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Abstract. Computational simulations of multiphase flow are challenging because
many practical applications require adequate resolution of not only interfacial physics
associated with moving boundaries with possible topological changes, but also around
three-dimensional, irregular solid geometries. In this paper, we highlight recent efforts
made in simulating multiphase fluid dynamics around complex geometries, based on
an Eulerian-Lagrangian framework. The approach uses two independent but related
grid layouts to track the interfacial and solid boundary conditions, and is capable of
capturing interfacial as well as multiphase dynamics. In particular, the stationary
Cartesian grid with time dependent, local adaptive refinement is utilized to handle
the computation of the transport equations, while the interface shape and movement
are treated by marker-based triangulated surface meshes which freely move and in-
teract with the Cartesian grid. The markers are also used to identify the location of
solid boundaries and enforce the no-slip condition there. Issues related to the contact
line treatment, topological changes of multiphase fronts during merger or breakup of
objects, and necessary data structures and solution techniques are also highlighted. Se-
lected test cases including spacecraft fuel tank flow management and liquid plug flow
dynamics are presented.
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1 Introduction

Fluid flows involving interactions between liquids and gases can be observed in a wide
range of engineering applications. When capillary effects become significant, physical
mechanisms and geometric characteristics associated with the interface need to be ac-
curate resolved. In such circumstances, numerical simulations of interfacial flows are re-
quired to resolve the location of the interface based on the conditions arising from surface
tension, viscous stresses, and pressure distributions, and distinctive material properties
of the constituents. As reviewed by multiple authors [1–6], there exist numerous meth-
ods for tracking the location and the shape of the interface as well as for applying proper
treatments around the interface. The computational techniques for treating moving in-
terfaces are typically categorized into three separate groups:

• Lagrangian methods [7, 8] that modifies the grid to match the interface loca-
tion,

• Eulerian methods [4, 9–13] that extract the interface location with the help of
a scalar function on a stationary grid,

• Eulerian-Lagrangian methods [5,14–18] that utilize a separate set of grid rep-
resenting the interface on a stationary grid. Grid that represents the front can
move freely based on the solution obtained on the stationary grid.

Once the location is known, various methods are usually employed for establishing the
interfacial conditions, which impose the discontinuous pressure and viscous stresses
across the interface as a result of the surface tension forces. In the literature [1, 2, 4, 19],
these methods can be observed in two separate groups:

• Continuous interface methods [5, 14, 15, 20, 21] (CIM) that solves one set of
equations by smearing out the flow properties around the interface,

• Sharp interface methods [12,22–27] (SIM) that impose the conditions directly
on the interface by considering different sets of equations for different phases.

With the fast progress made in recent years, various combinations of the interface track-
ing methods and interfacial conditions models have been proposed in order to capture

OPEN ACCESS

DOI https://doi.org/2009-CiCP-7722 | Generated on 2024-12-19 02:04:13



E. Uzgoren, J. Sim and W. Shyy / Commun. Comput. Phys., 5 (2009), pp. 1-41 3

the interfacial dynamics. As highlighted by Uzgoren et al. [1], the difficulties that rise
during developing a model for interfacial flows are limited not to the algorithmic chal-
lenges, but also to the compromise made between the computational cost and accuracy
capturing the interfacial dynamics. The computational cost is mainly determined by
solution of the non-linear Navier-Stokes equations on local adaptive meshes, the iden-
tification and treatment of marker-based triangularized fluid-fluid interface and solid
boundary conditions, and interaction between the Navier-Stokes equations and moving
interfaces.

In addition, fluid flow simulations for practical applications often require capabilities
of handling complex geometries. Imposing boundary conditions on stationary/moving
solid objects face similar challenges with the methods for multiphase flows. The boundary-
conforming methods, in which the grid conforms to the boundary, require preprocessing
for grid preparation and grid modification and/or re-gridding for moving objects. In ad-
dition, methods which modify only the grid layer close to the geometry such as the cut-
cell [28] or other similar methods [29], can cause an increase in the condition number of
the coefficient matrix of the pressure Poisson equation. Non-boundary-conforming meth-
ods are computationally more economic. As highlighted by Gilmanov and Sotiropou-
los [30], the challenges for non-boundary tracking methods include (i) the representa-
tion of the boundary geometry and its relation with the fixed computational grid, and
(ii) imposing the proper boundary conditions. The identification of the boundary’s ge-
ometry and location can be addressed by the methods described for multiphase front
tracking/capturing. Using marker-based multiphase front tracking offers compatibil-
ity between the fluid-fluid and the fluid-solid interfaces. A major challenge is how the
boundary conditions are incorporated into the overall algorithm without deteriorating
the accuracy or significantly adding the computational cost. Even though the continuous
interface methods can adequately capture a wide range of problems involving fluid-fluid
interfaces, such methods can cause numerical instabilities if the material property jump
across the interface is high. Using a sharp interface method [15, 30, 31] for the solid inter-
faces can accurately capture the boundary conditions but the algorithm can be compli-
cated because of the numerous scenarios which need to be accounted for.

This paper presents an overview of the recent advanced made in adopting and ex-
tending the marker-based continuous interface methods capable of handling problems
of practical engineering interests. In particular, we discuss a cost-effective approach for
a unified three-dimensional multiphase flow solver that is capable of capturing the inter-
facial flow dynamics,

• around complex geometries,

• with wetting surface as part of a computational boundary or the irregularly shaped
solid geometry,

• with multiple multiphase fronts that define existence of multiple constituents in
various phases,

• with topological changes, i.e. possibilities of a merger or a break-up.
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In order to achieve the goals listed above, the present review focuses on a marker
based interface tracking algorithm, which is an Eulerian-Lagrangian method. For inter-
facial flow conditions at the multiphase fronts, a continuous interface method (CIM) is
adopted to allow utilizing a single set of equations. In order to maintain the compu-
tational cost at a feasible level, the stationary grid is implemented as a Cartesian grid
which employs local adaptation [32] to fully resolve the flow features at locations near
the multiphase front. In this combination, the overall method for multiphase fronts is
referred to as Immersed Boundary Method [1, 5, 14, 20, 21]. Due to similar reasons for
computational efficiency, a non-boundary conforming method, which enforces bound-
ary conditions via sharp interface method (SIM) on the solid interfaces represented by
markers, is highlighted.

When moving multiphase front comes in the vicinity of a wetting surface, defined
at a computational boundary or at a complex solid interface, there is a possibility of a
tri-junction location formation where all phases (solid, liquid, and gas) meet. The corre-
sponding forces at this location is not only determined by the surface tension between the
liquid and gas phases, but also interactions due to solid-liquid, solid-gas phase as well
as the adhesive forces keeping the contact line in touch with the solid surface. In static
equilibrium, the angle between the solid surface and the multiphase front is described by
the Young’s equation. The major difficulty in numerical simulations involving a contact
line is that the contact line is known to slip on the solid surface, which is usually defined
by a no-slip condition. One way to incorporate Young’s equation into the numerical
simulations of droplets/bubbles on solid surface is to impose the static angle determined
directly at the tri-junction location to produce the quasi-equilibrium representation of the
interface shape [21]. One of the drawbacks of such a treatment is that the modification at
the contact line may result in a localized high curvature region on the fluid interface in
the vicinity of the contact line. In order to balance pressure, viscous stresses, and surface
tension around an interface of high curvatures, numerical instabilities can arise. Instead
of imposing the contact angle, another possibility is to let the interface evolve into the
equilibrium condition by modeling the force.

In addition to the contact point, representation of the topology of the multiphase front
can be handled with the help of connectivity information corresponding to a triangu-
lated surface. This connectivity information allows us to compute the geometric infor-
mation, such as volume and curvature. Oftentimes, the algorithmic difficulty of finding
the intersection between the interfaces brings additional computational cost, especially
in three dimensional computations. This computational complexity can be reduced sig-
nificantly by employing an indicator function, which varies from zero to one smoothly
across the interfaces [18, 33], to identify the elements intersecting. Besides such a ben-
efit, another advantage of using the indicator function is to allow a single set equation
formulation of the continuous interface methods by treating the fluid properties such as
density and viscosity across an interface over a finite thickness. Furthermore, the indica-
tor function is utilized to remove the algorithmic complexity for the problems in which
topological changes occur. This can be achieved by means of level-contour construction
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algorithm [18, 34].
We highlight the capabilities of the coupled techniques by exploring the following

flow problems:

• Attaining equilibrium in three-dimensional capillary tubes to assess the validation
of contact line treatment;

• Elongated liquid plug problem as a practical application of the liquid drug delivery
into the lungs;

• Dynamics of the draining process of liquid fuel contained in a spacecraft fuel tank
subjected to acceleration in axial and radial directions;

• Sloshing motion of the liquid fuel contained in a spacecraft fuel tank subjected to a
sudden reduction in acceleration.

