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Abstract. In this paper, we review the recent development of phase-field models and
their numerical methods for multi-component fluid flows with interfacial phenom-
ena. The models consist of a Navier-Stokes system coupled with a multi-component
Cahn-Hilliard system through a phase-field dependent surface tension force, variable
density and viscosity, and the advection term. The classical infinitely thin boundary of
separation between two immiscible fluids is replaced by a transition region of a small
but finite width, across which the composition of the mixture changes continuously. A
constant level set of the phase-field is used to capture the interface between two immis-
cible fluids. Phase-field methods are capable of computing topological changes such
as splitting and merging, and thus have been applied successfully to multi-component
fluid flows involving large interface deformations. Practical applications are provided
to illustrate the usefulness of using a phase-field method. Computational results of
various experiments show the accuracy and effectiveness of phase-field models.
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1 Introduction

Many important industrial problems involve flows with multiple constitutive compo-
nents. Several examples are the impact of a droplet on a solid surface [53], bubbly and
slug flows in a microtube [46], drop coalescence and retraction in viscoelastic fluids [106],
and realistic interfaces in computer graphics [1]. Due to inherent nonlinearities, topologi-
cal changes, and the complexity of dealing with unknown moving interfaces, multiphase
flows are challenging to study from mathematical modeling and numerical algorithmic
points of view.

There are many ways to characterize moving interfaces. The two main approaches
to simulating multiphase and multi-component flows are interface tracking and interface
capturing methods. In interface tracking methods (volume-of-fluid [42], front-tracking [40],
and immersed boundary [49, 50, 80, 81, 96]), Lagrangian particles are used to track the in-
terfaces and are advected by the velocity field. In interface capturing methods such as
level-set [24,78,79,85,91,92] and phase-field methods [4,6,13,29,46,47,54,56,74,86,90,102],
the interface is implicitly captured by a contour of a particular scalar function.

n

Fluid 1

Ω1

ρ1, η1

ρ2, η2

Ω2

Fluid 2

Γ

Figure 1: Schematic diagram of a two phase domain.

The governing equations of unsteady, viscous, incompressible, and immiscible two
fluid systems in three-dimensional space are the Navier-Stokes equations:

ρi

(∂ui

∂t
+ui ·∇ui

)

=−∇pi+∇·[ηi(∇ui+∇uT
i )]+ρig, in Ωi,

∇·ui =0, in Ωi,

where ρi(x,t) is the density, ui(x,t)=(u1(x,t),u2(x,t),u3(x,t)) is the velocity, pi(x,t) is the
pressure, and ηi(x,t) is the viscosity of fluid i=1, 2, the superscript T denotes transpose,
and g is the gravitational force per unit mass. See Fig. 1 for the schematic diagram of a
two phase domain. Γ is the interface of the two immiscible fluids and n=(n1,n2,n3) is the
unit normal vector to the interface. On the interface Γ, we have a normal jump condition

p2−p1=σκ+
(

2ηnk
∂uk

∂n

)

2
−
(

2ηnk
∂uk

∂n

)

1
,
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where σ is the surface tension coefficient and κ is the mean curvature of the interface [97].
The above equation implies that both the surface tension and the viscous stress at the
interface contribute to the pressure jump. For immiscible and incompressible multi-
component fluid flows, the governing equations can be written as

ρ(ut+u·∇u)=−∇p+∇·[η(∇u+∇uT)]+SFsing+ρg, (1.1a)

∇·u=0, in Ω=Ω1∪Ω2, (1.1b)

where SFsing =−σκδΓn is the singular surface tension force (δΓ is the surface delta func-
tion) [56].

In this paper, we focus on the review of mathematical models and numerical methods
for multi-component fluids using phase-field methods. The contents of this paper are
organized as follows. In Section 2, phase-field models for multi-component fluid flows
are presented. In Section 3, numerical solutions for phase-field models are described. In
Section 4, numerical applications are described. Numerical experiments are presented in
Section 5. In Section 6, conclusions are given.

2 Phase-field models

Phase field models are an increasingly popular choice for modeling the motion of mul-
tiphase fluids. The basic idea is to introduce a conserved order parameter such as a
mass concentration that varies continuously over thin interfacial layers and is mostly
uniform in the bulk phases. In the phase-field model, sharp fluid interfaces are replaced
by thin but nonzero thickness transition regions where the interfacial forces are smoothly
distributed. In D. M. Anderson, G. B. McFadden, and A. A. Wheeler’s review paper
(1998) [4], the authors reviewed the development of diffuse-interface models of hydro-
dynamics and their application to a wide variety of interfacial phenomena. However,
since then many new models, numerical solutions, and applications have emerged and
we want to address these improvements in this paper. Examples are modeling ternary
fluids [14, 59, 64], the adaptive mesh method [15], drop coalescence and retraction in vis-
coelastic fluids [106], and contact angle boundary conditions [29, 45, 48, 55, 67, 104].

2.1 A binary fluid

We now consider the incompressible flow of two immiscible fluids. The phase-field is
defined to be either the difference between [73] or the fraction of one of [56] the concen-
trations of the two mixtures

φ=
m1−m2

m1+m2
, c=

m1

m1+m2
, (2.1)

where m1 and m2 are the masses of fluids 1 and 2. We note that −1≤φ≤1 and 0≤ c≤1.
Throughout this paper, we will use φ and c as phase-fields defined by Eq. (2.1). The
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Figure 2: Double well potential. F(φ)=0.25(φ2−1)2.

phase-field is also called by an order parameter [25]. The governing equation for the
phase-field is the advective Cahn-Hilliard (CH) equation:

φt+u·∇φ=∇·(M(φ)∇µ), (2.2a)

µ=F′(φ)−ǫ2∆φ, (2.2b)

where u is the bulk velocity and M(φ) is the phase-field dependent non-negative mo-
bility; M(c)= c(1−c) is used in [56], M(φ)= 1−φ2 is used in [6], and M(c)= 1 is used
in [12]. In the variable mobility case, the Cahn-Hilliard dynamics is controlled by in-
terface diffusion and in the constant mobility case, it is controlled by bulk diffusion.
F(φ)=0.25(φ2−1)2 is the Helmholtz free energy of a unit volume of homogeneous mate-
rial of composition φ (see Fig. 2). ǫ is a positive constant, which is related to the thickness
of the interfacial transition of the phase-field. We also have F(c)= 0.25c2(c−1)2 for the
concentration variable c.

The CH equation without flow arises from the Ginzburg-Landau free energy

E(φ) :=
∫

Ω

(

F(φ)+
ǫ2

2
|∇φ|2

)

dx,

where Ω is the region of space occupied by the system [19, 20]. To obtain the CH equa-
tion with a variable mobility, one introduces a chemical potential µ as the variational
derivative of E , µ := δE/δφ= F′(φ)−ǫ2∆φ and defines the flux as J :=−M(φ)∇µ. As a
consequence of mass conservation, we have ∂φ/∂t =−∇·J , which is the CH equation
with a variable mobility. Please refer to [19, 20, 77, 109] for more details about the basic
physical principle of CH equation. The natural and no-flux boundary conditions are

∂φ

∂n
=∇φ·n=0 and J ·n=0 on ∂Ω, where n is a unit normal vector to ∂Ω. (2.3)

Next, we review a mathematical derivation of the Cahn-Hilliard equation as a gradient
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flow [35]:

∂φ

∂t
=−Mgrad0E(φ), (2.4)

where M is a positive constant and the symbol ”grad0” here denotes a constrained gra-
dient in a Hilbert space, defined by

∫

Ω
φdx = constant. Let the domain D of the func-

tional E be the set of smooth enough functions φ defined in Ω and satisfying ∂φ/∂n=0.
Considering φ− 1

|Ω|
∫

Ω
φdx, we may consider functions with zero average. Let Ḣ1 be the

zero-average subspace of the Hilbert H1=W1,2(Ω), with norm ‖∇u‖L2 and inner product
(u,v)Ḣ1 ≡ (∇u,∇v)L2 for u,v∈ Ḣ1. Denote by Ḣ−1 the zero-average subspace of the dual
(H1)∗ of the Hilbert space H1. The inner product of u,v∈ Ḣ−1 is defined by

(u,v)Ḣ−1 ≡ (∇φu,∇φv)L2 ,

where φu,φv∈ Ḣ1 are the associates of u,v. For example [39], φu satisfies

∆φu =u in Ω,
∂φu

∂n
=0 on ∂Ω,

∫

Ω
φudx=0.

Then, grad0 is defined in the following way: Let Ċ∞
0 (Ω) be the set of smooth functions

with compact support and with zero average. Then, Ċ∞
0 is dense in Ḣ−1. Let φ be suffi-

ciently smooth and satisfy ∂φ/∂n=∂∆φ/∂n=0 on ∂Ω. Then, we have that for all v∈ Ċ∞
0 ,

(grad0E(φ),v)Ḣ−1 =
d

dθ
E(φ+θv)

∣

∣

θ=0

= lim
θ→0

1

θ

(

E(φ+θv)−E(φ)
)

=
∫

Ω

(

F′(φ)−ǫ2∆φ
)

vdx. (2.5)

Put ∆φv in place of v in Eq. (2.5). An integration by parts then yields

∫

Ω
[F′(φ)−ǫ2∆φ]∆φvdx=−

∫

Ω
∇[F′(φ)−ǫ2∆φ]·∇φvdx

=(−∇[F′(φ)−ǫ2∆φ],∇φv)L2 =(−∇·∇[F′(φ)−ǫ2∆φ],∇·∇φv)Ḣ−1

=(−∆[F′(φ)−ǫ2∆φ],v)Ḣ−1 ,

where we have used the fact that ∇φv has zero normal component on ∂Ω. We identify

grad0E(φ)≡−∆(F′(φ)−ǫ2∆φ) (2.6)

and the ansatz (2.4) now gives us the law of motion

φt=M∆(F′(φ)−ǫ2∆φ). (2.7)
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We differentiate the energy E and the total mass
∫

Ω
φ dx to get

d

dt
E(t)=

∫

Ω
(F′(φ)φt+ǫ2∇φ·∇φt)dx=

∫

Ω
µφtdx=

∫

Ω
µ∇·(M(φ)∇µ)dx

=
∫

∂Ω
µM(φ)

∂µ

∂n
ds−

∫

Ω
∇µ·(M(φ)∇µ)dx=−

∫

Ω
M(φ)|∇µ|2dx (2.8)

and

d

dt

∫

Ω
φdx=

∫

Ω
φtdx=

∫

Ω
∇·(M(φ)∇µ)dx=

∫

∂Ω
M(φ)

∂µ

∂n
ds=0, (2.9)

where we used the no-flux boundary condition (2.3). Therefore, the total energy is non-
increasing in time and the total mass is conserved.

In 1958, Cahn and Hilliard derived the formulation of the free energy which takes
into account the local free energy per molecule of a homogeneous system, F(c) and the
interfacial energy that results from composition gradients, 0.5ǫ2|∇c|2 [20]. In 1959, Cahn
discussed the thermodynamic basis behind the free energy formulation [18]. In 1959,
Cahn and Hilliard studied phase separation in immiscible liquid mixtures using the for-
mulated free energy [21]. In 1961, Cahn discussed the study of spinodal decomposition in
solids including the elastic stress effects due to the lattice parameter differences between
the two phases [19]. These papers form the theoretical basis for almost all the diffuse
interface studies on microstructural evolution in the metallurgical and materials science
literature. If we put all the equations, (1.1a), (1.1b), (2.2a), and (2.2b), together, then we
have

ρ(φ)(ut+u·∇u)=−∇p+∇·[η(φ)(∇u+∇uT)]+SF+ρ(φ)g, (2.10a)

∇·u=0, (2.10b)

φt+u·∇φ=∇·(M(φ)∇µ), (2.10c)

µ=F′(φ)−ǫ2∆φ. (2.10d)

The singular force SFsing is replaced by a regular force SF in terms of the phase-field,
which will be defined later in Section 2.1.2.

