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Abstract. The no-slip boundary condition, i.e., zero fluid velocity relative to the solid at the
fluid-solid interface, has been very successful in describing many macroscopic flows. A problem
of principle arises when the no-slip boundary condition is used to model the hydrodynamics
of immiscible-fluid displacement in the vicinity of the moving contact line, where the interface
separating two immiscible fluids intersects the solid wall. Decades ago it was already known
that the moving contact line is incompatible with the no-slip boundary condition, since the
latter would imply infinite dissipation due to a non-integrable singularity in the stress near
the contact line. In this paper we first present an introductory review of the problem. We
then present a detailed review of our recent results on the contact-line motion in immiscible
two-phase flow, from molecular dynamics (MD) simulations to continuum hydrodynamics
calculations. Through extensive MD studies and detailed analysis, we have uncovered the
slip boundary condition governing the moving contact line, denoted the generalized Navier
boundary condition. We have used this discovery to formulate a continuum hydrodynamic
model whose predictions are in remarkable quantitative agreement with the MD simulation
results down to the molecular scale. These results serve to affirm the validity of the generalized
Navier boundary condition, as well as to open up the possibility of continuum hydrodynamic
calculations of immiscible flows that are physically meaningful at the molecular level.
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1 Introduction

The no-slip boundary condition, i.e., zero relative tangential velocity between the fluid and solid
at the interface, serves as a cornerstone in continuum hydrodynamics [3]. Although fluid slipping
is generally detected in molecular dynamics (MD) simulations for microscopically small systems
at high flow rate [2, 8, 39, 41], the no-slip boundary condition still works well for macroscopic
flows at low flow rate. This is due to the Navier boundary condition which actually accounts for
the slip observed in MD simulations [2, 8, 39,41]. This boundary condition, proposed by Navier
in 1823 [30], introduces a slip length ls and assumes that the amount of slip is proportional to
the shear rate in the fluid at the solid surface:

vslip = −lsn ·
[

(∇v) + (∇v)T
]

,

where vslip is the slip velocity at the surface, measured relative to the (moving) wall, [(∇v)+
(∇v)T

]

is the tensor of the rate of strain, and n denotes the outward surface normal (directed
out of the fluid). According to the Navier boundary condition, the slip length is defined as
the distance from the fluid-solid interface to where the linearly extrapolated tangential velocity
vanishes (see Fig. 1). Typically, ls ranges from a few angstroms to a few nanometers [2,8,39,41].
For a flow of characteristic length R and velocity U , the slip velocity is on the order of Uls/R.
This explains why the Navier boundary condition is practically indistinguishable from the no-slip
boundary condition in macroscopic flows where vslip/U ∼ ls/R → 0.

It has been well known that the no-slip boundary condition is not applicable to the moving
contact line (MCL) where the fluid-fluid interface intersects the solid wall [11,12,20] (see Fig. 2
for both the static and moving contact lines). The problem may be simply stated as follows. In
the two-phase immiscible flow where one fluid displaces another fluid, the contact line appears to
“slip” at the solid surface, in direct violation of the no-slip boundary condition. Furthermore, the
viscous stress diverges at the contact line if the no-slip boundary condition is applied everywhere
along the solid wall. This stress divergence is best illustrated in the reference frame where the
fluid-fluid interface is time-independent while the wall moves with velocity U (see Fig. 2b). As
the fluid velocity has to change from U at the wall (as required by the no-slip boundary condition)
to zero at the fluid-fluid interface (which is static), the viscous stress varies as ηU/x, where η
is the viscosity and x is the distance along the wall away from the contact line. Obviously, this
stress diverges as x → 0 because the distance over which the fluid velocity changes from U to
zero tends to vanish as the contact line is approached. In particular, this stress divergence is
non-integrable (the integral of 1/x yields lnx), thus implying infinite viscous dissipation.