2 Numerical methods

The marker based method employs Eulerian and Lagrangian variables in order to per-
form the interfacial flow computations. Eulerian quantities are solved on the stationary
background grid, whereas Lagrangian quantities arise due to the marker points defined
on the interface which can move freely. A single fluid formulation for all fluid phases is
made possible by smearing the properties across the interface. Incompressible Navier-
Stokes equations for mass and momentum conservation are given in Eqs. (2.1) and (2.2)
respectively, which accounts for the interfacial dynamics. In Eqs. (2.1) and (2.2), u is the
velocity vector, p is the pressure, Ff represents the conditions of interfaces due to sur-
face tension effects of fluid interfaces, and Fs, represents the forcing function to establish
no-slip condition on solid interfaces.

∇·u=0, (2.1)

∂ρu

∂t
+∇·(ρuu)=−∇p+∇ ·(µ∇u+µ∇

Tu)+Fs+Ff +ρg. (2.2)

In general, the pressure and viscous stresses show discontinuities across a fluid interface
due to the surface tension force. Eq. (2.3) relates the jump condition of the flow properties
in the normal direction, n, with the surface tension force, which is directly proportional
with the surface tension, σ, and the curvature, κ.

(p2−p1)−n·(τ2−τ1)·n=σκ. (2.3)

Solid interfaces match no-slip wall condition with a prescribed velocity field defining
the motion of the solid boundaries via the force field created around the solid phases.

Eqs. (2.1) and (2.2) are solved adopting a projection method using staggered grid finite
volume formulation. The pressure and fluid properties are stored at the cell center and
the face-normal velocity is stored on Cartesian cell faces. The flow computation follows
the following steps:
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Figure 1: Summary of the numerical method and the interactions between Eulerian and Lagrangian descriptions.

Step 1: Predictor-step
Solve the momentum equation for an intermediate velocity field u∗ using Eq. (2.4)
where all the known values such as surface tension source, forcing function for
solid geometries, gravitation, convection and old time-step viscous term due to
Crank-Nicholson method are lumped into Sn. The term, av, corresponds to the
other half of Crank-Nicholson method and represents the coefficients of the stiff-
ness matrix ( f ∗

visc = avu∗). Temporal discretization is facilitated by the 2nd order
Runge-Kutta integration. The pressure term is approximated using the old time
pressure field, its gradient is integrated over a control surface, denoted by dA.
Subsequently, remove the effect of pressure term by shifting the velocity field
back to obtain another intermediate velocity field u∗∗ using Eq. (2.5).

[

∆V
ρ

∆t
−av

]

u∗ =−
∫

dA
∇Pn ·dA+ f n

visc+Sn, (2.4)

u∗∗ =u∗+
∆t∇Pn

ρn+1
. (2.5)

Step 2: Corrector-step
Correct the predicted velocity field (u∗∗) using Eq. (2.6). The pressure field for
this correction is computed by enforcing the velocity-divergence condition and
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Figure 2: Interface representation by marker points. (a) Line segments in 2D, (b) Triangular elements in 3D.

solving the Poisson equation (Eq. (2.7)). The divergence of the new velocity field
un+1 is zero due to incompressible flow.

un+1 =u∗∗−∆t∇Pn+1

ρn+1
, (2.6)

∑
f ace

(

∇Pn+1

ρn+1

)

·dA=
1

∆t ∑
f ace

u∗∗ ·dA. (2.7)

The components of the numerical algorithm and their interactions are summarized in
Fig. 1.

2.1 Marker based interface tracking

In the marker based tracking, the interface is represented by marker points, each of which
can also keep track of the neighboring markers for maintaining the connectivity infor-
mation. The corresponding data structure is established through formation of elements;
line-segments in two-dimensional computations and triangles in three-dimensional com-
putations, as represented in Figs. 2(a)-(b). Markers store the surrounding elements’ in-
dices while elements store the neighboring elements based on the edge that they share.
Boundary edges can be identified accordingly when any edge is connected to solely one
element. Fig. 3 illustrates the connectivity information for two common scenarios; a reg-
ular 3D element, and a 3D boundary element. A regular 3D element, or an inner element,
is when it has three neighboring elements while the boundary element has less than three
elements, due to one or more edges being on a boundary. The connectivity information
for the boundary edge is replaced by the information of the boundary as a negative in-
teger instead of an element index. This negative integer can store relevant information,
such as an index of a boundary condition, Absolute value of the boundary index corre-
sponds to the computational boundary for 1 to 6, reserved for the east, west, north, south,
front and back faces of the domain boundary, while the larger numbers representing the
elements belonging to a possible solid interface.
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Figure 3: Connectivity information through element edges. (a) Inner element with three neighbors, (b) boundary
element with two neighbors.

The marker locations, denoted by X in Lagrangian fashion, for the surface grid are
computed using the marker velocities as a function of X , similarly denoted by U and
shown in Eq. (2.8).

∂X

∂t
=U(X). (2.8)

Fluid interfaces use the solution field to compute the marker velocities as shown in
Eq. (2.9). In this equation, the discrete Dirac delta function, δ(x−X), is employed for
converting the Eulerian velocity field, u(x), to Lagrangian form, U(X). On the other
hand, solid interfaces use the prescribed velocity field to advance the marker points.

Un(X)=
∫

v
u(x)δ(x−X)dV. (2.9)

As the marker points advance to a new position with time, it can lead to an unevenly
distributed marker points on the interface. Such a representation can cause large errors
in computations. In order to prevent such a scenario, the spacing between marker points
is rearranged by addition/deletion whenever two markers come too close or too distant
from each other. The criteria for the distance between the adjacent markers are estimated
based on the requirements posed by the background grid and the function relating Eu-
lerian quantities to Lagrangian. For fluid interfaces, Eq. (2.9) suggests that this function
is the approximate form of the Dirac delta function. In order to achieve continuous rep-
resentation for transferred quantities, each cell should contain at least one and at most
two markers within its volume. This constraint can be used to approximate the distance
between a marker located at X and an adjacent marker located at Xngbr as a function of
Eulerian grid spacing, ∆, given in Eq. (2.10).

∆

3
<

∣

∣X−Xngbr

∣

∣<2∆. (2.10)
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When the distance between two marker points violate the upper bound of Eq. (2.10),
a new marker is placed on the mid-point of the edge between marker X and Xngbr. The
connectivity information is updated in the vicinity of elements to allow this marker to
represent a newly created element. On the other hand, if the distance between the two
marker points violates the lower bound of Eq. (2.10), the corresponding edge can be ei-
ther flipped or collapsed. Furthermore, the interface grid quality can be maintained by
enforcing triangular elements to have angles less than 120◦. This can be achieved by re-
moving inner nodes that only three elements share. Lastly, the volume lost during edge
flipping/collapsing and marker removal can be recovered by modifying the location of
the modified marker in its normal direction, as shown by Singh et al. [35, 36]. Readers
may refer to Uzgoren et al. [15] for further information on restructuring of triangulated
surface representation.

2.2 Indicator function

Cells on the Cartesian grid are represented by a unique material index to identify the
constituents separated by interfaces. This brings an algorithmic advantage to identify
the interface location as well as to assign proper material properties, i.e. density and
viscosity, for flow computations. In order to facilitate a single set of equation formulation
of CIM for the whole domain, a smooth variation of discontinuous material properties
across interfaces are used. This is achieved with the help of a scalar function, varying
from zero to one smoothly. Throughout this document, this function is referred to as the
indicator function and denoted by I. Once the indicator function is obtained, the fluid
properties such as density and viscosity, varying from values between ϕ1 and ϕ2, are
computed using Eq. (2.11).

ϕ= ϕ2+(ϕ1−ϕ2)I. (2.11)

The material indices are assigned on the Eulerian grid using a simple and efficient
method based on the painter’s algorithm, which is frequently employed in computer-
graphics rendering. Unlike the ray-tracing algorithm, the painter’s algorithm does not
require expensive computation of three-dimensional line-surface intersection. Once the
material indices are marked, the sharp representation is corrected during the calculation
of the indicator function in the vicinity of the interfacial markers. Indicator function is
designed to yield the location of the interface, when its value becomes 0.5 on the cells of
the fixed Eulerian grid. Such a feature of indicator function enables handling complex
nature of geometric operations in a computationally efficient way. As a result, obtaining
indicator function accurately is critical for successful numerically simulating multiphase
flow problems. In the literature, two closely related but numerically distinct forms of
computations can be found. One of these methods adopts the solution of a Poisson equa-
tion using the form in Eq. (2.12), while others utilize a discrete form of the Heaviside step
function from the analytical solution of Eq. (2.12) using 1D form of discrete Dirac delta
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function given in Eq. (2.13).