In [107], authors examined the implications of Cahn-Hilliard diffusion on mass con-
servation when using a phase-field model for simulating two-phase flows. Even though
the phase-field variable φ is conserved globally, a drop shrinks spontaneously while φ
shifts from its expected values in the bulk phases. Those changes were found to be pro-
portional to the interfacial thickness, and they suggested guidelines for minimizing the
loss of mass. Moreover, there exists a critical radius below which drops will eventually
disappear. With a properly chosen mobility parameter, however, this process will be
much slower than the physics of interest and thus has little ill effect on the simulation.
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In [102], a volume preserving Allen-Cahn type phase equation is used

φt+u·∇φ=
1

Pe
(− f (φ)+ǫ2∆φ+ξ(t)),

d

dt

∫

Ω
φdx=0,

where ξ(t) is the Lagrange multiplier corresponding to the constant volume constraint.
One of the reasons for choosing Allen-Cahn rather than Cahn-Hilliard is its numerical
treatment is simpler than that of the Cahn-Hilliard type which involves fourth-order dif-
ferential operators.

2.1.1 Variable density and viscosity

Density and viscosity are linear functions of the phase-field [6, 56]. Let ρ1 and ρ2 be the
densities of each fluid in the mixture, then the density of the mixture is defined as

ρ(c)=ρ1c+ρ2(1−c), ρ(φ)=ρ1
1+φ

2
+ρ2

1−φ

2
.

Similarly, the viscosity of the mixture is defined as

η(c)=η1c+η2(1−c), η(φ)=η1
1+φ

2
+η2

1−φ

2
.

Then, if we use the linear interpolation, the density and viscosity change across the in-
terface with the same profiles to the scaled phase-field function. In [73], the harmonic
interpolation for the variable density and viscosity is used

1

ρ(φ)
=

1+φ

2ρ1
+

1−φ

2ρ2
,

1

η(φ)
=

1+φ

2η1
+

1−φ

2η2
.

For the density, harmonic interpolation is used and linear interpolation is used for vis-
cosity in [54]

1

ρ(φ)
=

1+φ

2ρ1
+

1−φ

2ρ2
, η(φ)=

1+φ

2
η1+

1−φ

2
η2.

One of the reasons to choose the harmonic interpolation is that the solution of the
Cahn-Hilliard equation does not satisfy the maximal principle [73]. Hence, the linear in-
terpolation cannot be guaranteed to be bounded away from zero. However, due to the
L∞-bound of the solution [17], the harmonic interpolations lead to the desired properties.
In Fig. 3, solid and dashed lines represent linear and harmonic interpolations of density,
respectively. As we can see from this figure, if the value of c is negative, then the linear in-
terpolated density can be negative which is not physical value. However, if the harmonic
interpolation is used, then we always have positive values for density.
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•

•

ρ2

ρ1

c

ρ(c)

0 1
 

 

linear interpolation
harmonic interpolation

Figure 3: Linear (solid line) and harmonic (dotted line) interpolations of density ρ.

In [30], the applicability of an incompressible diffuse interface model for two-phase
incompressible fluid flows with large viscosity and density contrasts was investigated.
In [68], authors investigated the long time evolution of the classical Rayleigh-Taylor insta-
bility with a phase-field method. They implemented a time-dependent pressure bound-
ary condition through a time-dependent density field at the boundary. Owing to the
pressure boundary treatment, they could perform long time evolutions resulting in an
equilibrium state.

We note that with the large density ratio, the continuity equation can no longer be
reduced to ∇·u. Therefore, we need to solve ρt+∇·(ρu)=0.

2.1.2 Surface tension models

A jump condition appears when one investigates Eq. (1.1a) in the neighborhood of the
singular surface. This leads to the normal stress condition

[n·(−pI+η(∇u+∇uT))·n]Γ =σκ, (2.11)

where []Γ is a jump across the interface, Γ, and I is the identity matrix. The normal stress
condition (2.11) leads to the Laplace’s formula for an interface of the principal radii of
curvature at a given point of the surface. Let R1 and R2 be the principal radii of interface,
then the Laplace’s formula is given as

[p]Γ =σ
( 1

R1
+

1

R2

)

. (2.12)

In order to circumvent the problems associated with implementing the Laplace-Young
calculation at the exact interface boundary, Brackbill et al. [16] developed a method re-
ferred to as the continuum surface force (CSF) method. In the CSF method, the sur-
face tension jump condition is converted into an equivalent singular volume force that
is added to the Navier-Stokes equations. Typically, the singular force is smoothed and
acts only in a finite transition region across the interface. There are many surface tension
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models for the phase-field methods

SF1=6
√

2ǫσ∇·(|∇c|2 I−∇c⊗∇c), SF2=
6
√

2σ

ǫ
µ∇c, SF3=−6

√
2σ

ǫ
c∇µ, (2.13a)

SF4=−6
√

2ǫσ∇·
( ∇c

|∇c|
)

|∇c|∇c, SF5=−6
√

2ǫσ∇·(∇c⊗∇c), (2.13b)

where the term ∇c⊗∇c is the usual tensor product, i.e.,

∇c⊗∇c)ij =
∂c

∂xi

∂c

∂xj
.

In [56,69,70,73,74,89], the surface tension formulation SF1 is used. In [5,6,13,25,43,45,52,
59, 66, 98, 104], SF2 is used. SF3 is used in [46–48, 63, 99]. The surface tension formulation
SF4 allows us to calculate the pressure field directly from the governing equations [56].
In [12, 26, 86, 102, 105], SF5 is used. For more detailed discussions about surface tension
models, interested readers are referred to [56].

2.1.3 Contact angle boundary conditions

The spreading of a liquid droplet on a solid surface under capillary action plays an impor-
tant role in diverse technologies such as inkjet printing. The contact angle is the dihedral
angle formed at the interface among three fluid phases (α, β and γ) or between two fluid
phases (α and β) and a solid surface γ, as shown in Fig. 4(a) and (b). We shall represent
the dihedral angles by θα, θβ, and θγ, thus naming them after the phases they contain. At
equilibrium, the net force on any element of the three phase lines vanishes. Resolving
this force in directions that lie, respectively, along the αβ, βγ, and γα interfaces and are
perpendicular to the three phases line, we have

σαβ+σβγcosθβ+σγα cosθα =0, (2.14a)

σαβ cosθβ+σβγ+σγα cosθγ =0, (2.14b)

σαβ cosθα+σβγcosθγ+σγα=0, (2.14c)

where σαβ is the tension of the αβ interface, etc. [84]. When the γ phase is a solid as shown
in Fig. 4(b), the angle θγ is π. In this case, the second equation of (2.14) becomes

σαβ cosθβ =σγα−σβγ,

which is Young’s equation [103] and we denote this θβ by θ.
In the phase-field model, on the domain boundary ∂Ω, we have the following condi-

tions

∂φ(x,t)

∂n
=− f ′w(φ(x,t))

ǫ2
, x∈∂Ω, 0< t≤T, (2.15a)

∂µ(x,t)

∂n
=0, (2.15b)

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.301110.040811a | Generated on 2024-12-19 00:05:16



622 J. S. Kim / Commun. Comput. Phys., 12 (2012), pp. 613-661

θα

θβ

θγ
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β

γ

σαβ

σβγ

σγα

θ
α β

γ

m = (cosθ, sin θ)

σαβ

σβγσγα

(a) (b)

Figure 4: Definitions of dihedral angles at the junctions of three surfaces where three phases meet. (a) α, β,
and γ are fluids. (b) α and β are fluids and γ is a solid.

where fw(φ)=ǫ(φ3−3φ)/(3
√

2)cosθ is the specific wall free energy, which depends only
on the concentration at the solid surface and the contact angle θ [48, 54]. This arises from
the total Helmholtz free energy functional

F(φ)=E(φ)+W(φ)=
∫

Ω

(

F(φ)+
ǫ2

2
|∇φ|2

)

dx+
∫

∂Ω
fw(φ)ds.

The surface integral term W(φ) represents the contribution of solid-fluid interactions; it is
also used in [54] for diffuse-interface modeling of droplet impacts on solid surfaces. Ding
and Spelt [29] proposed a geometric formulation and we briefly describe the geometric
formulation: The normal vector to the interface can be written in terms of the gradient
of φ as ns =∇φ/|∇φ|. At the contact line, ns intersects the solid substrate at an angle
of θ, where θ is the contact angle (see Fig. 5). Then, the contact angle can be computed
geometrically in terms of φ by

tan
(π

2
−θ

)

=
n·∇φ

|∇φ−(n·∇φ)n| . (2.16)

Eq. (2.16) is referred to as a geometric formulation for the computation of the contact
angle θ. For example, to evaluate φi,0 values, we use the following extrapolation:

φi,0=φi,2−tan
(π

2
−θ

)

|φi+1,1−φi−1,1|.

Let the phase-field be defined as

φ(x,y)= tanh
sin(θ)x−cos(θ)y√

2ǫ
,

which means that the contact angle is θ at the origin. For a contact angle boundary condi-
tion, we have ∇φ·m=0, where m=(cos(θ),sin(θ)) is a unit tangent vector to the interface
at the contact point and θ is a prescribed contact angle (see Fig. 4(b)). When the contact
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θ

n

ns θ

φ ≈ −1 φ ≈ 1

Figure 5: Contact angle θ, unit normal vector n on the domain boundary, and unit normal vector ns on the
interface.

angle is θ=90◦, we have φn+1
i,0 =φn+1

i,1 . When the contact angle is θ=45◦, we have

φn+1
i,0 =

{

φn+1
i+1,1, if φn+1

i−1,1>φn+1
i+1,1,

φn+1
i−1,1, otherwise.

When the contact angle is θ= tan−1(0.5)(180/π)◦ , we have

φn+1
i,0 =

{

φn+1
i+2,1, if φn+1

i−1,1>φn+1
i+1,1,

φn+1
i−2,1, otherwise.

These interpolations are shown in Fig. 6(a). If the prescribed contact angle is not par-
ticular angles (θ = 90◦, 45◦, 180

π tan−1(0.5)◦), then we use an interpolation between the
two closest points. For example, when θ=60◦, the angle is between θ=45◦ and θ=90◦,
therefore we use φn+1

i,1 and φn+1
i+1,1 to get φn+1

i,0 value

φn+1
i,0 =











(

1− 1√
3

)

φn+1
i,1 + 1√

3
φn+1

i+1,1, if φn+1
i−1,1>φn+1

i+1,1,

1√
3
φn+1

i−1,1+
(

1− 1√
3

)

φn+1
i,1 , otherwise.

This is shown in Fig. 6(b).
In general, when θ 6=0◦, 90◦ ,180◦, the characteristic line is y=tan(θ)x and the interpo-

lation position of x-coordinate is x=h/tan(θ). We can write x as a sum of an integer part
and a fraction part, i.e., x=k+α, where k is an integer and 0≤α<1. Then the characteristic
interpolation is defined as

φn+1
i,0 =

{

(1−α)φn+1
i+k,1+αφn+1

i+k+1,1, if φn+1
i−1,1>φn+1

i+1,1,

αφn+1
i+k−1,1+(1−α)φn+1

i+k,1, otherwise.

For more detailed discussions about contact angle boundary conditions, interested read-
ers are referred to [67]. In [45], authors combined an operator-splitting scheme for the
time-discretization with a finite element space approximation for the system coupling the
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φi,0

φi,1 φi+1,1 φi+2,1

•

× × ×

90◦ 45◦

tan−1(0.5)(180/π)◦

φi,0

φi,1 φi+1,1

•

× ××

60◦

1√
3

1 − 1√
3

(a) (b)

Figure 6: (a) Illustration of the characteristic interpolation stencil for particular contact angles (θ= 90◦, 45◦,

tan−1(0.5)(180/π)◦) at a domain boundary. (b) Characteristic interpolation stencil for the contact angle θ=60◦
at a domain boundary.

Navier-Stokes and Cahn-Hilliard equations modeling the motion of the contact line sep-
arating two immiscible incompressible viscous fluids near a solid wall; the combination
that they considered allowed large time discretization steps. To treat the Cahn-Hilliard
part of the problem, they introduced a least-squares method to overcome the difficulties
associated with the nonlinearity and the boundary conditions. The least-squares problem
is solved by a conjugate gradient algorithm operating in a well-chosen functional space.
Using an energy method, they showed that the scheme has good stability properties.