Over the years there have been numerous models and proposals aiming to resolve the incom-
patibility of the no-slip boundary condition with the MCL. For example, there have been the
kinetic adsorption/desorption model by Blake [4], the fluid slip models by Hocking [19], by Huh
and Mason [21], and by Zhou and Sheng [43], and the Cahn-Hilliard-van der Waals models by
Seppecher [38], by Jacqmin [24], and by Chen et al. [7]. In the kinetic adsorption/desorption
model by Blake [4], the role of molecular processes was investigated. A deviation of the dynamic
contact angle from the static contact angle was shown to be responsible for the fluid/fluid dis-
placement at the MCL. In the slip model by Hocking [19], the effect of a slip coefficient (slip
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Figure 1: Slip length introduced in the Navier boundary condition, defined as the distance from the

fluid-solid interface to where the linearly extrapolated tangential velocity vanishes.

length) on the flow in the neighborhood of the contact line was examined. Two slip models
were used by Huh and Mason [21]: Model I for classical slippage assumes the slip velocity is
proportional to the shear stress exerted on the solid; Model II for local slippage assumes that
over a (small) distance the liquid slips freely where fluid stress vanishes, but thereafter the liq-
uid/solid bonding has been completed and the no-slip boundary condition is applied. In the
slip model by Zhou and Sheng [43], the incompressible Navier-Stokes equation was solved using
a prescribed tangential velocity profile as the boundary condition, which exponentially inter-
polates between the complete-slip at the contact line and the no-slip far from the contact line.
The Cahn-Hilliard-van der Waals models by Seppecher [38], by Jacqmin [24], and by Chen et

al. [7] suggested a resolution when perfect no-slip is retained. With the fluid-fluid interface
modeled to be diffuse, the contact line can thus move relative to the solid wall through diffusion
rather than convection. All the above models are at least mathematically valid because the
divergence of stress has been avoided, either by introducing some molecular process to drive
the contact line [4], or by allowing slip to occur [19, 21, 43], or by modeling a diffuse fluid-fluid
interface [7,24,38]. Pismen and Pomeau have presented a rational analysis of the hydrodynamic
phase field (diffuse interface) model based on the lubrication approximation [31].

The most usual (and natural) approach to resolve the stress divergence has been to allow slip
at the solid wall close to the contact line. In fact, molecular dynamics (MD) studies have clearly
demonstrated the existence of fluid slipping in the molecular-scale vicinity of the MCL [28,40].
However, the exact rule that governs this relative slip has eluded numerous prior attempts. As
a matter of fact, none of the existing models has proved successful by quantitatively accounting
for the contact-line slip velocity profile observed in MD simulations. In a hybrid approach by
Hadjiconstantinou [15], the MD slip profile was used as the boundary condition for finite-element
continuum calculation. The continuum results so obtained match the corresponding MD results,
therefore demonstrating the feasibility of hybrid algorithm [16,36]. But the problem concerning
the boundary condition governing the contact-line motion was still left unsolved.

In this paper we first present an introductory review of the problem, including (1) the
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Figure 2: (a) Static contact line. A fluid-fluid interface is formed between two immiscible fluids and

intersects the solid wall at a contact line. The static contact angle θs is determined by the Young’s

equation: γ cos θs + γ2 − γ1 = 0, where γ1, γ2, and γ are the three interfacial tensions at the three

interfaces (two fluid-solid and one fluid-fluid). (b) Moving contact line. When one fluid displaces another

immiscible fluid, the contact line is moving relative to the solid wall. (Here fluid 1 displaces fluid 2.) Due

to the contact-line motion, the dynamic contact angle θd deviates from the static contact angle θs. We

will show that this deviation is primarily responsible for the near-complete slip at the contact line.

origin of the stress singularity, (2) the ad hoc introduction of the slip boundary condition,
(3) the MD evidence of fluid slipping, (4) the gap between the existing MD results and a
continuum hydrodynamic description, and (5) a preliminary account on how to bridge the MD
results and a continuum description. We then present a detailed review of our recent results
on the contact-line motion in immiscible two-phase flow, from MD simulations to continuum
hydrodynamics calculations [34]. In our MD simulations, we consider two immiscible dense
fluids of identical density and viscosity, with the temperature controlled above the gas-liquid
critical point. (Similar results would be obtained if the temperature is below the critical point.)
For fluid-solid interactions, we choose the wall density and interaction parameters to make
sure (1) there is no epitaxial locking of fluid layer(s) to the solid wall, (2) a finite amount of
slip is allowed in the single-phase flow for each of the two immiscible fluids, (3) the fluid-fluid
interface makes a finite microscopic contact angle with the solid surface. Through extensive
MD simulations and detailed analysis, we have uncovered the boundary condition governing the
fluid slipping in the presence of a MCL. With the help of this discovery, we have formulated a
continuum hydrodynamic model of two-phase immiscible flow. Numerical solutions have been
obtained through an explicit finite-difference scheme. A comparison of the MD and continuum
results shows that velocity and fluid-fluid interface profiles from the MD simulations can be
quantitatively reproduced by the continuum model.