∇2 I =∇
(

∫

A
δ(x−X)dA

)

. (2.12)

Obtaining a numerical solution to Eq. (2.12), in which the location of the interface
is represented by the Lagrangian quantity, X, while x corresponds to the Eulerian de-
scription of the computational domain. Analytical form of the Dirac delta function is
only non-zero at x = X , where the interface is located. However, this approach cannot
be used along with a discretized set of equations as the discrete points on Eulerian and
Lagrangian framework do not necessarily coincide. For this reason, approximations to
the Dirac delta function, which introduce a region that represents the interface over a
finite thickness, have been studied for their properties [20, 37, 38]. In the present review,
the Dirac delta function approximation, that supports the conservation rules dictated by
zeroth, first and second moments as described in Peskin [20], is employed as the base
discrete form using the one-dimensional representation given in Eq. (2.13).

φ(r)=



























1− 11

16
|r|−|r|2− 1

6
|r|3 1≤|r|≤2,

1− 1

2
|r|−|r|2+

1

2
|r|3 1≤|r|≤1,

0 otherwise.

(2.13)

In Eq. (2.13), |r| is the distance between the cell-center to the interface location, and is
normalized by the cell spacing, h. Because φ(r) becomes zero when the distance is larger
than two cell width, the smearing region becomes limited to two-cell width on each side
of the interface.

One way to extend the one-dimensional representation of the discrete Dirac function
to two- and three-dimensions is to use the multiplication rule as presented in Eq. (2.14)
[20]. This approach is attractive due to its low computational cost.

δh(r)=
1

hxhyhz
φ(rx)·φ(ry)·φ(rz). (2.14)

In Eq. (2.14), the distance vector, r, is presented in Cartesian components, indicated by
the subscripts. This results in a Dirac delta function, δh, which is an approximation based
on grid spacing, h.

On the other hand, when the information of the minimum distance is readily available
as in the case of level-set methods, it is possible to utilize the distance function with the
one-dimensional form of discrete Dirac function, φ, directly as shown in Eq. (2.15).

δh(rx,ry,rz)=
1

√

h2
x +h2

y+h2
z

φ
(√

r2
x +r2

y+r2
z

)

. (2.15)
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The indicator function can be obtained via solving Eq. (2.12) on the Cartesian grid, where
it is defined. The discrete form is presented in Eq. (2.16) for a cell, denoted by the sub-
script P.

∑
N=NGBR

(IN− IP)

∆
ANP = ∑

N=NGBR

(ANPSNP). (2.16)

In Eq. (2.16), ∆ is the distance between the neighboring cell-center to the current cell,
and the right hand side term, SNP, is computed at the cell faces using the Dirac delta
function to convert the surface quantity into its volumetric form as given in Eq. (2.17).

SNP = ∑
edges

δh(rx,ry,rz)nl ·Al. (2.17)

In Eq. (2.17), the summation is performed over the interface elements’ edges, and its
contribution on face between cells N and P is computed based on the non-dimensional
distance, (rx,ry,rz). In practice, computing SNP directly at the faces can create oscilla-
tions due to a large gradient in the source term. One remedy to this problem is to apply
smoothing via computing SNP at the cell centers and computing face values by linear-
interpolation.

Considering discrete Delta function’s support, the computations are only performed
over the two-cell width region on each side of the interface to reduce the computational
cost of the Poisson equation. Fig. 4 illustrates this region for the computation. This region
is obtained by determining cells around each surface node with two-cell width radius.
The boundary conditions away from the interface are set to yield the desired variation,
i.e. from zero to one. This approach is computationally effective when these boundary
conditions are away from the interface location.

On dealing with contact line problems, in which the interface is on a solid surface,
the above approach requires boundary conditions in the vicinity of the interface. Because
the variation of the indicator function at this region depends on the normal direction,
it is difficult to utilize an appropriate boundary condition. One possible condition is
to assume zero variation in the indicator value at the normal direction to the boundary.
However, this condition leads to an interface representation that makes 90◦ to the domain
boundary, which can result in a different interface shape on the Cartesian than the actual
interface at angles away from 90◦. Using linear extrapolation can also cause incorrect
interface line (I =0.5) around this region. Fig. 5 illustrates such a scenario.

This issue can be handled using the alternate way of computing the indicator func-
tion, which utilizes the shortest distance value between the cell-center to the interface
location by the integrating the one-dimensional form of discrete Dirac function given in
Eq. (2.18).

Utilization of Eq. (2.17) requires the determination of the shortest distance, |r|, which
can easily increase the computational time when performed on a large surface grid. In
order to avoid such a difficulty, similar analogy to what has been described in Fig. 5
is adopted. Specifically, during the isolation of the computational region indicated in
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Figure 4: Region of computation and boundary con-
ditions.
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Figure 5: Indicator function constructed solving the
Poisson equation misrepresents interface location at
angles less than 30◦.

Fig. 5, each element computes its distance from its geometric center to the cell-centers
which are in their zone of influence and compares it to the distance value contained in
that particular cell to find the minimum distance from the cell to the overall interface.
In order to overcome the difficulties caused by sharp corners, the distance values are
interpolated to face-centers from the cell-centers. Furthermore, this algorithm is coupled
with identification of material tags on the Cartesian grid to save computational time.

I(r)=
1

8































































0 r<−2,
23

4
−2π+5r+r2−

(

r

2
+

3

4

)

√

−4r2−12r−7− 1

2
sin−1

(

−2r+3√
2

)

−2< r≤−1,

15

4
−2π+3r+r2 +

(

r

2
+

1

4

)

√

−4r2−4r+1− 1

2
sin−1

(

−2r+1√
2

)

−1< r≤0,

17

4
+2π+3r−r2 +

(

r

2
− 1

4

)

√

−4r2+4r+1− 1

2
sin−1

(

−2r−1√
2

)

0< r≤1,

9

4
+2π+5r−r2−

(

r

2
− 3

4

)

√

−4r2+12r−7− 1

2
sin−1

(

−2r−3√
2

)

1< r≤2,

1 r>2.
(2.18)

2.3 Adaptive grid

Multiphase flow problems involve multiple length scales. In order to effectively resolve
the flow features in such cases, the present study considers adaptive grid refinement em-
ployed on Cartesian grids. The approach is based on isotropic refinement which splits
the cells into four and eight equal sibling cells in two- and three-dimensions, respectively.
The grid is represented using an unstructured data that connects cells through cell faces.
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(a) Level = 1 (b) Level = 2 (c) Level = 3 (d) Level = 4

Figure 6: Snapshots of geometry-based grid adaptation for fluid interfaces.

The details of the algorithm can be found Singh and Shyy [36, 39]. Adaptation is per-
formed based on the interface location and the flow solution quality.

The geometry-based adaptation near interfaces has different characteristics based on
what interfaces represent. The fluid interfaces, for which discontinuous flow properties
smeared across two layers of cells, perform refinement to achieve full resolution in their
vicinity in order to capture interfacial dynamics accurately. This fully resolved region
around a fluid interface is further extended to six layers of cells to handle both discrete
Dirac function as well as a possibility for large deformation of interface. Fig. 6 illustrates
the process of geometry based adaptation starting from a uniform base grid and refining
up to four levels. On the other hand, solid interfaces, which do not employ discrete Dirac
function, triggers full refinement on vicinity including two-cell layers from the interface.

Cells, those are not already fully refined, are adapted based on solution (of the flow
field). The present implementation uses a curl based adaptation criterion [40] that com-
putes a parameter ξ for each cell as shown in Eq. (2.19). The length scale, l, is estimated as
the cubic root of cell-volume. The decision to refine or coarsen a cell is made by compar-
ing ξcell to the standard deviation (Eq. (2.20)) using the criteria in Eqs. (2.21) and (2.22):

ξcell ∼|∇⊗U|l , (2.19)

σ′ =
1

Ncell ∑i ξ
2
i

, (2.20)

ξcell >σ′−→Re f ine cell, (2.21)

ξcell <0.1σ′−→ coarsen the cell. (2.22)

During the adaptation procedure, the Cartesian cell center values such as pressure,
temperature and face normal velocities need to be reconstructed for the newly created
cells and faces. Flow variable reconstruction during cell and face coarsening is performed
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simply by averaging of the corresponding cell-centered or face-centered values. Because
the adaptation algorithm is triggered during the predictor step, just before solving the
pressure Poisson equation, the reconstruction algorithm is not required to satisfy the di-
vergence free velocity condition for U∗∗.