2.1.4 The Boussinesq approximation

To model mixtures of different densities, authors in [5, 73] used the classical Boussi-
nesq approximation, which is the linear version of all different types of average ap-
proaches. The background density can be treated as a constant density and the difference
between the actual variable density and the constant will contribute only to the buoyancy
force [72]

ρ∗(ut+u·∇u)=−∇p+∇·[η(φ)(∇u+∇uT)]+SF+ρ(φ)g,

∇·u=0,

φt+u·∇φ=∇·(M(φ)∇µ),

µ=F′(φ)−ǫ2∆φ,

where ρ∗ is the background density. One of reasons for using the Boussinesq approxima-
tion is that it allows for easy calculation of the Navier-Stokes equation. We can write the
momentum equation in two-dimensional space as follows:

ρ∗(ut+u·∇u)=−∇(p+ρ∗gy)+∇·[η(φ)(∇u+∇uT)]+SF+(ρ(φ)−ρ∗)g.

If we reset the pressure field as p= p+ρ∗gy, then the equation becomes

ρ∗(ut+u·∇u)=−∇p+∇·[η(φ)(∇u+∇uT)]+SF+(ρ(φ)−ρ∗)g. (2.17)
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The Boussinesq approximation, Eq. (2.17), is used in [5]. ρ∗=(ρ1+ρ2)/2 is taken as the
mean density in [47]. ρ∗= ρ1(< ρ2) is taken as the mean density in [65]. One advantage
of using the Boussinesq approximation is that we solve a constant instead of variable
coefficient Poisson equation.

2.1.5 Diffuse-interface simulations of drop coalescence and retraction in viscoelastic

fluids

In this section, we consider a diffuse-interface formulation to drop coalescence and re-
traction involving Newtonian and Oldroyd-B fluids

ρ(φ)(ut+u·∇u)=−∇p+∇·τ , (2.18a)

∇·u=0, (2.18b)

φt+u·∇φ=∇·(M(φ)∇µ), (2.18c)

µ=F′(φ)−ǫ2∆φ. (2.18d)

Adding the interfacial elastic stress, λ∇φ∇φ and the proper viscous stress, we obtain the
total stress tensor:

τ=
(1−φ

2
µn+

1+φ

2
µs

)

(∇u+∇uT)+
1+φ

2
τd+λ∇φ∇φ,

τd+λHτd(1)=µp(∇u+∇uT),

where the subscript (1) denotes the upper convected derivative τd(1)=∂τd/∂t+u·∇τd−
∇uT ·τd−τd ·∇u, λH =ζ/(4H) is the relaxation time, ζ is the friction coefficient between
the dumbbell beads and the suspending solvent, and µp = nkTλH is the polymer vis-
cosity. Please refer to [105, 106] for more details about a diffuse-interface formulation of
Newtonian and Oldroyd-B fluids.

2.2 A ternary fluid

We next consider a ternary fluid system. The composition of a ternary mixture (A, B,
and C) can be mapped onto an equilateral triangle (the Gibbs triangle [82]) as shown in
Fig. 7(a). Mixtures with components lying on lines parallel to BC contain the same per-
centage of A, those with lines parallel to AC have the same percentage of B concentration,
and analogously for the C concentration. In Fig. 7(a), the mixture at the position marked
”◦” contains 60%A, 10%B and 30%C.

Let c=(c1,c2) be the phase variable (i.e., concentrations of component A and compo-
nent B). Since c1+c2+c3=1 we only need to solve the equations with c1 and c2. For three
immiscible fluids, the free energy can be modeled by F(c)= 1

4 ∑
3
i<j c

2
i c2

j . The contours of

the free energy F(c) projected onto the Gibbs triangle are shown in Fig. 7(b). Note the en-
ergy minima are at the three vertices and the maximum is at the center. The dimensional
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Figure 7: (a) Gibbs triangle. (b) Contour plot of the free energy F(c).

ternary phase-field system [59] is as follows:

ρ(ut+u·∇u)=−∇p+∇·[η(c)(∇u+∇uT)]+SF+ρg, (2.19a)

∇·u=0, (2.19b)

∂c1

∂t
+u·∇c1=∇·(M(c)∇µ1), (2.19c)

∂c2

∂t
+u·∇c2=∇·(M(c)∇µ2), (2.19d)

µ1=
∂F(c)

∂c1
−c1c2(1−c1−c2)−ǫ2∆c1, (2.19e)

µ2=
∂F(c)

∂c2
−c1c2(1−c1−c2)−ǫ2∆c2. (2.19f)

In [15], the advective Cahn-Hilliard equations are given as the following form:

∂ci

∂t
+u·∇ci =∇·

(M0

σi
∇µi

)

, for i=1,2,3,

µi =
4σT

ǫ ∑
j 6=i

1

σj

(∂F(c)

∂ci
− ∂F(c)

∂cj

)

− 3

4
ǫσi∆ci,

where M0 is the mobility, the coefficient σT is defined by 3/σT=∑
3
i=11/σi, and σi+σj=2σij,

for i< j. The bulk free energy potential is defined as F(c)=∑
3
i<j σijc

2
i c2

j +∑
3
i=1σici.

In three component fluids [14, 58, 64, 88], phase specific decomposition surface forces
are used. We decompose the given physical surface tension coefficients, σij, of the inter-
face Γij between fluid i(Ωi) and fluid j(Ωj) (see Fig. 8(a)) into the phase specific surface
tension coefficients σ1, σ2, and σ3 such that:

σ12 =σ1+σ2, σ13 =σ1+σ3, σ23 =σ2+σ3.
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Figure 8: Schematic of a domain. (a) σij denotes the surface tension coefficient of the interface Γij of fluids Ωi

and Ωj. (b) Phase specific surface tension coefficient, σ1, on interfaces, Γ12 and Γ13. (c) and (d) are similarly
defined.

The decomposition is uniquely defined as σ1=(σ12−σ23+σ13)/2, σ2 =(σ12+σ23−σ13)/2,
and σ3 = (−σ12+σ23+σ13)/2 (see Fig. 8(b), (c), and (d)). Then the continuous surface
tension force is defined as

SF=
3

∑
k=1

SFk=
3

∑
k=1

σkκ(ck)n(ck)δ(ck),

where κ(ck)=∇·(∇ck/|∇ck|), n(ck), and δ(ck) are the curvature, the unit normal vector,
and the smoothed Dirac delta function of the k-th fluid interface, respectively. A capillary
force,

SF=µ1∇c1+µ2∇c2+µ3∇c3=
3

∑
i=1

µi∇ci

is considered in the momentum balance. For variable density and viscosity, the following
interpolations are used

ρ(c1,c2)=(ρ1−ρ3)Hǫ(c1−0.5)+(ρ2−ρ3)Hǫ(c2−0.5)+ρ3, (2.20a)

η(c1,c2)=(η1−η3)Hǫ(c1−0.5)+(η2−η3)Hǫ(c2−0.5)+η3, (2.20b)

where Hǫ is a smooth approximation of a Heaviside function. Contrary to the arithmetic
or harmonic averages used in the literature, these relationships (2.20a) and (2.20b) enable
one to preserve the values ρi and ηi in phase i even though ci is not exactly 1 due to
numerical errors [15].

2.3 A diffuse-interface method for two-phase flows with soluble surfactants

In [93], a method was presented to solve two-phase problems involving soluble sur-
factants. The incompressible Navier-Stokes equations are solved along with equations
for the bulk and interfacial surfactant concentrations. A nonlinear equation of state is
used to relate the surface tension to the interfacial surfactant concentration. Results were
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presented for a drop in shear flow in both 2D and 3D, and the effect of solubility was
discussed. Let a phase-field function c, which is 1 in Ω1 and 0 in Ω2, then we define
Γ(t)={x∈Ω|c(x,t)=1/2}

∂c

∂t
+∇·(cu)=∇·(M(c)∇µ), (2.21a)

µ=F′(c)−ǫ2∆c, (2.21b)

where M=
√

c2(1−c)2 is a mobility function. Let f be the dimensionless surfactant con-
centration, which gives the dimensionless surface tension

σ( f )=1+βln(1−x f ), (2.22)

where β is the elasticity number and x is the dimensionless surfactant coverage. Let F be
the dimensionless surfactant concentration in the bulk fluid

∂

∂t
( f δΓ)+∇·( f δΓu)=

1

Pe f
∇·(δΓ∇ f )+δΓ j, (2.23a)

∂

∂t
(χF)+∇·(χFu)=

1

PeF
∇·(χ∇F)−hδΓ j, (2.23b)

where Pe f is the surface Peclet number, PeF is the bulk Peclet number, and h is the ad-
sorption depth. The dimensionless source term, j, is given by

j(F, f )=Bi
[

kFs

( 1

x
− f

)

− f
]

. (2.24)

The dimensionless parameters are Bi (Biot number) and k (adsorption number). For the
regularized surface delta function and characteristic function, δΓ = 3

√
2c2(1−c)2/ǫ and

χ= 1−c were used, respectively. For more details about a diffuse-interface method for
two-phase flows with soluble surfactants, please refer to [93].

2.4 More than a ternary fluid

It has been noted by several authors [14, 64] that in the quaternary case, the use of phase
specific decomposition cannot be used. This is because the decomposition generates a
system of over-determined equations and a solution may not exist. In fact, in [88], ”n>2”
only means ”n=3”. Here n represents the number of fluid components. For example, if
n= 4, then given the physical surface tension coefficients σij of the interface Γij between
fluid i and fluid j, we may consider a linear system of six equations to determine the four
unknowns σ1, σ2, σ3 and σ4:

σ12 =σ1+σ2, σ13 =σ1+σ3, σ14=σ1+σ4, (2.25a)

σ23 =σ2+σ3, σ24 =σ2+σ4, σ34=σ3+σ4. (2.25b)
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Figure 9: (a) Gibbs tetrahedron. (b) A slice plane parallel to the BCD triangle.

But the above systems of equations are over-determined equations; therefore, it is pos-
sible that there is no solution. In order to ensure that these equations possess a unique
solution, some restrictions must be imposed on σij. Note that, in general, for an n compo-
nent immiscible fluid system, there are n(n−1)/2 possible interfaces and n(n−1)/2>n
for n≥4. This implies that we have more equations than unknowns.

The composition of a quaternary mixture (A, B, C and D) can be mapped onto an
equilateral tetrahedron (the Gibbs simplex [82]) whose corners represent a 100% concen-
tration of A, B, C or D as shown in Fig. 9(a). Mixtures with components lying on planes
parallel to the triangle, ∆BCD, contain the same percentage of A; those with planes par-
allel to the triangle, ∆CDA, have the same percentage of B concentration; analogously,
the same relationships exist for the C and the D concentrations. In Fig. 9, the mixture at
the position marked ”◦” contains 20%A, 24%B, 48%C, and 8%D.

