]
〉x0

Ω

=
1

Qx0
Ω

∞

∏
m=1







∞
∫

−∞

∞
∫

−∞

dxIm
m dxRe

m

πkBT
/

Mω2
m

(Vx0
int [x̄0(τ1)]···Vx0

int [x̄0(τn)])e−
1
h̄ A

x0
Ω







. (A.22)

For the rest of this Appendix A, we are going to derive the smearing formula for the
functional average in Eq. (A.22) when n=1, so that the path-integrations can be calculated
in terms of ordinary integrations (i.e., no more functional integrations).

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.140313.070513s | Generated on 2024-12-26 19:43:18



K.-Y. Wong / Commun. Comput. Phys., 15 (2014), pp. 853-894 885

We first replace Vx0
int [x̄0(τn)] with an arbitrary function Fn in Eq. (A.22) for n=1, i.e.,

〈F1 [x̄0(τ)]〉x0
Ω

=
1

Qx0
Ω

∞

∏
m=1







∞
∫

−∞

∞
∫

−∞

dxIm
m dxRe

m

πkBT
/

Mω2
m

F1 [x̄0(τ)]e
− 1

h̄ A
x0
Ω







=
1

Qx0
Ω

∞

∏
m=1







∞
∫

−∞

∞
∫

−∞

dxIm
m dxRe

m

πkBT
/

Mω2
m

F1

[

x0+2
∞

∑
m=1

(

xRe
m cosωmτ−xIm

m sinωmτ
)

]

×exp

{

−βM
∞

∑
m=1

[

Ω2+ω2
m

]

[

(

xRe
m

)2
+
(

xIm
m

)2
]}

}

. (A.23)

Now we Fourier transform F1

[

x̄0(τ)
]

in k space:

F1 [x̄0(τ)]=

∞
∫

−∞

dk1√
2π

eik1 x̄0(τ) F̃1(k1). (A.24)

Then Eq. (A.23) becomes

〈F1 [x̄0(τ)]〉x0
Ω

=
1

Qx0

Ω

×
∞

∏
m=1





∞
∫

−∞

∞
∫

−∞

dxIm
m dxRe

m

πkBT
/

Mω2
m

∞
∫

−∞

dk1√
2π

F̃1(k1)exp

{

ik1x0−βM
∞

∑
m=1

[

Ω2+ω2
m

]

×
[

(

xRe
m

)2
+
(

xIm
m

)2
− 2ik1

βM(Ω2+ω2
m)

(

xRe
m cosωmτ−xIm

m sinωmτ
)

]

})

. (A.25)

Doing the completing the square of xRe
m and xIm

m , Eq. (A.25) becomes

〈F1 [x̄0(τ)]〉x0

Ω

=
1

Qx0

Ω

∞

∏
m=1





∞
∫

−∞

∞
∫

−∞

dxIm
m dxRe

m

πkBT
/

Mω2
m

∞
∫

−∞

dk1√
2π

F̃1(k1)

×exp

{

ik1x0−βM
∞

∑
m=1

[

Ω2+ω2
m

]

[

(

xRe
m − ik1 cosωmτ

βM(Ω2+ω2
m)

)2

+

(

xIm
m +

ik1 sinωmτ

βM(Ω2+ω2
m)

)2

+
k2

1

β2 M2(Ω2+ω2
m)

2

]})

. (A.26)
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Since

∞

∏
m=1





∞
∫

−∞

∞
∫

−∞

dxIm
m dxRe

m

πkBT
/

Mω2
m

exp

{

−βM
∞

∑
m=1

[

Ω2+ω2
m

]

[

(

xRe
m

)2
+
(

xIm
m

)2
]

}





=
βh̄Ω

/

2

sinh
(

βh̄Ω
/

2
) =Qx0

Ω
(A.27)

[see Eq. (A.19)], after integrating xIm
m and xRe

m , the denominator Qx0
Ω

in Eq. (A.26) is can-
celled out by the integrations. The remainders are:

〈F1 [x̄0(τ)]〉x0
Ω =

∞
∫

−∞

dk1√
2π

F̃1(k1)exp

{

ik1x0−
k2

1

βM

∞

∑
m=1

1

Ω2+ω2
m

}

. (A.28)

Now let time-independent smearing Gaussian width a(Ω) be:

a2(Ω)=
2

βM

∞

∑
m=1

1

Ω2+ω2
m

=
1

βMΩ2

[

βh̄Ω

2
coth

(

βh̄Ω

2

)

−1

]

. (A.29)

The proof of

2

βM

∞

∑
m=1

1

Ω2+ 4π2m2

β2 h̄2

=
1

βMΩ2

[

βh̄Ω

2
coth

(

βh̄Ω

2

)

−1

]

(A.30)

can be found in Refs. [34, 70]. Then Eq. (A.28) can be simplified as follows:

〈F1 [x̄0(τ)]〉x0

Ω =

∞
∫

−∞

dk1√
2π

F̃1(k1)exp

{

ik1x0−
a2(Ω)k2

1

2

}

. (A.31)

We Fourier transform F̃1(k1) [Eq. (A.24)] back to x space, Eq. (A.31) becomes

〈F1 [x̄0(τ)]〉x0
Ω =

1

2π

∞
∫

−∞

dk1

∞
∫

−∞

dx1F1(x1)exp

{

ik1(x0−x1)−
a2(Ω)k2

1

2

}

. (A.32)

After integrating k1, we obtain the smearing formula for the first order Kleinert’s varia-
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tional perturbation theory:

〈F1 [x̄0(τ)]〉x0
Ω

=
1

2π

∞
∫

−∞

dx1F1(x1)

∞
∫

−∞

dk1 exp

{

− a2(Ω)

2

[

k1−
i(x0−x1)

a2 (Ω)

]2

−
[

a2 (Ω)

2

]

(x0−x1)
2

a4(Ω)

}

=
1

2π

√

2π

a2 (Ω)

∞
∫

−∞

F1(x1)exp

[

− (x0−x1)
2

2a2 (Ω)

]

dx1

⇒ 〈F1 [x̄0(τ)]〉x0
Ω =

1
√

2πa2 (Ω)

∞
∫

−∞

F1(x1)exp

[

− (x0−x1)
2

2a2 (Ω)

]

dx1. (A.33)
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