2.4 Fluid interface treatment

2.4.1 Surface tension

When interface separating fluid phases, the source term arises from the surface tension
(σ) and the curvature (κ) as shown in Eq. (2.23).

Fs =
∫

A
σκδ(x−X)dA. (2.23)

The surface force is computed using the Lagrangian marker points, X , and is trans-
lated into an Eulerian quantity, x, via the approximate discrete Dirac delta function,
δ(x−X). After the governing equations are solved on the Eulerian grid, approximate
Dirac delta function is also used for obtaining the marker velocity field to move marker
points for obtaining the new geometric surface representation.

The surface tension forces are computed on the interface triangles. The surface ten-
sion force on a discretized interface element (curves in 2D and triangles in 3D) can be
evaluated in several ways: computation with Eq. (2.24) where unit normal vector and
curvature can be computed using curve fitting for two-dimensional interfaces [21, 22, 41]
and surface fitting for three-dimensional interfaces [42]; computation using a line inte-
gral form shown in Eq. (2.25) and fitting curves/surfaces to obtain normal and tangent
vectors [5, 43].

δ f =
∫

δA
σκdA, (2.24)

δ f =
∫

δA
σ(n×∇)×ndA=

∫

s
σ(t⊗n)ds. (2.25)

There are two important observations to be made here: the net surface tension force
on a closed surface should be zero (conservation); curvature computation using inter-
polation based methods are numerically sensitive and often requires some form of data
smoothing [21, 41, 42, 44]. The use of Eq. (2.23) does not enforce conservation whereas
the line-integral form, Eq. (2.24), does not require explicit curvature computation and
maintains the conservation.

The approach developed by Singh [36] uses the line integral form and computes the
local normal and tangent vectors along the triangle edges using the simple approach of
Al-Rawahi [43, 44] shown in Eq. (2.26) following Fig. 7. If required, the curvature can
be computed using Eq. (2.27). The overall accuracy of this approach to compute surface
tension force and its modeling have already been demonstrated for boiling flows [45] and
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Figure 7: Computation of the unit normal and tangent vectors on interface triangles.

for dendritic solidification [44].

δ f = ∑
edge=123

σ(t⊗n)edge∆s, (2.26)

κ =
δ f ·n
σ∆A

. (2.27)

2.4.2 Merger/break-up and van der Waals forces

When two interfaces come within ‘close proximity’, they may merge to form a single
interface and similarly when sections of the same interface are in ‘close proximity’ the
interface may break in order to form separate interfaces. In the continuum framework,
the term ‘close proximity’ needs to be determined through a model that would facilitate
the dynamics of the topological changes with clear criteria.

Many numerical models, such as the CIM approach, base the proximity of two inter-
faces on the smearing region, described by a scalar, indicator function, which treats the
interface in two-cell widths on each side. When the same cell on the computational do-
main is influenced by two separate sets of interfaces, the model initiates the topological
change to yield a merger or a break-up. This procedure is intrinsically utilized in the level
set and VOF methods, whereas marker based methods need to update the relevant infor-
mation, i.e. connectivity, for normal and curvature computations after determining the
‘close proximity’ via the indicator function. In the literature, these methods are referred
to level-contour based reconstruction [18, 45, 46].

One of the issues of the level-contour based reconstruction is that the dynamics of a
merger or a break-up becomes dependent of the grid spacing. When the grid is refined
for better accuracy, the finite thickness of the interface, defined by the indicator function,
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becomes smaller and smaller delaying the time of the topological changes. Furthermore,
the long-range molecular forces is usually not considered, even though they can become
significant in the determination of the characteristics of the topology changes [47]. These
factors lead to considering a model that bases the ‘close proximity’ on long-range molec-
ular forces due to van der Waals effects. The potential describing the van der Waals
potential can be defined based on the minimum distance between the interfaces:

φ(r)=
A′

|r|3 . (2.28)

In Eq. (2.28), A′, is the Hamaker constant describing the strength of the potential
based on the materials involved. The force field due to Waals potential can be estimated
as follows:

Fw =∇φ=
∂φ(r)

∂r
r, (2.29)

Fw =−3A′

|r|4 (rxi+ry j+rzk). (2.30)

The modified incompressible Navier-Stokes equations then incorporate this force as
a source term in the momentum equation, similar to the surface tension force treatment.

When r becomes smaller, the attraction forces becomes significant leading to a modifi-
cation of the interface shape. The interface shape can be recovered if curvature effects are
more dominant than the attraction forces. If the attraction forces are larger, the interfaces
reaches a critical value of |r|, for which the surface tension forces can no longer compete
with the attraction forces. At this stage, the reduction in the film thickness can eventually
lead to a topological change. In order to identify this critical film thickness, the ratio be-
tween the non-dimensionalized surface tension and van der Waals attraction forces can
be used. The characteristic length is chosen as the film thickness to yield Eq. (2.31).

ρ1

µ2
1

=

(

σh0−
A′

h0

)

−→h2
0 ∼

A′

σ
. (2.31)

The distance between individual markers belonging to separate interfaces are tracked
to include the influence created by the van der Waals forces. Once a set of markers hold
a distance below the critical film thickness value, h0, a reconstruction scenario is enacted
by updating the markers connectivity information. Marker points, those pass beyond
critical film thickness, are collected as a subset. When these are removed, some of the
remaining elements become unconnected on one of their edges. These open edges are
reconnected to the closest markers points from the interacting interface element by up-
dating the connectivity information.

The above described operations can yield edges those violate the bounds described in
Eq. (2.10), which can be corrected by restructuring operations that involve marker addi-
tion, edge removal/flipping to make the newly formed interface group(s) be compatible
with the background fixed (Eulerian) grid.
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CV

Figure 8: Pressure control volume at the computational boundaries.

2.5 Solid interface treatment

Solid interfaces are modeled using a sharp interface method that imposes the prescribed
conditions on an arbitrary interface by reconstructing a force field around a solid phase.
Using Eq. (2.2), the source term due to solid interfaces, Fs, can be estimated at its non-zero
locations with the help of the prescribed velocity at the interface, uint, and other forcing
terms, i.e. gravity, g, and surface tension forces, Fs, as presented in Eq. (2.32).

Fs =ρ
∂uint

∂t
+∇·(ρuu)int−∇p−∇·(µ∇u+µ∇

T u)int−Ff −ρg. (2.32)

Following the prior naming by Yang and Balaras [31], these non-zero locations are
referred to as forcing faces as the present study considers a staggered variable arrange-
ment, in which the velocity components are defined at the face-centers and the forcing
field is formed using the face-centers of the cells surrounding the solid interfaces.

Recalling one of the merits of the staggered grid, there is no need for the artificial
pressure boundary conditions in the continuity equation [48, 49]. At locations, where the
boundary conditions are defined exactly on the face-centers, i.e. computational bound-
aries, the procedure of solving the pressure Poisson equation is presented in Eq. (2.33)
with the guidance of Fig. 8.

PE−PP

∆x
Ae+

PW−PP

∆x
Aw+

PN−PP

∆y
An =u∗

e Ae−u∗
w Aw+v∗n An−vn+1

bndr As. (2.33)

The last term of the right hand side term in Eq. (2.28), is the total mass flux at the
boundary face and the corresponding pressure gradient term on the left hand side term
is not needed as mass flux is known at the next time step. Similar procedure is adopted
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for the forcing faces. Hence the identification procedure considers the pressure Poisson
equation on the fluid side and marks the faces as forcing if the material on the other side
indicates a solid material flag. This study utilizes negative values for solid phase and
positive values for the fluid phases. As a result, any cell that has a negative index value
is removed from the solution procedure of the Poisson equation. These faces form the
first set of the forcing faces.

Additional faces are also marked as forcing faces due to the nature of the prediction
step of the projection method. When we consider the momentum equation, the viscous
and advection terms require another set of faces that would yield a correct gradient at
the boundary layer. In this study, this set of faces is chosen on the solid side as shown in
Fig. 9. It should also be noted that, in some problems dealing with thin or zero-thickness
solid interfaces, these faces can also be chosen from the fluid side [30, 31]. However, this
approach would make the construction of the interpolation scheme difficult especially at
the inner corner locations, where less than sufficient fluid faces exist.