Let c=(c1,c2,c3,c4) be the phase variables (i.e., the mole fractions of A, B, C, and D,
respectively). Thus, admissible states will belong to the Gibbs tetrahedron

GT :=
{

c∈R
4
∣

∣

∣

4

∑
i=1

ci =1, 0≤ ci ≤1
}

. (2.26)

Without the loss of generalities, we postulate that the free energy can be written as fol-
lows

F=
∫

Ω

[

F(c)+
ǫ2

2

4

∑
i=1

|∇ci|2
]

dx,

where F(c)=0.25∑
4
i=1c2

i (1−ci)
2, ǫ is a positive constant, and Ω is an open bounded sub-

set of R
n (n= 2,3) occupied by the system. The time evolution of c is governed by the

gradient of the energy with respect to the H−1 inner product under the additional con-
straint (2.26). This constraint has to hold everywhere at any time. In order to ensure this
last constraint, we use a variable Lagrangian multiplier β(c) [38]. The time dependence
of ci is given by the following advective Cahn-Hilliard equation for describing each phase
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convection:

∂ci

∂t
+u·∇ci =M∆µi, i=1,2,3,4, (2.27a)

µi=
∂F(c)

∂ci
−ǫ2∆ci+β(c), (2.27b)

where u is the fluid velocity and M is the mobility. To calculate β(c), we write an equation
satisfied by S=c1+c2+c3+c4 and we want S≡1 to be a solution to the following equation

∂S

∂t
+u·∇S=M∆

( 4

∑
i=1

∂F

∂ci
−ǫ2∆S+4β(c)

)

,

where we got this from the summation of Eqs. (2.27a) and (2.27b) from i=1 to 4. There-
fore, β(c) =−0.25∑

4
i=1∂F/∂ci. For the sake of simplicity, we consider a system of four

immiscible fluids where the densities of all fluids are assumed to be equal. The variable
density can be defined as ρ(c) = (∑4

i=1ci/ρi)
−1 and ρi is the i-th fluid density [64]. The

fluids are incompressible and are governed by the Navier-Stokes-Cahn-Hilliard equa-
tions [6, 14, 25, 48, 56, 58, 64]

ρ
(∂u

∂t
+u·∇u

)

=−∇p+∇·[η(c)(∇u+∇uT)]+SF+ρg, (2.28a)

∇·u=0, (2.28b)

∂c

∂t
+u·∇c=M∆µ, (2.28c)

µ= f(c)−ǫ2∆c, (2.28d)

where p is the pressure, η(c) = (∑4
i=1ci/ηi)

−1 is the variable viscosity, SF is the surface
tension force, and f(c)= (∂F/∂c1+β(c), ∂F/∂c2+β(c), ∂F/∂c3+β(c), ∂F/∂c4+β(c)). To
avoid the solvability problem imposed by the over-determined system (2.25a), a general-
ized continuous surface tension force formulation is proposed [60]

SF(c)=
σ12

2
[sf(c1)+sf(c2)]δ(c1,c2)+

σ13

2
[sf(c1)+sf(c3)]δ(c1,c3)

+
σ14

2
[sf(c1)+sf(c4)]δ(c1,c4)+

σ23

2
[sf(c2)+sf(c3)]δ(c2,c3)

+
σ24

2
[sf(c2)+sf(c4)]δ(c2,c4)+

σ34

2
[sf(c3)+sf(c4)]δ(c3,c4),

where sf(ci)=−6
√

2ǫ∇·(∇ci/|∇ci|)|∇ci|∇ci and δ(ci,cj)=5cicj.
In Fig. 10, the dotted line is an equilibrium concentration field c = 0.5(1+

tanh(x/(2
√

2ǫ))), the dash-dot line is the Dirac delta function 6
√

2ǫc2
x in [56], and the

solid line is the new Dirac delta function, 30
√

2ǫc(1−c)c2
x; here, ǫ=0.1. We note that the

new smoothed Dirac delta function, 5αǫc(1−c)|∇c|2 , allows us to model any number of
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Figure 10: The dotted line represents an equilibrium concentration field c=0.5(1+tanh(x/(2
√

2ǫ))); the dash-

dot line is the Dirac delta function 6
√

2ǫc2
x; and the solid line is the new Dirac delta function, 30

√
2ǫc(1−c)c2

x.
ǫ=0.1.

multi-component (more than three) fluid flows. Here α=6
√

2. In general, for the interface
between fluid i and fluid j, we have

∫ ∞

−∞
15
√

2ǫcicj(|∇ci|2+|∇cj|2)dx=1,

where the integration is taken across the interface. In general, for N component fluids,
the surface tension force formulation is

SF(c)=
N−1

∑
i=1

( N

∑
j=i+1

σij

2
[sf(ci)+sf(cj)]δ(ci,cj)

)

.

2.5 Nondimensionalization

To restate the dimensional NSCH system in dimensionless form, we define the dimen-
sionless variables as

x′=
x

Lc
, u′=

u

Uc
, t′=

tUc

Lc
, p′=

p

ρcU2
c

, g′=
g

g
, ρ′=

ρ

ρc
, µ′=

µ

µc
,

where Lc, Uc, and ρc are the characteristic length, velocity, and density, respectively.
g is the gravitational acceleration. Substituting these variables into the governing
Eqs. (2.10a)-(2.10d), we have

ρ′(u′
t′+u′ ·∇′u′)=−∇′p′+

η

ρcUcLc
∆′u′− 3

√
2σǫ

4ρcLcU2
c
∇′ ·

( ∇′φ
|∇′φ|

)

|∇′φ|∇′φ+
gLc

U2
c

ρ′g′, (2.29a)

∇′ ·u′=0, (2.29b)

φt′+∇′ ·(φu′)=
Mµc

UcLc
∆′µ′, (2.29c)

µ′=φ3−φ− ǫ2

L2
c

∆′φ. (2.29d)

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.301110.040811a | Generated on 2024-12-19 00:05:16



632 J. S. Kim / Commun. Comput. Phys., 12 (2012), pp. 613-661

Dropping the primes and resetting ǫ2=ǫ2/L2
c , Eqs. (2.29a)-(2.29d) become

ρ(ut+u·∇u)=−∇p+
1

Re
∆u, (2.30a)

∇·u=0, (2.30b)

φt+∇·(φu)=
1

Pe
∆µ, (2.30c)

µ=φ3−φ−ǫ2∆φ, (2.30d)

where SF=−0.75
√

2ǫ∇·(∇φ/|∇φ|)|∇φ|∇φ. The dimensionless physical parameters are
the Reynolds number, Re, Weber number, We, Froude number, Fr, and Peclet number, Pe,
given by

Re=
ρcUcLc

η
, We=

ρc LcU
2
c

σ
, Fr=

U2
c

gLc
, Pe=

UcLc

Mµc
.

3 Numerical methods

The Fourier-spectral method for Navier-Stokes and Cahn-Hilliard system was used
in [73]. Many numerical methods for Navier-Stokes and Cahn-Hilliard system consist
of decoupled solutions of the Navier-Stokes equation and the Cahn-Hilliard equation.
Therefore, in the following subsections we will describe each numerical solution sepa-
rately.

3.1 Navier-Stokes solver

In principle, we can use most of numerical solutions for the Navier-Stokes equations in
conjunction with the Cahn-Hilliard equations. Examples are the second-order projec-
tion method for the incompressible Navier-Stokes equations [9] in [56, 64], the numerical
method for solving incompressible viscous flow problems [27] in [59, 60, 68], and high-
order splitting methods for the incompressible Navier-Stokes equations [51] in [6].

For completeness of exposition we describe one of simplest numerical solutions of
the Navier-Stokes equations. The simultaneous solution of the large number of discrete
equations arising from Eqs. (2.10a) and (2.10b) is very costly, especially in three spatial
dimensions [71]. An efficient approximation can be obtained by decoupling the solution
of the momentum equations from the solution of the continuity equation by a projection
method [9, 27]. We will focus on describing the idea in two-dimensions. A staggered
marker-and-cell (MAC) mesh of Harlow and Welch [44] is used in which pressure and
phase fields are stored at cell centers and velocities at cell interfaces (see Fig. 11).

Let a computational domain be partitioned in Cartesian geometry into a uniform
mesh with mesh spacing h. The center of each cell, Ωij, is located at (xi,yj)=((i−0.5)h,(j−
0.5)h) for i=1,··· ,Nx and j=1,··· ,Ny. Nx and Ny are the numbers of cells in the x and y
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Figure 11: Velocities are defined at cell boundaries while the pressure and phase field are defined at the cell
centers.

directions, respectively. The cell vertices are located at (xi+1/2,yj+1/2)=(ih, jh). At the be-

ginning of each time step, given un and φn, we want to find un+1, φn+1, and pn+1 which
solve the following temporal discretization of the dimensionless form of Eqs. (2.30a)-
(2.30d) of motion:

ρn un+1−un

∆t
=−ρn(u·∇du)n−∇d pn+1+

1

Re
∆dun+

1

We
SFn+

ρn

Fr
g, (3.1a)

∇d ·un+1=0, (3.1b)

φn+1−φn

∆t
=

1

Pe
∆dνn+1− 1

Pe
∆dφn−∇d ·(φu)n, (3.1c)

νn+1=(φn+1)3−ǫ2∆dφn+1, (3.1d)

where ρn = ρ(φn) and g= (0,−1). The outline of the main procedures in one time step
follows:

Step 1. Initialize u0 to be the divergence-free velocity field and φ0.

Step 2. Solve an intermediate velocity field, ũ, which generally does not satisfy the incompressible
condition, without the pressure gradient term,

ũ−un

∆t
=−un ·∇dun+

1

ρnRe
∆dun+

1

ρnWe
SFn+

1

Fr
g.

The resulting finite difference equations are written out explicitly. They take the form

ũi+ 1
2 ,j =un

i+ 1
2 ,j
−∆t(uux+vuy)

n
i+ 1

2 ,j
+

∆t

ρn
i+ 1

2 ,j
We

SF
x−edge

i+ 1
2 ,j

+
∆t

h2ρn
i+ 1

2 ,j
Re

(

un
i+ 3

2 ,j
+un

i− 1
2 ,j
−4un

i+ 1
2 ,j
+un

i+ 1
2 ,j+1

+un
i+ 1

2 ,j−1

)

, (3.2a)
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ṽi,j+ 1
2
=vn

i,j+ 1
2
−∆t(uvx+vvy)

n
i,j+ 1

2
+

∆t

ρn
i,j+ 1

2

We
SF

y−edge

i,j+ 1
2

− ∆t

Fr

+
∆t

h2ρn
i,j+ 1

2

Re

(

vn
i+1,j+ 1

2
+vn

i−1,j+ 1
2 ,j
−4vn

i,j+ 1
2
+vn

i,j+ 3
2
+vn

i,j− 1
2

)

, (3.2b)

where the advection terms, (uux+vuy)n
i+1/2,j and (uvx+vvy)n

i,j+1/2, are defined by

(uux+vuy)
n
i+ 1

2 ,j
=un

i+ 1
2 ,j

ūn
x

i+ 1
2 ,j
+

vn
i,j− 1

2

+vn
i+1,j− 1

2

+vn
i,j+ 1

2

+vn
i+1,j+ 1

2

4
ūn

y
i+ 1

2 ,j
,

(uvx+vvy)
n
i,j+ 1

2
=

un
i− 1

2 ,j
+un

i− 1
2 ,j+1

+un
i+ 1

2 ,j
+un

i+ 1
2 ,j+1

4
v̄n

x
i,j+ 1

2

+vn
i,j+ 1

2
v̄n

y
i,j+1

2

.

The values ūn
xi+1/2,j

and ūn
yi+1/2,j

are computed using the upwind procedure. The procedure is

ūn
x

i+ 1
2 ,j
=



















un
i+ 1

2 ,j
−un

i− 1
2 ,j

h
, if un

i+ 1
2 ,j

>0,

un
i+ 3

2 ,j
−un

i+ 1
2 ,j

h
, otherwise

and

ūn
y

i+ 1
2 ,j
=



















un
i+ 1

2 ,j
−un

i+ 1
2 ,j−1

h
, if vn

i,j− 1
2

+vn
i+1,j− 1

2

+vn
i,j+ 1

2

+vn
i+1,j+ 1

2

>0,

un
i+ 1

2 ,j+1
−un

i+ 1
2 ,j

h
, otherwise.