The paper is organized as follows. In Section 2 we review a few known facts in mathematics
and physics concerning the contact line motion. Together, they point out the right direction to
approach and elucidate the problem. In fact, they almost tell us what is expected for a boundary
condition governing the slip at the MCL and in its vicinity. In Section 3 we outline the main
results from MD simulations to continuum hydrodynamic modeling. In Section 4 we present
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Figure 3: The Hua-Scriven model [20] of MCL.

the first part of the MD results. From the slip velocity and the tangential wall force measured
at the fluid-solid interface, a slip boundary condition is deduced. In Section 5 we formulate
a continuum hydrodynamic model of two-phase immiscible flow. The continuum differential
expression for the tangential stress at the solid surface is derived, from which the generalized
Navier boundary condition (GNBC) is obtained from the slip boundary condition deduced in
Section 4. In Section 6 we show a systematic comparison of the MD and continuum results. The
validity of the GNBC and the continuum model is demonstrated. In Section 7 we present the
second part of the MD results, concerning the tangential force balance in a boundary layer at the
fluid-solid interface and the decomposition of the tangential stress in the fluid-fluid interfacial
region. In Section 8 we establish the correspondence between the stress components measured
in MD and those defined in the continuum hydrodynamics. Based on this correspondence, the
continuum GNBC is obtained in an integrated form from the MD results in Sections 4 and 7.
This may be regarded as a direct MD verification of the continuum GNBC. It also justifies the
use of the Cahn-Hilliard hydrodynamic formulation of two-phase flow, from which the continuum
form of GNBC, as verified by the MD results, is derived. The paper is concluded in Section 9.

2 Stress and slip: A brief review

2.1 Non-integrable stress singularity: the Huh-Scriven model

Hua and Scriven [20] considered a simple model for the immiscible two-phase flow near a MCL. A
flat solid surface is moving with steady velocity U in its own plane and a flat fluid-fluid interface,
formed between two immiscible phases A and B, intersects the solid surface at a contact line
(see Fig. 3). The contact line is taken as the origin of a polar coordinate system (r, θ), in which
the contact angle is φ.

The two-dimensional flow of Newtonian and incompressible fluids is dominated by viscous
stress for r ¿ η/ρU , where η is the viscosity and ρ the mass density. In the viscous flow
approximation, the Navier-Stokes equation is linearized and the steady flow is solved from the
biharmonic equation for the stream function ψ(r, θ):

∇2(∇2ψ) = 0.
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The boundary conditions to be imposed at θ = 0, π (solid surface) and θ = φ (fluid-fluid
interface) are: (i) vanishing normal component of velocity at the solid surface and fluid-fluid
interface, (ii) continuity of tangential velocity at the fluid-fluid interface, (iii) continuity of
tangential viscous stress at the fluid-fluid interface, (iv) no slip at the solid surface. Here
conditions (i)–(iii) are well justified while (iv) is usually taken as a postulate of continuum
hydrodynamics. The no-slip boundary condition can be justified a posteriori in macroscopic
flow by checking the correctness of its consequences. In the present model, however, it leads to
physically incorrect results for stress, in the microscopic vicinity of the MCL.

The similarity solution of the biharmonic equation is in the form of

ψ(r, θ) = r(a sin θ + b cos θ + cθ sin θ + dθ cos θ),

in which the eight constants (4 for phase A and 4 for phase B) are determined by the eight
boundary conditions in (i)–(iv). What Hua and Scriven found is that the shear stress and
pressure fields vary as 1/r and hence increase in magnitude without limit as the contact line
r = 0 is approached. As a consequence, the total tangential force exerted on the solid surface,
which is an integral of the tangential stress along the surface, is logarithmically infinite. That
indicates a singularity in viscous dissipation, which is physically unacceptable.