Once the forcing faces are set, the forcing terms on these faces are computed using
a linear interpolation scheme between the prescribed velocity field on the interface, and
the predicted velocity field at the fluid side. The first point on the interpolation scheme,
the closest location on the interface from the forcing face, is found by comparing the
distance normalized by the grid spacing for the elements in the vicinity of the forcing
face. Once determined, interpolation weights between points i and j, denoted by wij,
can be computed based on inverse distance, ∆ij, using Eq. (2.34) and following Fig. 10.
Then the prescribed condition on the interface can be obtained for any function, φ, using
Eq. (2.35).

wij =
1/∆ij

∑i=1,3(1/∆ij)
, (2.34)

φi =φ1w1j+φ2w2j+φ3w3j. (2.35)

The remaining points in the interpolation scheme are the fluid faces, identification
of which is one of the most critical parts of the algorithm. The accuracy of the interpo-
lation scheme improves when those fluid faces are selected as close as possible to the
forcing face while avoiding an ill-conditioned scheme, which can happen when some of
the interpolation points are aligned together. To satisfy the requirements for shortest dis-
tance and avoid ill-conditioned scheme between the face-centers included in the scheme,
a short list of liquid faces is formed using the neighboring cells. This list is sorted using a
merge-sort algorithm based on the distance values. The various combinations of faces are
checked for their cross-product to verify their alignments starting from the best qualified
distance values. This procedure results in an interpolation scheme, which can be geomet-
rically represented in the shape of a triangle in 2D, and a tetrahedron in 3D as illustrated
in Fig. 11.

The interpolation procedure is performed assuming a linear variation of any variable,
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Figure 9: Identification of forcing faces. Red faces
and green faces belong to fluid and solid phases,
respectively. Blue color indicates the forcing faces
based on pressure Poisson and momentum equation
of the prediction step.

Closest distance to 

the forcing face.

Face-center

Figure 10: The closest interface element to a forcing
face.

Forcing Forcing 

FacesFaces

INTERFACE

INTERFACE
SOLIDSOLID

(a) (b)

Figure 11: Definition of faces around the solid interface for u-velocity (a) in 2D, (b) in 3D.

φ. Eqs. (2.36) and (2.37) are the formulation of the procedure in 2D.

φ=b1+b2x+b3y, (2.36)




b1

b2

b3



=





1 x1 y1

1 x2 y2

1 x3 y3





−1



φ1

φ2

φ3



. (2.37)

In Eqs. (2.31) and (2.32), xi and yi represents the corners of the triangle presented in
Fig. 11. For stationary objects, the coefficients can be obtained once and then be used for
reconstructing the velocity field at each time step. On the other hand, the system has to

OPEN ACCESS

DOI https://doi.org/2009-CiCP-7722 | Generated on 2024-12-19 02:04:13



20 E. Uzgoren, J. Sim and W. Shyy / Commun. Comput. Phys., 5 (2009), pp. 1-41

Interface
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Fluid

Solid
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faces

Figure 12: Region of correction to ensure divergence free velocity field.

be solved at every time step for moving boundaries. 3D computations are achieved in a
similar manner by adding an additional point to obtain the coefficient of the z-coordinate,
b4.

The above interpolation scheme is utilized in the estimation of the forcing term, Fs, in
Eq. (2.2). Because this term is computed at the prediction step of the projection method,
it is not computed explicitly which is the case for surface tension forces, Ff , for the fluid
interfaces. Instead, it is reflected in the predicted velocity field using the interpolation
scheme discussed in the prior sections. These forcing velocity terms are utilized in the
prediction step to determine the flux computation in the advection-diffusion equation as
well as the mass flux values in the continuity equation as described in Eq. (2.33).

The corrected velocity field is required to satisfy the divergence free condition both
locally and globally. In the staggered grid configuration, having the sum of local con-
trol volumes equal to the global control volume, this condition is automatically satisfied
when the correct mass flux information is used at the boundary cells that utilize the con-
cept presented in Eq. (2.33). As one may expect, the constructed forcing velocity field
does not impose the conditions required by the continuity equation and hence is not di-
vergence free.

Fig. 12 is an example to illustrate the correction algorithm. The forcing faces that di-
vides solid and fluid creates staircase-like boundary faces for the pressure Poisson equa-
tion. Let u∗ and v∗ be the forcing velocities defined at the faces between fluid and solid
phases. The correct flux to be included in the x-face needs to account for the area that is
cut by the interface, ∆A′

x instead of the full area of the face, ∆Ax. It is a similar case for
the y-face, that is ∆A′

y instead of ∆Ay. Hence, assuming the velocity field, u∗ and v∗, is
divergence free, Eq. (2.38) should be satisfied, resulting an error, e, when the full area for
each face is utilized as given in Eq. (2.39).

u∗∆A′
x−v∗∆A′

y =0, (2.38)

u∗∆Ax−v∗∆Ay = e. (2.39)
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Figure 13: Global conservation with local correction.

The determination of correct face areas requires finding intersection points between
the interface grid and the Cartesian grid, which can be computationally challenging and
expensive. Instead, the requirement can be obtained by introducing Eq. (2.40), a correc-
tion term for the forcing face velocities to adjust the fluxes accordingly.

e=ǫ(∆Ax +∆A′
y), (2.40)

(u∗−ǫ)∆Ax−(v∗−ε)∆Ay =0. (2.41)

When this correction is applied cell-by-cell, the global conservation is automatically
satisfied as a result of their individual sum at the corresponding control volumes. This
is illustrated in Fig. 13. The condition that needs to be satisfied is the divergence free
mass flux at the region enclosed by the irregular interface line, marked with red color.
The condition is enforced locally at the black line on the regular Cartesian boundary
faces, where the material tag changes sign. In Fig. 13, this corresponds to a layer of cells,
colored dark. This also satisfies the global conservation requirement on the other side of
the bold Cartesian boundary cells.

Starting from a divergence free velocity field at a given time step, n, the forcing func-
tion is incorporated in the predicted velocity field, u∗, on the forcing faces using Eq. (2.36)
leaving the fluid faces at the un values. This corresponds to the first step in Table 1, which
summarizes the algorithm advancing from time step [n] to time step [n+1]. The second
step involves the correction step on the first set of forcing faces, which is required only by
the Poisson equation. The idea behind the correction is to enforce the global correction
based on the way that the cells are cut, so that the continuity equation becomes well-
posed. The rest of the terms in the momentum equation are accounted for on solving
the advection-diffusion equation to predict the velocity field as appears in third item in
Algorithm 2.1. The fluxes for convection and diffusion equation are computed using the
conditions posed by all of the forcing faces and the predicted velocities are updated only
at the fluid faces while faces on the solid side are ignored. Similarly, pressure field, de-
fined at the cell centers, are solved at only on the fluid side using the fluxes computed by
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Algorithm 2.1: Overall algorithm for solid boundary treatment

1. Apply forcing terms: u∗
i =

{

un
i i−→Fluid f aces

bi1+bi2xi+bi3yi+bi4zi i−→Forcing f aces

2. Apply local correction for global conservation:
un+1

j =u∗
j +ǫj j : Forcing f aces required only by Poisson equation

3. Solve for advection diffusion equation:
(

∆V
ρn+1

∆t
−av

)

u∗∗=−
∫

dA
∇pn ·ndA+ f ∗∗visc− f ∗∗conv+ f n+1

f +g

u∗∗∗
i =u∗∗

i +
∆t(∇pn)i

ρn+1
i : only f luid f aces

4. Solve for continuity equation (pressure Poisson equation):

∑
i

(

(∇pn+1)i

ρn+1

)

·ndA=
1

∆t ∑
i

u∗∗∗
i ·ndA+

1

∆t ∑
j

un+1
j ·ndA

i : only f luid f aces
j : only f orcing f aces

5. Correct velocity field: un+1
i =u∗∗∗

i − ∆t(∇pn+1)i

ρn+1
i : only f luid f aces

predicted velocity field for fluid faces and the fluxes at the corrected forcing faces. Hence,
the correction is only applied on the fluid faces to satisfy the divergence free condition
for the next time step.

2.6 Contact line treatment

When we consider a fluid-fluid interface intersecting a solid surface, the treatment of
the tri-junction locations needs to account for the presence and interactions of all three
phases, fluid-fluid-solid, which can be challenging. One of the mostly discussed issues
for modeling the tri-junction location, or the contact line, with Navier-Stokes equations
is that the imposed no-slip condition for velocity leads to a non-integrable singularity in
stress. Among the various models, ones which produce slip condition [50–52] is adopted
in this study.

The angle at the contact line, shown in Fig. 14, can be used for representing by the
balance of forces resulting from different intermolecular forces between solid, liquid and
gas phases. The tangential component of the resulting force, FR, is shown in Eq. (2.42).
In static equilibrium, Eq. (2.42) leads to the well-known Young’s equation as given in
Eq. (2.43).

FR =σsg−σsl−σcosθ, (2.42)

σsg =σsl +σcosθ0. (2.43)

In Eq. (2.42), σsg is the surface force due to the interaction of solid and gas, σsl is
the surface force due to the interaction of solid and liquid and m is the surface tension
defined for liquid and gas.
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LiquidGas

Solid

Figure 14: Forces at tri-junction (contact line). FA represents the adhesive forces.