The quantities v̄n
xi,j+1/2

and v̄n
yi,j+1/2

are computed in a similar manner. The surface tension

force terms, SF
x−edge
i+1/2,j and SF

y−edge
i,j+1/2, are computed using the procedure derived in [59]. Then,

we solve the following equations for the advanced pressure field at the (n+1) time step

un+1−ũ

∆t
=− 1

ρn
∇d pn+1, (3.3a)

∇d ·un+1=0. (3.3b)

With application of the divergence operator to Eq. (3.3a), we find that the Poisson equation
for the pressure at the advanced time (n+1) is

∇d ·
( 1

ρn
∇d pn+1

)

=
1

∆t
∇d ·ũ, (3.4)
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where we have made use of the Eq. (3.3b) and the terms are defined as follows:

∇d ·
( 1

ρn
∇d pn+1

ij

)

=

1
ρn

i+ 1
2 ,j

pn+1
i+1,j+

1
ρn

i− 1
2 ,j

pn+1
i−1,j+

1
ρn

i,j+ 1
2

pn+1
i,j+1+

1
ρn

i,j− 1
2

pn+1
i,j−1

h2

−

1
ρn

i+ 1
2 ,j

+ 1
ρn

i− 1
2 ,j

+ 1
ρn

i,j+ 1
2

+ 1
ρn

i,j− 1
2

h2
pn+1

ij ,

∇d ·ũij=
ũi+ 1

2 ,j−ũi− 1
2 ,j

h
+

ṽi,j+ 1
2
− ṽi,j− 1

2

h
,

where ρn
i+1/2,j = (ρn

ij+ρn
i+1,j)/2 and the other terms are similarly defined. The boundary

condition for the pressure is

n·∇d pn+1=n·
(

−ρn un+1−un

∆t
−ρn(u·∇du)n+

1

Re
∆dun+

1

We
SFn+

ρn

Fr
g
)

,

where n is the unit normal vector to the domain boundary. In our application of the phase-
field to the Rayleigh-Taylor instability, we will use a periodic boundary condition to vertical
boundaries and no slip boundary condition to the top and bottom domain. Therefore,

n·∇d pn+1=n·
( 1

We
SFn+

ρn

Fr
g
)

. (3.5)

The resulting linear system of Eq. (3.4) is solved using a multigrid method [95], specifically,
V-cycles with a Gauss-Seidel relaxation. Then the divergence-free normal velocities un+1 and
vn+1 are defined by

un+1= ũ− ∆t

ρn
∇d pn+1,

i.e.,

un+1
i+ 1

2 ,j
= ũi+ 1

2 ,j−
∆t

ρn
i+ 1

2 ,j
h
(pi+1,j−pij), vn+1

i,j+ 1
2

= ṽi,j+ 1
2
− ∆t

ρn
i,j+ 1

2

h
(pi,j+1−pij).

We implement the unconditionally gradient stable scheme in Eqs. (3.1c)-(3.1d) with a nonlinear
multigrid method. For a detailed description of the numerical method used in solving these
equations, please refer to [56, 61]. If mass conservation is an important factor, we use a
conservative discretization of the convective part of the phase-field equation (3.1c)

((φu)x+(φv)y)
n
ij=

un
i+ 1

2 ,j
(φn

i+1,j+φn
ij)−un

i− 1
2 ,j
(φn

ij+φn
i−1,j)

2h

+
vn

i,j+ 1
2

(φn
i,j+1+φn

ij)−un
i,j− 1

2

(φn
ij+φn

i,j−1)

2h
.

These complete the one time step.
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3.2 Cahn-Hilliard solver

In [73], authors analyzed a semi-discrete Fourier-spectral method for the numerical ap-
proximation of a phase-field model for the mixture of two incompressible fluids and im-
plemented a semi-implicit scheme for the time discretization. An efficient moving mesh
spectral method for the phase-field model of two-phase flows with non-periodic bound-
ary conditions was developed in [86]. Nonlinear multigrid methods have been devel-
oped to solve implicit discretizations of the Cahn-Hilliard equation [58]. In [41], authors
introduced provably unconditionally stable mixed variational methods for phase-field
models.

In [22], authors presented an efficient numerical methodology for the 3D computa-
tion of incompressible multi-phase flows described by conservative phase-field models.
The numerical method employs adaptive mesh refinements (AMR) in concert with an
efficient semi-implicit time discretization strategy and a linear, multi-level multigrid to
relax high order stability constraints and to capture the flow’s disparate scales at optimal
cost. Only five linear solvers are needed per time-step. Their formulation is based on a
mixed finite element method for space discretization and a new second-order accurate
time integration algorithm. The fully-discrete formulation inherits the main character-
istics of conserved phase dynamics, namely, mass conservation and nonlinear stability
with respect to the free energy. They also proposed an adaptive time-stepping version of
the new time integration method.

In [87], several efficient and energy stable time discretization schemes for the cou-
pled nonlinear Cahn-Hilliard phase-field system for both the matched density case and
the variable density case were constructed and were shown to satisfy discrete energy
laws which are analogous to the continuous energy laws. In [108], a convexity-splitting
scheme to discretize in the temporal variable and a nonconforming finite element method
to discretize in the spatial variable was used. And the scheme preserved the mass con-
servation and energy dissipation properties of the original problem. In [34], the least
squares spectral element method was used to solve the Cahn-Hilliard equation.

We will present numerical methods in finite difference formats [36, 62]. For finite ele-
ment methods for the CH equation, refer to references [7,8,11,31]. We shall first discretize
the CH equations (2.10c) and (2.10d), without the advection term in a two dimensional
space, i.e., Ω=(a,b)×(c,d). Three-dimensional discretization is analogously defined. Let
φij and µij be approximations of φ(xi,yj) and µ(xi,yj). We first implement the zero Neu-
mann boundary condition (2.3) by requiring that

φ0j =φ1j, φNx+1,j=φNx,j, φi0=φi1 and φi,Ny+1=φi,Ny
.

We define the discrete Laplacian by ∆dφij=(φi−1,j+φi+1,j−4φij+φi,j−1+φi,j+1)/h2 and we
also define discrete energy as

E h(φn)=h2
Nx

∑
i=1

Ny

∑
j=1

(

F(φn
ij)+

ǫ2

2
[(φn

i+1,j−φn
ij)

2+(φn
i,j+1−φn

ij)
2]
)

.
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3.2.1 A backward implicit scheme

Backward implicit scheme was used in [25]

φn+1
ij −φn

ij

∆t
=∆d(F′(φn+1

ij )−ǫ2∆dφn+1
ij ).

3.2.2 The Crank-Nicolson scheme

A conservative nonlinear multigrid method for the Cahn-Hilliard equation with a vari-
able mobility was proposed in [58]. The method uses the standard finite difference ap-
proximation in spatial discretization and the Crank-Nicolson scheme in temporal dis-
cretization:

cn+1
ij −cn

ij

∆t
=∇d ·[M(c)

n+ 1
2

ij ∇dµ
n+ 1

2

ij ],

µ
n+ 1

2
ij =

1

2
(F′(cn+1

ij )+F′(cn
ij))−

ǫ2

2
∆d(c

n+1
ij +cn

ij).

Discrete versions of mass conservation and energy dissipation was proved.

3.2.3 Unconditionally gradient stable scheme

Ideally, one would like a stable integration algorithm, which would allow accuracy re-
quirements rather than stability limitations to determine the integration step size [100].
For dissipative dynamics such as the CH equations, a discrete time stepping algorithm is
defined to be gradient stable only if the free energy is nonincreasing,

E h(φn+1)≤E h(φn) for all n. (3.6)

Unconditionally gradient stability means that the conditions for gradient stability hold for
any size of time step ∆t [100]. Eyre [32,33] proved that if φn+1 is the solution of Eqs. (3.8c)
and (3.8d) with a given φn, then the inequality (3.6) holds. Furihata et al. [37] have exam-
ined the boundedness of the solution of a finite difference scheme [28] using a discretized
Lyapunov functional. Furihata [36] has shown that the decrease of the total energy im-
plies boundedness of the discretized Sobolev norm of the solution, independent ∆t and
∆x.

We can show the pointwise boundedness of the numerical solution using the decrease
of the discrete total energy functional. The following proof is independent of space di-
mensions, therefore, for simplicity of indexing, we present it in one dimensional space.
Let φn be a numerical solution satisfying the condition (3.6) for a discrete CH equation,
then there exists a constant K for all n such that

‖φn‖∞ ≤K. (3.7)
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φ−1 0 1

hF (φ)

hF (|φnK

i |)

Eh(φ0)

K |φnK

i |

Figure 12: Graph of hF(φ).

We prove Eq. (3.7) by a contradiction. Assume on the contrary that there is an integer nK,
dependent on K, such that ‖φnK‖∞>K for all K. Then there is an index i (1≤ i≤N) such
that |φnK

i |>K. Let K be the largest solution of E h(φ0)=hF(K), i.e.,

K=

√

1+2
√

E h(φ0)/h.

Note that K≥1. Then, F(φ) is a strictly increasing function on (K,∞) (see Fig. 12) and the
total energy is decreasing, so we have

E h(φ0)=hF(K)<hF(|φnK
i |)≤E h(φnK)≤E h(φ0).

This contradiction implies that Eq. (3.7) should be satisfied.
Another compact alternative proof is as follows: for any i (1≤ i ≤ N), it holds that

hF(φn
i )≤E h(φn)≤E h(φ0). The boundedness of φn

i follows from the profile of hF(φ).

3.2.4 Non-linearly stabilized splitting scheme

cn+1
ij −cn

ij

∆t
=∆dνn+1

ij − 1

4
∆dcn

ij, (3.8a)

νn+1
ij =F′(cn+1

ij )+
1

4
cn+1

ij −ǫ2∆dcn+1
ij , (3.8b)

φn+1
ij −φn

ij

∆t
=∆dνn+1

ij −∆dφn
ij, (3.8c)

νn+1
ij =F′(φn+1

ij )+φn+1
ij −ǫ2∆dφn+1

ij . (3.8d)

Numerical solution for non-linearly stabilized splitting scheme using a multigrid method
can be found in [61].
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3.2.5 Linearly stabilized splitting scheme

In this scheme, the nonlinear term F′ is treated as a source term. Therefore, we solve a
system of linear equations

cn+1
ij −cn

ij

∆t
=∆dνn+1

ij +∆d(F′(cn
ij)−0.5cn

ij),

νn+1
ij =0.5cn+1

ij −ǫ2∆dcn+1
ij ,

φn+1
ij −φn

ij

∆t
=∆dνn+1

ij +∆d(F′(φn
ij)−2φn

ij),

νn+1
ij =2φn+1

ij −ǫ2∆dφn+1
ij .

We note that since Eyre’s theorem provides, in principle, only a subset of the possible
gradient stable steps, complementary approaches for determining stability are desirable.
In [100], authors extended the von Neumann linear stability analysis [3, 83] to arbitrary
time steps.

3.2.6 Adaptive mesh refinement

Many multiphase flow problems involve multiple length scales. In order to effectively
resolve the flow features in such cases, we need to consider adaptive grid refinement [97].
In [15], a local adaptive refinement method (CHARMS) proposed by Krysl, Grinspun
and Schroder was used. Authors in [86] developed a moving mesh spectral method for
the phase-field model of two phase flows with non-periodic boundary conditions. The
method is based on a variational moving mesh PDE for the phase function, coupled with
efficient semi-implicit treatments for advancing the mesh function, the phase function
and the velocity and pressure in a decoupled manner.

Another approach is adaptive mesh refinement, in which the computational mesh
is locally refined in regions where greater accuracy is desired [75]. In Fig. 13, we show
an example of the grid structure used in the adaptive mesh refinement (AMR) [2]. In
the non-adaptive multigrid on uniform grids, we have used a hierarchy of global grids,
Ω0, Ω1, ··· , Ωl. In the adaptive approach, we introduce a hierarchy of increasingly finer
grids, Ωl+1, . . ., Ωl+l∗ , restricted to smaller and smaller subdomains around the phase-
field interfacial transition zone. That is, we consider a hierarchy of grids, Ω0, Ω1, ··· ,
Ωl+0, Ωl+1, ··· , Ωl+l∗ . We denote Ωl+0 as level zero, Ωl+1 as level one, and so on. In
Fig. 13 we have l∗=2.

The grid is adapted dynamically based on the undivided gradient. First, we tag cells
that contain the front, i.e., those in which the undivided gradient of the phase-field is
greater than a critical value. Then, the tagged cells are grouped into rectangular patches
by using a clustering algorithm as in [10]. These rectangular patches are refined to form
the grids at the next level. The process is repeated until a specified maximum level
is reached. Next, we describe a nonlinear full approximation storage (FAS) multigrid
method to solve the nonlinear discrete system, Eqs. (3.8c) and (3.8d), at an implicit time
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level 0

level 1

level 2

Figure 13: Block-structured local refinement. In this example, there are three levels.

level. See the [95] for additional details and background. The algorithm of the nonlinear
multigrid method for solving the discrete system is as follows:

First, let us rewrite Eqs. (3.8c) and (3.8d) as

N(φn+1,νn+1)=(ϕn,ψn),

where N(φn+1,νn+1) = (φn+1
ij /∆t−∆dνn+1

ij ,νn+1
ij −(φn+1

ij )3+ǫ2∆dφn+1
ij ) and the source term is

(ϕn, ψn)= (φn
ij/∆t−∆dφn

ij,0). Using the above notations on all levels k= 0,1,··· ,l,l+1,···,l+l∗, an
adaptive multigrid cycle is formally written as follows: First we calculate ϕn

k , ψn
k on all levels and set

the previous time solution as the initial guess, i.e., (φ0
k ,ν0

k)=(φn
k ,νn

k )

(φm+1
k ,νm+1

k )=ADAPTIVEcycle(k,φm
k ,φm

k−1,νm
k ,νm

k−1,Nk,ϕn
k ,ψn

k ,ς).