Obviously, the Hua-Scriven model is defective in the immediate vicinity of the MCL. This is
also seen from the normal stress difference across the fluid-fluid interface, which varies as 1/r as
well. According to the Laplace’s equation, the interface curvature should increase rapidly as the
contact line (r = 0) is approached, in order to balance the normal stress difference by curvature
force. This is clearly inconsistent with the assumption of a flat fluid-fluid interface. Nevertheless,
the flow field solved from the Hua-Scriven model may approximately describe the asymptotic
region at a large distance from the contact line (where the viscous flow approximation is still
valid). In that region, the no-slip boundary condition is considered valid and the fluid-fluid
interface is almost flat, due to the reduced stress.

2.2 Introducing the slip boundary condition

The deficiency of the Hua-Scriven model results from the incompatibility of the no-slip boundary
condition with a MCL: no slip means vr = ±U at the solid surface (θ = 0, π) where r > 0 while
at r = 0 the MCL requires a perfect slip. That is, the no-slip boundary condition leads to a
velocity discontinuity at the MCL. In order to remove the stress singularity at the MCL, while
retaining the Newtonian behavior of stress, the continuity of velocity field must be restored. For
this purpose, a slip profile can be introduced to continuously interpolate between the complete
slip at the MCL and the no-slip boundary condition that must hold at regions far away.

Dussan V. [10] considered a plate of infinite extent either inserted into or withdrawn from
a semi-infinite domain of fluid at a constant velocity U0 (see Fig. 4). The contact line is taken
as the origin of a polar coordinate system (r, φ), in which the apparent contact angle is α
at r → ∞. The equation of motion is the Navier-Stokes equation with the incompressibility
condition ∇ · u = 0. The boundary conditions at the solid surface φ = 0 and the free surface
{(r, φ(r)}|0 ≤ r < ∞} are: (i) the kinematic boundary conditions u · φ̂ = 0 at φ = 0 and
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Figure 4: A plate is inserted into a semi-infinite domain of fluid at a constant velocity U0. The angle

between the plate and the free surface at r → ∞ is α.

u · n = 0 at φ = φ(r), where n is an outward unit vector normal to the free surface, (ii) the
dynamic boundary condition t · T · n = 0 at φ = φ(r), where T is the stress tensor and t is a
unit vector tangent to the free surface, i.e., t · n = 0, (iii) the Laplace condition n · T · n = σκ
at φ = φ(r), where σ is the surface tension and κ the interface curvature, (iv) the slip boundary
condition u = U(r)r̂ at φ = 0, where U(r) is a prescribed function, and (v) the critical static
contact angle φ(0) = φs.

The slip boundary condition must continuously interpolate between the complete slip at the
MCL (r = 0) and the no-slip boundary condition at r → ∞:

lim
r→0

U(r) = 0, lim
r→∞

U(r) = U0.

However, the form of U(r) in the intermediate region, where U varies from 0 to U0, is unknown.
Three different slip boundary conditions were used for U(r), in order to assess the sensitivity of
the overall flow field to the form of the slip boundary condition. They are

U1 =
r/Ls

1 + r/Ls
U0, U2 =

(r/Ls)
2

1 + (r/Ls)2
U0, U1 =

(r/Ls)
1/2

1 + (r/Ls)1/2
U0.

where Ls is a length scale called the slip length (not the one defined in the Navier boundary
condition). It was found that on the slip length scale the flow fields are quite different whereas
on the meniscus length scale, i.e., the length scale on which almost all fluid-mechanical measure-
ments are performed, all the flow fields are virtually the same. That is, identical macroscopic
flow behaviors are expected from different slipping models.

2.3 Slip observed in molecular dynamics simulations

According to the conclusion in [10], only in the microscopic slip region (of length scale ∼ Ls) can
different slip models be distinguished. This makes the experimental verification of a particular
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Figure 5: The xz projection of the simulated system. Thick solid lines represent solid walls and dashed

lines represent fluid-fluid interfaces. The arrows indicate fluid velocity close to the solid walls, from which

the variation of the amount of slip is clearly seen.

slip model very difficult because experiments usually probe distances (∼ 1µm) much larger than
Ls. Naturally, computer experiments become very useful in elucidating the problem [1].