In this work, we adopt an approach based on a simplified version of Huang et al. [52]
without considering the effects of the slip velocity on the contact angle. In the present
work, flow dynamics moves the contact angle asymptotically towards a prescribed static
contact angle. The force at the contact line is obtained by plugging Eq. ( 2.43) into
Eq. (2.42), to estimate the force to recover the static contact angle.

FR =σ(cosθ0−cosθ). (2.44)

During the computation of the source term due to surface tension, the contact line
region contributes to the recovery force in the tangential direction to the solid surface, ts,
described by Eq. (2.44), instead of the curvature effects given in Eq. (2.25). The contact
angle is enforced on open edges where the element connects to either a computational
boundary or a solid interface by modifying Eq. (2.25) into Eq. (2.45). In Eq. (2.45), the
angle, θ, defined by the solid surface and the line formed by the mid-point of the edge
and the node across. The difference in cosine values between the computed angle, θ, and
the prescribed static angle, θ0, is translated into a force acting on the contact line. For a
static problem, i.e. capillary tube simulation, this force alone derives the contact line into
a given static contact angle from any given initial condition.

δ f = ∑
i=closed

edges

σ(t f ⊗n)i∆s+ ∑
i=closed

edges

σ(cosθ0−cosθ)its∆s. (2.45)

The slip velocity condition on interface markers at the contact line is imposed during
the transfer of Eulerian velocity field into the Lagrangian marker points. Instead of im-
posing the full Dirac function region in Eq. (2.9), we consider a one-sided averaging via
Dirac function. This treatment is represented by Eq. (2.46).

U(X)=
∑x u(x)δ(X−x)

∑x δ(X−x)
. (2.46)

In Eq. (2.46), the summation of delta function in denominator will yield unity (as a
property of delta function) further away from the contact line whereas it is less than unity
for markers in the proximity of a solid surface. As a result, casting the velocity field on
the contact line yields a slip condition on the solid surface.
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2.7 Intersecting solid and fluid interfaces

The contact lines can occur not only on the boundaries of the fixed Cartesian grid but
also at the solid interfaces that have irregular geometries. Computing the contact line
force requires identification of the angle between the fluid and solid interfaces. In order
to estimate the contact angle, it is crucial to know which elements of fluid and solid
interfaces are in contact. This requirement is imposed by identifying the intersection
marker and relating the corresponding fluid and solid markers/elements with each other.

This identification process starts during the computation of the indicator function.
The material properties assigned in a particular order, starting with solid interfaces fol-
lowed by fluid interfaces. This allows us to leave an identification number for solid
marker on the Cartesian grid cells. As the indicator function computation involves the
shortest distance, each cell around a solid interface keeps the index of the closest solid
marker point. This information is then used among the fluid interfaces to determine
whether they are in the vicinity of a solid boundary.

When there is wetting on a solid interface, the fluid interfacial structure includes open
elements, as described earlier in Section 2.2. The open elements lack of connectivity infor-
mation on one of their edges to another element. The markers on this edge is extended or
trimmed to fit on the closest solid interface. During this process, the orientation, i.e. nor-
mal direction, of the element is maintained.

The identification of open elements in a fluid interface is achieved by utilizing the
indicator function which is available on the Cartesian grid. The information of solid
indicator function, Is, is transferred onto fluid interface markers, X f , via Eq. (2.47) from
the Cartesian grid cells, x.

Is(X f )=
∫

v
Is(x)δ(x−X f )dv. (2.47)

When the value of Is at any marker is less than half, which corresponds to the location
of the solid interface, it is marked to be trimmed. In addition, elements having markers all
to be trimmed are removed from the fluid interface list. For elements having some mark-
ers lying inside and outside the solid interfaces are marked as open elements, for which
the connectivity information is filled with the corresponding solid marker point, deter-
mined by checking index value of the closest solid marker from the underlying Cartesian
grid cell.

Once the intersecting solid and fluid elements are known, markers on the open edge
are moved on to the solid interface using the distance information as shown in Fig. 15.

3 Computational assessment

The presented approach is tested using the following case studies: (i) Capillary tube
simulation at zero gravity with various contact angle and parameters (ii) liquid plug
problem, and (iii) 3D simulation of spacecraft fuel tank dynamics including liquid fuel
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Solide lement Fluide lementBoundaryMarker Markermovementdirect ion
(a) (b)

Figure 15: Intersecting fluid and solid interfaces. (a) intersection between elements (b) Snapping procedure
(point of view is tangential direction to the solid element. Marker on the open edge is marked with red.

(a) (b)

Figure 16: The computational configuration for 3D Capillary tube simulations. (a) adaptive Cartesian grids and
tube wall represented by solid interface, (b) configuration with initial flat interface.

draining at a tilted micro-gravity and liquid sloshing motion under a sudden change of
acceleration direction and/or magnitude. These cases are presented in the following.

3.1 Capillary tube simulation

Uzgoren et al. [53] simulated the Capillary tube with initially flat interface at zero-gravity
condition varying contact angles and non-dimensional parameters. The initial flat inter-
face between gas and liquid is deformed into the curved steady interface shape with the
given contact angle by the contact line force applied on the tri-junction point between
gas, liquid, and solid wall. The grid convergence and accuracy for various contact an-
gles were first studied in axisymmetric domain. Then, 3D simulations were conducted
by representing the circular tube wall using solid interface with triangular element in
Cartesian adaptive background grid. These configuration and initial flat interface in a
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Figure 17: Comparison of non-dimensional height of liquid column between theoretical values and present
axisymmetric computation. La=104, and a maximum of 129 grid points are used along radial direction.

Figure 18: The wall attachment point of 3D Capillary tube with 30◦ contact angle. The Laplace number varies
from 100 to 50,000.

Capillary tube are shown in Fig. 16. The density ratio and viscosity ratio are 1000 and 100
respectively. The Bond number, Bo =ρgL2/σ, is zero for zero-gravity condition, and it is
tested by varying Laplace number, La=ρσL/µ2, from 102 to 105.

The height of liquid column (∆H), the difference between wall attachment point and
centerline location, is normalized by the radius of tube (R) and chosen for verifying the
performance of present contact angle model. Fig. 17 shows the comparison between the
analytical solution [49] and the present axisymmetric computation results with various
contact angles from 0◦ to 180◦ at La=104. Maximum 129 grid points are used along tank
radius based on the grid convergence test. The current contact angle model works very
well with various contact angles, and shows good consistency with theoretical values
especially from 15◦ to 165◦, where the difference is just around one cell distance.

The 3D Capillary tube geometry in Fig. 18 was tested with various Laplace number
for validating the 3D performance of contact angle and solid interface. At the same grid
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(a) θ =30◦ (b)θ =90◦ (c) θ =150◦

Figure 19: The steady interface shape of 3D Capillary tube for different contact angles. (a) 30◦, (b) 90◦, (c)
150◦

(a) t∗=0.0 (b)t∗=20.0 (c) t∗=40.0 (d) t∗=100.0

Figure 20: Evolution of streamlines and pressure of 3D Capillary tube with 150◦ contact angle.

resolution, the 3D computation has same accuracy as 2D, where the interface location is
tracked with an accuracy of one cell distance. The change of wall attachment point at 30◦

contact angle is tracked in time from initial flat interface shape to the final steady state in
Fig. 18. With a modest Laplace number, for example, La=100, the interface shape evolves
smoothly without overshooting, but a large Laplace number can cause oscillations in
interface shapes before it reaches the steady state solution because the relatively large
surface tension and small viscosity create a larger contact line force, and thus movement.
Fig. 19 shows the 3D sample snapshot of deformed interface shape for given contact
angles 30◦, 90◦, and 150◦. The Cartesian grid is locally adapted dynamically tracking the
interface location for effective computation. The streamlines and pressure contour in a
plane of 3D domain are shown in Fig. 20.

OPEN ACCESS

DOI https://doi.org/2009-CiCP-7722 | Generated on 2024-12-19 02:04:13



28 E. Uzgoren, J. Sim and W. Shyy / Commun. Comput. Phys., 5 (2009), pp. 1-41

Figure 21: Computational setup and the boundary conditions.

3.2 The liquid plug flows

The lung airways are coated with a thin liquid film, which can become thicker during
various situations, such as congestive heart failure, asthma, cystic fibrosis, delivery of
drugs [54]. This liquid film can become unstable and form airway closure, or liquid
plug, which can initiate undesired outcomes for the patient. In addition to having a role
of blocking gas exchange, liquid plugs can cause damage to pulmonary epithelial cells
because of the additional mechanical stresses they bring [55]. These factors become more
significant especially when liquid plug experiences a rupture (reopening of the airway),
causing a sudden change in air pressure. Many factors can lead to a rupture, including
the liquid properties, gravity, propagation speed, presence of downstream plugs, airway
geometry, plug size, and interfacial activity [56].