1) Presmoothing

• Compute (φ̄m
k , ν̄m

k ) by applying ς smoothing steps to (φm
k , νm

k ) on Ωk

(φ̄m
k , ν̄m

k )=SMOOTHς(φm
k ,νm

k ,Nk,ϕn
k ,ψn

k ),

where one SMOOTH relaxation operator step consists of solving Eqs. (3.10a) and (3.10b) given
below by 2×2 matrix inversion for each i and j. Rewriting Eqs. (3.8c) and (3.8d), we get

φn+1
ij

∆t
+

4

h2
νn+1

ij = ϕn
ij+

1

h2
(νn+1

i+1,j+νn+1
i−1,j+νn+1

i,j+1+νn+1
i,j−1), (3.9a)

− 4ǫ2

h2
φn+1

ij −(φn+1
ij )3+νn+1

ij =ψn
ij−

ǫ2

h2
(φn+1

i+1,j+φn+1
i−1,j+φn+1

i,j+1+φn+1
i,j−1). (3.9b)

• Next, we replace φn+1
αβ and νn+1

αβ in Eqs. (3.9a) and (3.9b) with φ̄m
αβ and ν̄m

αβ if α≤ i and β≤ j;

otherwise we replace them with φm
αβ and νm

αβ. Furthermore we linearize the nonlinear term
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(φn+1
ij )3 as (φ̄m

ij )
3≈ (φm

ij )
3+3(φm

ij )
2(φ̄m

ij −φm
ij ). Then, the Gauss-Seidel relaxations are listed as

the following equations:

φ̄m
ij

∆t
+

4

h2
ν̄m

ij = ϕn
ij+

1

h2
(νm

i+1,j+ ν̄m
i−1,j+νm

i,j+1+ ν̄m
i,j−1), (3.10a)

−
(4ǫ2

h2
+3(φm

ij )
2
)

φ̄m
ij + ν̄m

ij =ψn
ij−2(φm

ij )
3− ǫ2

h2
(φm

i+1,j+φ̄m
i−1,j+φm

i,j+1+φ̄m
i,j−1). (3.10b)

2) Coarse-grid correction

• Compute

(φ̄m
k−1, ν̄m

k−1)=

{

Ik−1
k (φ̄m

k , ν̄m
k ), on Ωk−1∩Ωk,

(φm
k−1,νm

k−1), on Ωk−1\Ωk.

• Compute the right-hand side

(ϕn
k−1,ψn

k−1)=

{

Ik−1
k {(ϕn

k ,ψn
k )−Nk(φ̄

m
k , ν̄m

k )}+Nk−1Ik−1
k (φ̄m

k , ν̄m
k ), on Ωk−1∩Ωk,

(ϕn
k−1,ψn

k−1), on Ωk−1\Ωk.

• Compute an approximate solution (φ̂m
k−1, ν̂m

k−1) of the coarse grid equation on Ωk−1, i.e.,

Nk−1(φ
m
k−1,νm

k−1)=(ϕn
k−1,ψn

k−1). (3.11)

If k=1, we explicitly invert a 2×2 matrix to obtain the solution. If k>1, we solve Eq. (3.11) by
using (φ̄m

k−1, ν̄m
k−1) as an initial approximation to perform an adaptive multigrid k-grid cycle:

(φ̂m
k−1, ν̂m

k−1)=ADAPTIVEcycle(k−1,φ̄m
k−1,φm

k−2, ν̄m
k−1,νm

k−2,Nk−1,ϕn
k−1,ψn

k−1,ς).

• Compute the correction at Ωk−1∩Ωk. (û
m
k−1, v̂m

k−1)=(φ̂m
k−1, ν̂m

k−1)−(φ̄m
k−1, ν̄m

k−1).

• Set the solution at the other points of Ωk−1\Ωk. (φ
m+1
k−1 ,νm+1

k−1 )=(φ̂m
k−1, ν̂m

k−1).

• Interpolate the correction to Ωk, (û
m
k , v̂m

k )= Ik
k−1(û

m
k−1, v̂m

k−1).

• Compute the corrected approximation on Ωk

(φm, after CGC
k ,νm, after CGC

k )=(φ̄m
k +ûm

k , ν̄m
k + v̂m

k ).

3) Postsmoothing

(φm+1
k ,νm+1

k )=SMOOTHς(φm, after CGC
k ,νm, after CGC

k ,Nk,ϕn
k ,ψn

k ).

This completes the description of a nonlinear ADAPTIVE cycle. Please refer to [61, 101]
for more details about the adaptive mesh refinement of the CH equation.
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4 Numerical applications

Phase-field models were applied to many applications and some of them are listed below.

4.1 Non-Newtonian flow

A diffuse-interface model was applied to drop coalescence and retraction involving New-
tonian and non-Newtonian Oldroyd-B fluids [106]. Drop dynamics plays a central role in
defining the interfacial morphology in two-phase complex fluids such as emulsions and
polymer blends. To model and simulate drop behavior in such systems, one has to deal
with the dual complexity of non-Newtonian rheology and evolving interfaces. Authors
used a two-dimensional implementation of the method to simulate drop coalescence after
head-on collision and drop retraction from an elongated initial shape in a quiescent ma-
trix. One of the two phases is a viscoelastic fluid modeled by an Oldroyd-B equation and
the other is Newtonian. Numerical results show that after drop collision, film drainage is
enhanced when either phase is viscoelastic and drop coalescence happens more readily
than in a comparable Newtonian system. The last stage of coalescence is dominated by a
short-range molecular force in the model that is comparable to van der Waals force. The
retraction of drops from an initial state of zero-velocity and zero-stress is hastened at first,
but later resisted by viscoelasticity in either component. When retracting from an initial
state with pre-existing stress, produced by cessation of steady shearing, viscoelasticity in
the matrix hinders retraction from the beginning while that in the drop initially enhances
retraction but later resists it. These results and the physical mechanisms were consis-
tent with prior experimental observations. For more details about these non-Newtonian
flows, please refer to [106].

4.2 Microtube flow

The phase-field method was applied to the simulations of air-water two-phase bubbly
and slug flows in a 600µm microtube [46]. Accurate calculation of surface tension force
is critically important for numerical simulation of gas-liquid two-phase flows at small
capillary number. The surface tension force is represented by a chemical potential gra-
dient. The numerical results show that the chemical potential formulation of surface
tension force can reduce the magnitude of parasitic flow to the level of truncation error.
This is because exchange between kinetic and surface energy is appropriately calculated.
The method is applied to the simulations of air-water two-phase bubbly and slug flows
in a microtube of 600µm. The Reynolds numbers are 60-200, and the capillary number is
O(10−3). The simulated gas bubble shape and two-phase flow patterns are in good agree-
ment with experimental results. The pressure drop, represented by Lockhart-Martinelli
correlation, is found larger than that proposed for tubes in millimeter.
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4.3 Droplet impact on a solid surface

The impact of micron-size drops on a smooth, flat, chemically homogeneous solid surface
was studied using a diffuse-interface model. The model is based on the Cahn-Hilliard
theory that couples thermodynamics with hydrodynamics, and is extended to include
non-90◦ contact angles. The influence of various process and material parameters such
as impact velocity, droplet diameter, viscosity, surface tension and wettability on the im-
pact behavior of drops was investigated. The wettability significantly affects the impact
behavior and this is particularly demonstrated with an impact at Re=130 and We=1.5,
where for θ<60 the droplet oscillates a few times before attaining equilibrium while for
θ≥60 partial rebound of the droplet occurs, i.e., the droplet breaks into two unequal sized
drops. The size of the part that remains in contact with the solid surface progressively
decreases with increasing θ until at a value θ≈120◦ a transition to total rebound happens.
When the droplet rebounds totally, it has a top-heavy shape [54].

4.4 Spinodal decomposition under gravity and shear flow

Authors in [5] used a phase-field model to compute the phase ordering kinetics coupled
with fluid dynamics in order to study the effect of gravity and shear on critical spinodal
decomposition of a binary mixture. When a system such as a binary liquid is cooled
rapidly from a homogeneous phase into a two-phase region, domains of the two equilib-
rium phases form and grow (coarsen) with time. In the absence of external forcing, such
as by gravity or an imposed shear flow, a dynamical-scaling regime emerges in which the
domain morphology is statistically self-similar at different times, with an overall length-
scale (coarsening scale) that grows with time. In the paper, the scaling phenomenology
was reviewed, the time-dependence of the coarsening scale was discussed, and the influ-
ence of external drives such as gravity and shear flow was addressed. In particular, they
found that multiple length scales emerge since in the shear case the system coarsens more
rapidly in the mean flow direction while in the gravity case the coarsening is more rapid
in the direction of the gravity. Further for the shear they showed that it is possible to con-
trol the asymptotic morphology of the phase separation in order to obtain either lamellae
or cylindrical structures and potentially create for example nano-conductive wires or ma-
terials with particular optical properties. Investigating gravitational effects they found
that scaling laws are significantly affected even for low gravity.

4.5 Stability of a lamellar domain under an external flow

The stability of a lamellar domain in phase-separating binary fluids under an external
flow was investigated in [66]. Authors take into account effects of diffusion and surface
tension at an interface using the Navier-Stokes and the Cahn-Hilliard equations. Stability
eigenvalues are evaluated for various values of the Peclet number, the spacing between
the interfaces, and the Reynolds number. It was found that the lamellar domain becomes
unstable at a finite wavenumber before the flow when the Reynolds number increases.
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The instability of the interface occurs on conditions that the interface is situated near a
wall or the Peclet number is large. The instability stems from the interaction between
disturbances of the flow and the diffusive interface.

4.6 Marangoni convection

Using the phase-field model, authors in [12] have analyzed the problem of the Marangoni
convection in a liquid-gas system with a deformable interface, heated from below. In or-
der to describe both Marangoni instabilities with short and long wavelengths, an addi-
tional force component must be considered in the Navier-Stokes equation. This term de-
scribes the coupling of the temperature to the velocity field via the phase-field function. It
results by minimizing the free-energy functional of the system. For a bidimensional prob-
lem in linear approximation they performed a numerical code that successfully computes
both Marangoni instabilities. In the limit of sharp and rigid interfaces, their results are
compared with the literature.

5 Computational experiments

In this section, we present numerical experiments to test the capabilities of the phase-field
models for multi-component fluid flows. The experiments are the phase separation, effect
of the Peclet number, long time evolution of the Rayleigh-Taylor instability, the Rayleigh-
instability, liquid-liquid jet pinchoff, contact angle problem for a binary mixture. Also,
another set of experiments for the ternary and the quaternary mixtures are an equilibrium
contact angle of a three components system and surface tension driven drop coalescence,
respectively.

5.1 A binary fluid

5.1.1 The relation between the ǫ value and the width of the transition layer

In our first numerical experiment, we consider the relation between the ǫ value and the
width of the transition layer for the CH Eqs. (2.2a) and (2.2b) without the advection term
u·∇φ. For the numerical solution we apply the non-linearly stabilized splitting scheme
(3.8c) and (3.8d). From our choice of the equilibrium profile φ(x)= tanh(x/(

√
2ǫ)) on an

infinite domain, the concentration field varies from −0.9 to 0.9 over a distance of about
ξ = 2

√
2ǫtanh−1(0.9) (see Fig. 14). Therefore, if we want this value to be about m grid

points, then ǫm = hm/[2
√

2tanh−1(0.9)], where h is the grid size. In most cases, we use
4≤m≤8. If m is too small, then it is difficult to calculate higher order derivatives of the
phase-field because the interface transition profile is so abrupt. On the other hand, if you
too large value of m, then the interface profile is too diffused. To confirm this formula,
we ran a simulation with the initial condition φ(x,y,0) = 0.01rand(x,y) on the domain
Ω=[0,64]×[0,64] with h=1, ∆t=0.05×642 , and ǫ4. Here, rand(x,y) is a random number
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Figure 14: The concentration field varies from −0.9 to 0.9 over a distance of about ξ=2
√

2ǫtanh−1(0.9).
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Figure 15: The evolution of an initial random concentration, φ(x,y,0)= 0.01rand(x,y). The times are shown
below each figure.

between −1 and 1. In Fig. 15, we see that the transition layer (from φ=−0.9 to φ=0.9) is
about 4 grid points at time t=102400.

From our choice of the homogeneous free energy density and the equilibrium profile
c(x) = 0.5(1−tanh(x/(2

√
2ǫ))), the concentration field varies from 0.05 to 0.95 over a

distance of about 4
√

2ǫtanh−1(0.9). That is ǫm =hm/[4
√

2tanh−1(0.9)].

5.1.2 Adaptive mesh refinement

The system of equations we solve are the CH Eqs. (2.2a) and (2.2b) without the advection
term u·∇φ. For the numerical solution we apply the non-linearly stabilized splitting
scheme (3.8c) and (3.8d) with the adaptive mesh refinement technique. The initial state is
taken to be φ(x,y,0)=−0.4+0.05rand(x,y) on the computational domain Ω=[0,1]×[0,1].
We use the simulation parameters ǫ= 0.005 and ∆t= 1/256. We also use a base 64×64
mesh with two levels of refinement. Therefore, the effective fine mesh size is 256×256.
Fig. 16 shows an evolution of the mesh and the φ(x,y,t) = 0 contours under spinodal
decomposition at times t=2.34, 7.42, and 39.06. Please refer to [61, 101] for more details
about the adaptive mesh refinement of the CH equation.

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.301110.040811a | Generated on 2024-12-19 00:05:16



646 J. S. Kim / Commun. Comput. Phys., 12 (2012), pp. 613-661

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) t=2.34 (b) t=7.42 (c) t=39.06

Figure 16: Evolution of the mesh and the φ(x,y,t)=0 contours under spinodal decomposition with an average
concentration caverage=−0.4. The times are shown below each figure. The effective fine grid resolution for 2
levels of adaptivity is 256×256.

5.1.3 Effect of the Peclet number

The Rayleigh-Taylor instability would occur for any perturbation along the interface be-
tween a heavy fluid on top of a lighter fluid and is characterized by the density ratio
between the two fluids. The density difference is represented by the Atwood number
At=(ρ2−ρ1)/(ρ2+ρ1), where ρ1 and ρ2 are the densities of the lighter and heavier fluid,
respectively. In this section, we investigate the effect of the Peclet number, demonstrate
convergence of our scheme numerically, and simulate the Rayleigh-Taylor instability for
a long time. Unless otherwise specified, we take the initial state as

φ(x,y,0)= tanh
(y−2−0.1cos(2πx)√

2ǫ

)

(5.1)

on the computational domain Ω=[0,1]×[0,4], which represents a planar interface super-
imposed by a perturbation of wave number k=1 with an amplitude of 0.1. The density
ratio is ρ2 : ρ1 =3 : 1, i.e., At=0.5. We use the simulation parameters such as the uniform
time step, ∆t=0.00125

√
2, ǫ=0.01, Re=3000, and Fr=1.

In order to investigate the effect of the Peclet number, we consider the evolution
of the interface with different Peclet numbers. The system of equations we solve are
Eqs. (2.30a)-(2.30d) without the surface term. We apply the boundary condition (3.5).
The initial state is given in Eq. (5.1) and the zero-level set is shown in Fig. 17(a). In this
test, the number of grid points is 128×512. Fig. 17(b), (c), and (d) represent evolutions of
the interface with Peclet numbers Pe=0.01/ǫ, 1/ǫ, and 100/ǫ, respectively. In the case of
Pe=0.01/ǫ, the evolution of the interface did not fully occur (we can not see the rolling-
up of the falling fluid). And in the case of Pe= 100/ǫ, the contour line is not uniform.
Therefore, the appropriate Peclet number is Pe = 1/ǫ. It is clear that the interface evo-
lution is significantly affected by Pe numbers. Larger Pe numbers result in non-smooth
concentration profiles, while smaller Pe numbers result in too much diffusion. We note
that the optimal Peclet number is dependent on flow problems because the number is
defined as Pe=UcLc/(Mµc).
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Figure 17: (a) The zero-level set of the initial profile, φ(x,y,0)=tanh(
y−2−0.1cos(2πx)√

2ǫ
). The effect of the Peclet

number on the temporal evolution of the interface at dimensionless time t=1.75: (b) Pe=0.01/ǫ, (c) Pe=1/ǫ,
and (d) Pe=100/ǫ. Contour levels are −0.9, −0.7, ··· , 0.7, 0.9.

5.1.4 Long time evolution of the Rayleigh-Taylor instability

Next we show the long time evolution of the classical Rayleigh-Taylor instability with
a phase-field method. Despite of the long history of numerical simulations for the
Rayleigh-Taylor instability, almost all results were relatively short time experiments. This
is partly because of the way of treating the pressure boundary conditions. With a time-
dependent pressure boundary condition (3.5) through a time-dependent density field at
the boundary, we can perform long time evolutions resulting in an equilibrium state.

The initial state is given in Eq. (5.1) and the number of grid points is 128×512. The
system of equations we solve and parameters are same as before. The evolution of the
interface is shown in Fig. 18 at t= 0, 1, 1.5, 1.75, 2, 2.25, 2.5, 6, 8, 12, 18, 24, 30, and 50.
The rolling-up of the falling fluid can be clearly seen. At time t=50, the heavier fluid has
fallen down completely. Please refer to [68] for more details about long time evolution of
the Rayleigh-Taylor instability and numerical solutions.

5.1.5 Rayleigh instability

In this section we apply the phase-field method to Rayleigh’s capillary instability prob-
lems in which surface tension effects and topological changes are present. We will con-
sider a long cylindrical thread of a viscous fluid 1, the viscosity and density of which are
denoted by ηi and ρi respectively, in an infinite mass of another viscous fluid 2 of viscos-
ity ηo and ρo. In the unperturbed state, the interface has a perfectly cylindrical shape with
a circular cross-section of radius a.
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Figure 18: Long time evolution of the Rayleigh-Taylor instability simulation with At= 0.5. The dimensionless
times are shown below each figure.

In this analysis, the growth of an initially cosinusoidal perturbation to the thread
radius a, at the leading order, is observed to be given by

R(z,t)= a+α(t)cos(kz)

and α(t)=α0eint, where in is the growth rate and α0 is the amplitude of the initial pertur-
bation. In Fig. 19, these parameters are shown schematically. The domain is axisymmetric
and the bottom boundary is the axis of symmetry. Since we consider axisymmetric flows,
therefore there is no flow in the θ (azumusal) direction and all θ derivatives are identically
zero. So we consider only two variables, r the radial direction and z the axial direction.
We define the fluid velocity by the vector u=(u,w), where u= u(r,z) is the radial com-
ponent of velocity and w=w(r,z) is the component in the axial direction. The governing
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Figure 19: Schematic of a cylindrical thread of viscous fluid 1 embedded in another viscous fluid 2.

equations for axisymmetric flow without the gravitational force are

1

r
(ru)r+wz=0, (5.2a)

ut+uur+wuz=−pr+
1

Re

[1

r
(r(2ηur))r+(η(wr+uz))z−

2ηu

r2

]

+F1, (5.2b)

wt+uwr+wwz=−pz+
1

Re

[1

r
(rη(wr+uz))r+(2ηwz)z

]

+F2, (5.2c)

ct+ucr+wcz=
1

Pe

[1

r
(rM(c)µr)r+(M(c)µz)z

]

, (5.2d)

µ= f (c)−ǫ2
[1

r
(rcr)r+czz

]

, (5.2e)

where

(F1,F2)=
ǫα

We
∇·(|∇c|2 I−∇c⊗∇c), ∇c=(cr ,cz), ∇·(φ,ψ)=

1

r
(rφ)r+ψz,

where the indexes t, r and z refer to differentiation with respect to the variable. In this
computation we use the following parameters: a=0.5, α(0)=0.05, k=1, ǫ=0.02, Re=0.16,
We = 0.016, Pe = 100/ǫ, mesh size h = 2π/256 and viscosity ratio β = 0.5. The initial
concentration field and velocity fields are given by

c(r,z,0)=0.5
[

1−tanh
( r−0.5−0.05cos(z)

2
√

2ǫ

)]

,

u(r,z,0)=w(r,z,0)=0

on a domain, Ω={(r,z)|0≤r≤2π and 0≤z≤2π}. In the thread evolution, the deformation
growth rates are consistent with the predictions of the linear stability analysis (e.g., see
Tomotika [94]).

An example of the long time evolution of the interface profile is shown in Fig. 22. In
the early states (t = 0.1 and 1.5) the surface contour has only one minimum at exactly
z = π. As the time increases, nonlinearities become important and the initially cosinu-
soidal shape of the interface changes to a more complex form. The zone of the minimum
moves symmetrically off the center (z = π), giving rise to satellite drops. These satel-
lite drop formations could be attributed to the nonlinear terms in the equations of mo-
tion [23]. Please refer to [57] for more details about the axisymmetric Rayleigh instability
and numerical solutions.
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t=0.1 t=3.1 t=1.5 t=3.8 t=2.9 t=5.0

Figure 20: Time evolution leading to multiple pinch-offs. The viscosity ratio is 0.5, ǫ = 0.02, Pe = 100/ǫ,
Re=0.16 and We=0.016. The dimensionless times are shown below each figure.

5.1.6 Liquid-liquid jet

Next, we consider a liquid-liquid jet that pinches off, resulting in droplets. The experi-
mental setup, consisting of a tank, a pump, a needle valve, a flowmeter, and a forcer, is
illustrated in Fig. 21(a). The dimensions of the tank are 20.3×20.3×56cm3 . A magnetic-
driven pump generates a steady flow controlled by a needle valve. The flow (a wa-
ter/glycerin mixture) passes through a honeycomb straightener before exiting a nozzle
into an ambient layer of the Dow Corning fluid. More details about the experimental
setup are given in [76].

The flow configuration that was investigated numerically in our study is shown in
Fig. 21(b). The jet of a viscous fluid, fluid 1, is injected vertically from a circular noz-
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Figure 21: (a) Recirculating jet facility. (b) Liquid/liquid jet flow configuration.

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.301110.040811a | Generated on 2024-12-19 00:05:16



J. S. Kim / Commun. Comput. Phys., 12 (2012), pp. 613-661 651

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Figure 22: The phase-locked sequence for jet pinchoff.

zle downwards into a tank of a stationary mutually saturated immiscible fluid, fluid 2.
The viscosity and density of the inner jet (fluid 1) are denoted by η1 and ρ1, respectively.
Likewise, those of the outer ambient fluid (fluid 2) are denoted by η2 and ρ2, respectively.
The domain is axisymmetric with the center line being the axis of symmetry. The sys-
tem of governing equations are same to previous Eqs. (5.2a)-(5.2e) with the additional
gravitational force term. The initial concentration field and velocity fields are given by

c(r,z,0)=0.5
[

1−tanh
( r−0.5−0.05cos(z)

2
√

2ǫ

)]

,

u(r,z,0)=w(r,z,0)=0

on the domain Ω= {(r,z)|0≤ r≤ 0.5π and 0≤ z≤ 4π}. In this computation, we use the
following parameters: ǫ=0.02, Re=58, We=0.016, St=3.5, and Pe=100/ǫ. Sequences of
phase-locked images are shown in Fig. 22. As the liquid filament is stretched by gravity,
a neck forms, elongates, and becomes thinner. In the meantime, the lower end of the
filament turns into a round drop due to capillary forces. The falling drop continues to
stretch the thread, and eventually the Rayleigh instability leads to a pinchoff of the main
drop [105].