The dynamics of a liquid plug rupture for a small plug length can be affected by
the van der Waals attraction forces. Furthermore, the van der Waals forces can be the
major source determining the threshold of the rupture. The critical length is determined
based on non-dimensional form of Navier-Stokes equations, which is consistent with
prior considerations [47, 57] focusing on thin liquid films.

The steady state solutions are obtained at various plug lengths to compare the present
approach with prior studies of Fujioka and Grotberg [55], who employed a Lagrangian
type interface tracking in a 2D channel. In addition to planar results, we extend their
study for axisymmetric computations.

Fig. 21 shows the computational setup based on the channel geometry and the liquid
plug. Two air-bubbles containing different pressure levels drive the liquid plug at a con-
stant speed. The liquid plug length, denoted by Lp, is the distance between air bubbles.
The liquid film thickness for air bubbles are denoted as h1 and h2.

The flow conditions are set by taking the characteristic length as the radius, denoted
with H, and characteristic velocity as the bubble tip velocity, denoted with U. Focusing
on the liquid plug region, no-slip wall condition at the pipe wall is employed by chang-
ing the computational framework to follow the bubble tip, which propagates at a constant
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(a) (b)

Figure 22: Two-dimensional steady state solutions of the liquid plug problem with plug lengths: LP = 0.5,
LP =1.0, and LP =2.0, (a) planar geometry, (b) axisymmetric geometry. Colors indicate pressure levels.

speed. Using the described computational framework, axial velocity at the channel walls
is set to negative unity yielding a zero-velocity for the bubble tip. The boundary condi-
tions at the channel entrance and exit are designed to honor the infinitely long channel
assumption. No air is allowed to enter or escape from the channel by setting the velocity
profiles inside the air bubble to zero. On the other hand, a linear velocity profile is as-
signed to liquid at the entrance based on velocity profiles on the interface and the no-slip
wall. Outflow conditions based on constant pressure leveled at zero is assigned at the
channel exit. Lastly, symmetry conditions are considered at the centerline to facilitate
half-domain solutions to the planar and axisymmetric numerical simulations.

Based on the parameters presented in Fig. 21, the non-dimensional parameters based
on liquid’s density and viscosity are given in Eq (3.1).

Re=
ρl HU

µl
; Ca=

µlU

σ
. (3.1)

The flow properties of steady state plug propagation are obtained via time marching
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from an initial condition of a zero velocity field and an arbitrary interfacial geometry,
which is chosen to be a combination of half circles in the vicinity of the liquid plug and
straight lines to resemble infinitely long air bubble with no variation in film thickness.
The shape of the plug and the mechanical stresses at the channel wall at Re = 50 and
Ca=0.05 are considered for three different plug lengths, i.e. LP=0.5, LP=1.0 and LP=2.0.

Fig. 22 shows the pressure contours and the streamlines for three different values of
LP in a two-dimensional channel and axisymmetric circular tube along with the steady
state grid distributions. The pressure drop between the air bubbles drives the liquid plug
through the channel. A circulation zone at the plug core is observed for each of the so-
lution, causing the film thickness at the upstream of the liquid plug to be at a minimum.
This location is also marked as the minimum liquid pressure location, which is accom-
panied by large pressure gradients on each side. A qualitative comparison between the
axisymmetric and the planar geometries suggest that the flow structures are similar to
determine the critical locations of wall stresses, while the interface shapes, hence the
trailing film thickness, h1, and the magnitude of the pressure drop across the plug are
quantitatively different, as presented in Table 2. For instance, the axisymmetric geometry
is observed to have smaller film thickness than the planar cases for all plug lengths. In
addition, the trailing film thickness remains the same for plug lengths of 1.0 and 2.0, in
spite of an increasing trend seen in planar cases.

Table 1: Steady state trailing film thickness and the pressure drop across the plug, at Re=50 and Ca=0.05.

Axisymmetric Planar

Present Computations Present Computations Fujioka and Grotberg [55]

Lp 0.5 1.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0

h1 0.111 0.115 0.115 0.114 0.119 0.123 0.113 0.119 0.123

∆P/LP 46.0 24.0 14.7 21.7 12.0 7.1 23.0 13.0 8.0

In Table 1, the film thickness length and the pressure drop across the plug for planar
geometries are compared with the prior numerical study by Fujioka and Grotberg [55].
Their numerical approach adopts a Lagrangian method to identify the moving air bub-
ble shape with a single fluid formulation, which assumes constant pressure inside the
air bubble. In present approach, this assumption is replaced by assigning material prop-
erties to air, i.e. density ratio as 50 and viscosity ratio as 10. Despite the difference in
formulations, both approaches agree on the characteristics of the flow. For instance, both
2D planar results show that the steady state trailing film thickness, h1, decreases with
a decreasing plug length for the two-dimensional channel and the steady state pressure
drop across the plug, ∆P/LP , shows the same decreasing trend for larger plug lengths.

Fig. 23 compares the wall shear stress for both single fluid formulation [55] and the
present two-fluid formulation carried at three different grid levels. The results at these
grid levels are found to be consistent and agree with the reference study [55] except the
location where the film thickness is at minimum. This difference at the peak values of
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Figure 23: Steady state wall shear stress obtained by the present study and Fuijoka & Grotberg [50]. Re=40,
Ca=0.05 and LP =2.0.

the shear stress can be related to the assumption of constant pressure for the single fluid
formulation because the corresponding region in two-fluid formulation variation in pres-
sure inside the air-bubble, which, in return, effects the shape and the shear stress distri-
bution on the wall.

To investigate the rupture dynamics, the flow is initiated using the steady state solu-
tions obtained in the absence of the van der Waals attraction forces. These forces are the
main mechanism of a reopening as they are reversely proportional with distance between
the air bubbles. The liquid plug length corresponds to the film thickness in the computa-
tions of the van der Waals forces. Hence, the smaller the plug length, the more dominant
they become over other forms of forces, i.e. surface tension. Eventually the liquid plug
will rupture causing bubble interfaces to merge removing the airway blockage.

We consider the van der Waals attraction forces on the axisymmetric configuration for
the plug length of LP =0.5. The potential of the attraction forces at an interface location
is defined based on the minimum distance to another fluid interface. This distance is not
only used to compute the potential but also utilized to determine the time of the rup-
ture, at which the film becomes unstable. Once the liquid plug length becomes smaller
than a critical plug length, rupture is numerically initiated. The critical plug length is
determined by the balance between the surface tension and the attraction forces using
Eq. (2.31). The attraction forces defined by the Hamaker constant, A, is introduced to the
computations as unity, whereas all other parameters including boundary conditions are
kept the same as the steady state cases. According to these parameters, non-dimensional
time and critical liquid plug length that would cause a rupture is given in Eq. (3.2).

t=
Aρ

σµ
t∗; hcritical =

√

A

σ
=0.22. (3.2)
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Figure 24: Time instants of the flow field during the reopening of the airway at Re = 50, Ca = 0.05 with an
initial plug length of 0.5. (a) Pressure contours levels (color) and streamlines (white lines). (b) Wall pressure
and wall shear stress.

Fig. 24 shows the time history of the pressure contours and streamlines before and
after the rupture. The rupture is observed to happen between t∗ = 0.148 and t∗ = 0.164.
Before rupture happens, the pressure starts to build up at the liquid plug as its length
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kept decreasing. At the rupture time, t∗ ∼= 0.16, the length goes below the critical plug
length and the interfaces experience a topological change, which causes a sudden change
in pressure. Afterwards, the surface tension becomes locally dominant in this region,
causing the freshly merged interface to move towards the channel walls. The sudden
change in pressure level due to reopening is felt at the walls.

3.3 Spacecraft fuel tank dynamics

The dynamics of the liquid fuel contained in a tank is of interest especially for space-
craft applications. Considering micro-gravity conditions, capillary and viscous effects
can become as significant as inertia effects, as opposed to normal gravity conditions. In
such conditions, the flow characteristics may change rapidly in response to the spacecraft
motion as a result of altered magnitude and direction of the body forces. These factors
not only determine the amount of fuel delivered to the combustion chamber but also
influence the spacecraft dynamics because the flow motion in the tank can disturb the
dynamics of the vehicle by changing its center of mass [58].

3.3.1 Draining tank flow

The liquid fuel draining process depends on many factors, i.e. tank geometry, accelera-
tion, surface tension, pressure difference applied and the material properties of the liquid
fuel [14, 15]. The effects of these parameters have been studied experimentally [59, 60]
under the effects of axial acceleration. When the acceleration or the gravitational force
is aligned with axial axis of a symmetric fuel tank, the problem can be tacked in an ax-
isymmetric formulation of the Navier-Stokes equations [14,15]. On the other hand, when
the direction of the acceleration is different, the dynamics can only be captured using full
three-dimensional approach.

The validity of the presented strategy in 3D configuration using previously reported
axisymmetric results [14, 15]. Then, the draining dynamics at 45◦ tilted micro-gravity is
investigated. Weber number, Bond number and Reynolds number are used to study the
draining flow in a micro-gravity condition:

Weber Number, We=
ρQ2

π2σR3
, (3.3)

Bond Number, Bo=
We

Fr
=

ρgR2

σ
, (3.4)

Reynolds Number, Re=
µU(2R)

µ
. (3.5)

In these equations, ρ is the density of the liquid, Q is the volume flow rate, σ is the
surface tension of the interface between gas and liquid, g is the gravitational acceleration,
and R is the characteristic length of the fuel tank, which is taken as the radius for cylindri-
cal geometry in this study. Accordingly, non-dimensional time is defined as t∗=tQ/πR3.
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(a) (b)

Figure 25: The computational geometry configuration
of draining fuel tank with hemispherical bottom. (a)
axisymmetric domain, (b) 3D computational domain.

Figure 26: The comparison between axisymmetric
and three dimensional computation for draining tank
flow simulation. Bo=5, We=0.97, and Re=216.

Fig. 25 shows the computational geometry configuration used for the verification of
the three-dimensional computations. An axisymmetric fuel tank with a hemispherical
bottom is considered to compare 3D computation with axisymmetric one. The initial
fluid interface shape is assumed as circular arc with the given contact angle, 45◦, at the
tank wall. Bond number, Weber number, and Reynolds number are considered as 5,
0.97, and 216, respectively. Fig. 26 illustrates that non-dimensional centerline and wall
attachment location of the interface for 3D computations are in agreement with the ax-
isymmetric computations. The snapshots of adaptive grids and pressure contour for 3D
computation are shown in Fig. 27, where maximum of 21 grid points are used along ra-
dius of tank. In spite of the fact that there are only 4 cells across the outlet pipe, the core
dynamics of the draining process is captured.

To illustrate the 3D capabilities, the draining fuel tank simulation is conducted at a
45◦ tilted micro-gravity condition. The ratio between the outlet radius, r, and the tank
radius, R, is 1/10, and the tank height is 4.0 times of tank radius. All simulations are
conducted in a micro-gravitational environment with 1.5% of normal gravity. The initial
fluid interface shape is assumed as a circular arc with the given contact angle, 45◦, at the
tank wall. Bond number, Weber number, and Reynolds number are considered as 5, 0.97,
and 21.6, respectively. The computational geometry configuration is shown in Fig. 25.
The complex 3D tank wall is represented by solid interface on a Cartesian computational
grid. Fig. 28 shows the snapshots of adaptive grid and pressure contour plot. Similar
to the axial gravity case, maximum of 21 grid points along the tank radius is employed,
which corresponds to 4 grid cells per the diameter of the outlet pipe.
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(a) t∗=0.0 (b) t∗=0.2 (c) t∗=1.0 (d) t∗=1.6 (e) t∗=1.8 (f) t∗=2.0

Figure 27: The snapshots of 3D liquid fuel draining flow under axial-direction micro-gravity. Grids are lo-
cally adapted around interface in time. Black lines represent streamlines and colored contour shows pressure
distribution.

(a) t∗=0.15 (b) t∗=0.60 (c) t∗=1.05 (d) t∗=1.28 (e) t∗=1.33

Figure 28: The snapshots of 3D fuel tank draining with 45◦ tilted gravitational acceleration. The magnitude of
acceleration is 0.015g0, and 45◦ contact angle is applied on the wall. (Bo=5, We=0.97, and Re=21.6).

3.3.2 loshing liquid motion in a spacecraft fuel tank

The sloshing waves on the liquid fuel surface can influence the fuel draining dynamics
affecting vapor ingestion and liquid fuel residuals. In addition, it can change the whole
spacecraft dynamics due to the movement of center of mass of the liquid fuel during
landing and/or docking maneuver. At normal or higher gravitational acceleration dur-
ing powered flight, the fluid motion is remained damped, and shows moderate flow
motion. On the other hand, even smaller potential energy change can cause large move-
ments under micro-gravity conditions. For example, the sudden engine cutoff transforms
the potential energy of liquid at a higher acceleration into kinetic energy, and thus, large
sloshing fluid motion. Understanding the flow motions in a liquid fuel tank, and its
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(a) (b)

Figure 29: The computational geometry configuration of draining fuel tank with hemispherical bottom. (a)
axisymmetric domain, (b) 3D computational domain.

(a) t∗=0.0 (b) t∗=1.0 (c) t∗=2.2 (d) t∗=3.4 (e) t∗=4.2 (f) t∗=20.0

Figure 30: Sloshing motion of liquid fuel in a concave-bottomed tank with a sudden change of acceleration
direction. Velocity vector and colored pressure contour are represented.

influence on the spacecraft dynamics are crucial for spacecraft applications.

The present review considers the pure sloshing motion of a liquid fuel in a spacecraft
tank. Fig. 29(a) shows the configuration of the scale model of the Saturn V/S-IVB liquid
hydrogen tank experimented by Toole et al. [61] This complex concave-shaped tank is
represented by the triangular solid interface elements in Fig. 29(b) for 3D computation
on the stationary Cartesian grids. Fig. 30 shows the flow field and instantaneous inter-
face shapes during a sloshing flow inside this particular geometry undergoing a sudden
change of direction of acceleration at 1% of the earth gravity level. The applied accelera-
tion is initially 45◦ tilted for the axis in Fig. 30(a), where, the deformed interface with 60◦

contact angle between liquid and gas are shown. At t∗ = 0.0, the applied acceleration is
abruptly changed into axial direction, and the difference of potential energy makes slosh-

OPEN ACCESS

DOI https://doi.org/2009-CiCP-7722 | Generated on 2024-12-19 02:04:13



E. Uzgoren, J. Sim and W. Shyy / Commun. Comput. Phys., 5 (2009), pp. 1-41 37

ing motion. Bond number, which is defined as the ratio of gravitational force to surface
tension forces, Bo=24 is used in this simulation.

4 Summary and conclusions

In this paper, we report our recent efforts in developing a multi-scale three-dimensional
adaptive grid method for multiphase flow problems. The method utilizes marker points
representing a triangulated surface for both tracking interfaces separating fluid constitu-
ents and arbitrarily shaped solid geometries. The transport equations are solved on the
Cartesian grid with automated local grid adaptation to capture the flow features. The
triangular mesh representing the Lagrangian framework is free to move on the Cartesian
grid that represents the Eulerian framework. These components are coupled together
to capture interfacial flow dynamics for various applications. In summary, the following
key aspects offer added capabilities for handling 3D moving boundaries around complex
solid boundaries:

(i) The marker-based data structure that allows contact lines on solids surfaces where
surface tension forces on interfaces separating fluid phases, pressure, viscous stresses, as
well as contact lines geometries between solid-liquid-gas phases are handled simultane-
ously;

(ii) Utilizing markers to represent not only fluid-fluid interfaces but also solid bound-
aries to allow the Cartesian grid based computations to handle three- dimensional prob-
lems of engineering interests;

(iii) Incorporating the indicator function based on a distance formulation to distin-
guish materials, and aid cost of computations relevant to geometric calculations;

(iv) Inclusion of multiple physical mechanisms including surface tension, van der
Waals effects in the interface region, along with the full Navier-Stokes equations.

Geometric computations involving 3D moving and intersecting surfaces can be very
time consuming. Using an indicator function for these computations provides an efficient
approach for such problems. This is analogous to the level-contour-based reconstruction
during a topological change. The methods utilized in this study shows that this approach
can also be extended to the moving surfaces by checking the indicator functions on the
marker points to identify the intersection points.

To highlight these features, the following case studies are presented:

(i) Capillary flows with various Laplace numbers and contact conditions.

(ii) Spacecraft fuel tank flow problems with gravitational effects and varied control
parameters including the capillary and Bond numbers.

(iii) The liquid plug problem, motivated by issues associated by drug delivery into
the lungs, is investigated using the present two-fluid formulation. The combined surface
tension and van der Waals effects, interacting with different plug lengths and flow pa-
rameters, leading to rich physical phenomena including topological changes and distinct
flow characteristics.
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