The normalized axial velocity (w) contours of the forced flow are shown in Fig. 23(a)
and (b). The highest contour level is 0, and succeeding levels are reduced by 1. We can
see that, before pinchoff, the maximum axial velocity is approximately located at the jet
neck. The fluid is, thus, accelerating into the neck and acting to increase the volume of
the drop. After the pinchoff, the maximum velocity still resides inside the drop. The nor-
malized vorticity field (wr−uz) contours of the forced flow are shown in Fig. 23(c) and
(d). Solid lines represent positive vorticity. The lowest contour level is 0.05. Succeeding
levels are incremented by 0.5. Dotted lines represent negative vorticity. The highest con-
tour level is −0.05. Succeeding levels are reduced by 0.5. Before pinchoff, two opposite
signed vorticities develop around the jet neck and act to encourage pinchoff. A positive
vorticity makes the fluid rotate clockwise while a negative vorticity makes the fluid rotate
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Figure 23: (a) and (b) are normalized axial velocity (w) contours of forced flow before and after pinchoff,
respectively. The highest contour level is 0. Succeeding levels are reduced by 1. (c) and (d) are normalized
vorticity field (wr−uz) contours of forced flow before and after pinchoff, respectively. The solid lines represent
positive vorticity. The lowest contour level is 0.05. Succeeding levels are incremented by 0.5. The dotted lines
represent negative vorticity. The highest contour level is −0.05. Succeeding levels are reduced by 0.5.

counterclockwise. After the drop pinches off, a small ring of inverted vorticity develops
at the jet tip due to the recoiling interface there. These results are qualitatively in good
agreement with the experimental data [76]. Please refer to [65] for more details about the
pinchoff of liquid-liquid jets and numerical solutions.

5.1.7 Contact angle problem

Let us consider an equilibrium of an interface contacting a wall with a prescribed con-
tact angle θ. The purpose of this section is to confirm contact angle boundary condition
formula. The system of equations we solve are Eqs. (2.2a)-(2.2b) without the advection
term. We apply the contact angle boundary condition (2.15a)-(2.15b). We take the sim-

ulation parameters, h=1/128, ǫ=0.13
√

h, ∆t=5/128 and mesh size of 256×128 on the
computational domain, Ω=[0,2]×[0,1]. The initial state is taken to be a rectangle, i.e.,

φ(x,y,0)=

{

1, if 0.7≤ x≤1.3 and 0≤y≤0.4,

−1, otherwise.

Fig. 24 shows evolutions of an interface with prescribed contact angle θ = 135◦. The
arrow shows the direction of the evolution and the thicker line corresponds to a steady
shape. Please refer to [67] for more details about the contact angle problem and numerical
solutions.

5.2 A ternary fluid

We now consider the situation of a ternary fluid consisting of three components. Follow-
ing [88], we next investigated the spreading of a circular liquid lens (Fig. 25(a)) located at
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Figure 24: Evolutions of an interface with prescribed contact angle θ=135◦. The arrow shows the direction of
the evolution and the thicker line corresponds to a steady shape.

an interface between two other immiscible fluids. The system of equations we solve are
Eqs. (2.19a)-(2.19f) without the gravitational force term. The initial condition is a circular
droplet, Ω2, (located at an interface between Ω1 and Ω3). The initial velocity was zero,
i.e.,

c1(x,y,0)=max
[

0.5
(

1+tanh
(y−0.5

2
√

2ǫ

))

−c2(x,y,0),0
]

,

c2(x,y,0)=0.5
(

1+tanh
(0.15−

√

(x−0.5)2+(y−0.5)2

2
√

2ǫ

))

,

u(x,y,0)=v(x,y,0)=0.

The computational domain was Ω = [0,1]×[0,1] and the mesh size was 256×256. The
fluid viscosities were matched (η1=η2=η3), Re=60, We2=60, and We1=We3=36. Please
refer to [59] for more details about the definition of the non-dimensional parameters used
here.
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Figure 25: (a) A schematic of the initial configuration: the upper fluid is in phase 1, the lower fluid is in phase
3, and the droplet is in phase 2. (b) The temporal evolution of the initial circular drop is shown for We2=60
and We1 =We3 = 36. The arrow shows the direction of the evolution. The most deformed line is the steady
shape.
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In Fig. 25(b), the evolution of the c2 = 1/2 contour line is shown. In this case, ǫ =
0.006/

√
2, Pe = 10/ǫ, h = 1/256, and ∆t = 0.05h were used. As the droplet spread, it

reached an equilibrium shape. The most deformed curve was the numerical steady-state.
Theoretically, the shape of the steady-state drop is controlled by the three surface tension
coefficients. The equilibrium three-phase contact angle is determined by

sinθ1

σ23
=

sinθ2

σ13
=

sinθ3

σ12
.

The relationship between the lens area A, its length d (the distance between two triple
junctions), and the contact angles θi (see Fig. 8) of the i-th phase (Young’s law) is

d=
(2(π−θ1)−sin(2(π−θ1))

8Asin2(π−θ1)
+

2(π−θ3)−sin(2(π−θ3))

8Asin2(π−θ3)

)− 1
2
.

Thus, the accuracy of the steady lens shape can be measured by comparing the observed
d with the analytical value. We found that there was very good agreement between the
theoretical value, d= 0.4596 and the simulation result value, d= 0.4539. In [15], the nu-
merical applications are performed with large ratio between densities and viscosities and
three different surface tensions.

5.3 More than ternary fluid

We consider the dynamics of two droplets inside other elliptical drops embedded in the
ambient liquid. The initial condition is that of two droplets, Ω2 and Ω3, enclosed by
elliptical drops, Ω1, which are also in the ambient fluid, Ω4 (see Fig. 26). The initial
velocity is zero, i.e.,

c1(x,y,0)=1− 1

2
tanh

√

5(x−1.28)2+(y−2)2−1.5

2
√

2ǫ
−c2(x,y,0)

− 1

2
tanh

√

5(x−2.72)2+(y−2)2−1.5

2
√

2ǫ
−c3(x,y,0),

c2(x,y,0)=
1

2

(

1−tanh

√

(x−1.28)2+(y−2)2−r

2
√

2ǫ

)

,

c3(x,y,0)=
1

2

(

1−tanh

√

(x−2.72)2+(y−2)2−r

2
√

2ǫ

)

,

u(x,y,0)=v(x,y,0)=0,

where r=0.4 is the radius of the small drops.
We solved Eqs. (2.28a)-(2.28d) on the computational domain, Ω= [0,4]×[0,4] with a

uniform grid of 256×256, time step, ∆t = 0.05/256, and ǫ = 0.015. Periodic boundary
conditions for both directions are applied. We take the viscosities of the components to
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Figure 26: Schematic diagram of four-component fluid.

be matched as well as the following parameters. We14=We23=We24=We34=5, We12=10,
We13=20, Re=5 and Pe=1/ǫ.

We show in Fig. 27 the temporal evolution of the dynamics of two droplets inside
other elliptical drops embedded in the ambient liquid. The driving force for the flow is
surface tension. Fluid Ω1 is represented by the gray region; fluid Ω2 by the dark gray
region; fluid Ω3 by the black region; and fluid Ω4 by the white region. Initially the el-
liptical drops deform to reduce the higher curvature, then, coalescence occurs around
t=3.91. Eventually, at later times, all interfaces became circular equilibrium shapes (see
Fig. 27(f)). Fig. 28 shows the pressure distribution at y = 2. According to the Laplace
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Figure 27: Temporal evolution. Fluid Ω1 is represented by the gray region; fluid Ω2 by the dark gray region;
fluid Ω3, by the black region; and fluid Ω4, by the white region.
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Figure 28: A slice plot of the pressure field on y=2.

formula, (2.12), the theoretical drop pressure jumps across the circles:

[p]Γ12
=

1

rWe12
=0.25, [p]Γ13

=
1

rWe13
=0.125 and [p]Γ14

=
1

RWe14
=0.1416,

where R=1.4127 is the measured radius of the largest circle in Fig. 27(f). The numerical
values of the pressure jump across the drops are [p]num

Γ12
=0.248, [p]num

Γ13
=0.126, and [p]num

Γ14
=

0.135. These values show how well the pressure field fulfilled the Laplace law, (2.12). For
more details about this numerical experiment, the reader is referred to [60].

6 Conclusions

In this paper, we reviewed the recent development of phase-field models and their nu-
merical methods for multi-component fluid flows with interfacial phenomena. The mod-
els consist of a Navier-Stokes system coupled with a multi-component Cahn-Hilliard sys-
tem through a phase-field dependent surface tension force, variable density and viscosity,
and the advection term. The classical infinitely thin boundary of separation between two
immiscible fluids is replaced by a transition region of a small but finite width, across
which the composition of the mixture changes continuously. A constant level set of the
phase-field is used to capture the interface between two immiscible fluids. The phase-
field methods are capable of computing topological changes such as splitting and merg-
ing, and thus have been applied successfully to multi-component fluid flows involving
large interface deformations. Practical applications such as non-Newtonian, microtube,
and droplet impact flows were provided to illustrate the usefulness of using a phase-field
method. Computational results showing the accuracy and effectiveness of phase-field
models were given for various experiments.
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[25] R. Chella and J. Viñals, Mixing of a two-phase fluid by cavity flow, Phys. Rev. E, 53 (1996),
3832–3840.

[26] L. Q. Chen and J. Shen, Applications of semi-implicit Fourier-spectral method to phase field
equations, Comput. Phys. Commun., 108 (1998), 147–158.

[27] A. J. Chorin, A numerical method for solving incompressible viscous flow problems, J. Com-
put. Phys., 2 (1967), 12–26.

[28] M. Dehghan, Finite difference procedures for solving a problem arising in modeling and
design of certain optoelectronic devices, Math. Comput. Simul., 71 (2006), 16–30.

[29] H. Ding and P. D. M. Spelt, Wetting condition in diffuse interface simulations of contact line
motion, Phys. Rev. E, 75 (2007), 046708.

[30] H. Ding, P. D. M. Spelt and C. Shu, Diffuse interface model for incompressible two-phase
flows with large density ratios, J. Comput. Phys., 226 (2007), 2078–2095.

[31] C. M. Elliott and D. A. French, Numerical studies of the Cahn-Hilliard equation for phase
separation, IMA J. Appl. Math., 38 (1987), 97–128.

[32] D. J. Eyre, www.math.utah.edu/∼eyre/research/methods/stable.ps.

[33] D. J. Eyre, Computational and Mathematical Models of Microstructural Evolution, The Ma-
terial Research Society, Warrendale, 1998.

[34] M. Fernandino and C. A. Dorao, The least squares spectral element method for the Cahn-
Hilliard equation, Appl. Math. Model., 35 (2011), 797–806.

[35] P. C. Fife, Models for phase separation and their mathematics, Euro. J. Diff. Eqns., 48 (2000),
1–26.

[36] D. Furihata, A stable and conservative finite difference scheme for the Cahn-Hilliard Equa-
tion, Numer. Math., 87 (2001), 675–699.

[37] D. Furihata, T. Onda and M. Mori, A finite difference scheme for the Cahn-Hilliard equation
based on a Lyapunov functional, GAKUTO Int. Series Math. Sci. Appl., 2 (1993), 347–358.

[38] H. Garcke, B. Nestler and B. Stoth, On anisotropic order parameter models for multi-phase
systems and their sharp interface limits, Phys. D, 115 (1998), 87–108.

[39] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Clas-
sics in Mathematics, Springer-Verlag, Berlin, 2001.

[40] J. Glimm, J. W. Grove, X. L. Li, K. M. Shyue, Q. Zhang and Y. Zeng, Three-dimensional front
tracking, SIAM J. Sci. Comput., 19 (1998), 703–727.

[41] H. Gomeza and T. J. R. Hughes, Provably unconditionally stable, second-order time-
accurate, mixed variational methods for phase-field models, J. Comput. Phys., 230 (2011),
5310–5327.

[42] D. Gueyffier, J. Li, A. Nadim, R. Scardovelli and S. Zaleski, Volume-of-fluid interface track-
ing with smoothed surface stress methods for three-dimensional flows, J. Comput. Phys.,

OPEN ACCESS

DOI https://doi.org/10.4208/cicp.301110.040811a | Generated on 2024-12-19 00:05:16



J. S. Kim / Commun. Comput. Phys., 12 (2012), pp. 613-661 659

152 (1999), 423–456.
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