Non-equilibrium MD simulations were carried out to investigate the fluid motion in the
vicinity of the MCL, in both the Poiseuille-flow [28] and Couette-flow [40] geometries. In these
MD simulations, interactions between fluid molecules were modeled with the Lennard-Jones
potential, modified to segregate immiscible fluids. The confining walls were constructed with
a molecular structure. Wall-fluid interactions were also modeled with the Lennard-Jones po-
tential, with energy and length scales different from those of the fluid-fluid interactions. In
the simulations performed in the Couette geometry [40], two immiscible fluids were confined
between two planar walls parallel to the xy plane and a shear flow was induced by moving the
two solid walls in ±x directions at constant speed U (see Fig. 5). Steady-state velocity fields
were obtained from the time average of fluid molecular velocities in small bins.

There was clean evidence for a slip region in the vicinity of the MCL: appreciable slip occurs
within a length scale ∼ 10σ, where σ is the length scale in the fluid-fluid Lennard-Jones poten-
tial, and at the MCL the slip is near-complete. Far from the interfaces, viscous damping makes
the flow insensitive to the fast variations near the interfaces, and hence uniform shear flow was
observed, with a negligible amount of slip. Therefore, MD simulations provide evidence for a
cutoff, below which the no-slip boundary condition breaks down, introduced phenomenologically
in various slip models to remove the stress singularity. However, the exact boundary condition
that governs the observed slip was left unresolved. In particular, a breakdown of local hydro-
dynamics in the molecular scale slip region was suggested [40], considering the extreme velocity
variations there.

The Navier slip model assumes that the amount of slip is proportional to the tangential
component of the stress tensor, Pxz, in the fluid at the solid surface. In Ref. [40], the micro-
scopic value of Pxz was directly measured. A comparison to the slip profile is roughly consistent
with the Navier slip model. However, a large discrepancy was found between the microscopic
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Figure 6: A displacement of fluid 2 by fluid 1 over distance L in a cylindrical capillary of radius r.

value of Pxz and the shear rate ∂vx/∂z. According to the authors, this discrepancy suggests a
breakdown of local hydrodynamics. On the contrary, we will show in this paper:
(i) The Navier slip model is the correct model describing the fluid slipping near the MCL.
(ii) The tangential stress in the Navier model is not merely viscous.
(iii) The interfacial tension plays an important role in governing the contact-line slip in immis-
cible two-phase flows.
(iv) There is no breakdown of local hydrodynamics.

2.4 Fluid/fluid displacement driven by unbalanced Young force

2.4.1 Unbalanced Young force

For a cylindrical capillary of radius r, if the steady displacement is sufficiently slow, then the
pressure drop across the moving fluid-fluid interface is given by ∆p = 2γ12 cos θ/r, where γ12

is the interfacial tension, and θ is an appropriate dynamic contact angle. At equilibrium, the
pressure drop is given by ∆p0 = 2γ12 cos θ0/r, where θ0 is the equilibrium contact angle. In
general, θ and θ0 differ. Physically, ∆p0 measures the change of the interfacial free energy at the
fluid-solid interface when the fluid-fluid interface moves relative to the wall, and ∆p measures
the external work done to the system. Therefore, the difference ∆p − ∆p0 is a measure of the
dissipation due to the presence of the MCL.

Let’s consider a displacement of fluid 2 by fluid 1 over distance L (see Fig. 6). According to
the Young’s equation for the equilibrium contact angle, the force πr2∆p0 equals 2πrγ12 cos θ0 =
2πr(γS1 − γS2), where γS1 and γS2 are the interfacial tensions for the S/1 and S/2 interfaces,
respectively. Thus the change of the interfacial free energy at the fluid-solid interface is given
by πr2∆p0L = 2πrL(γS1 − γS2). The external work done to the system is simply πr2∆pL. It
follows that the dissipation due to the presence of the MCL is given by πr2(∆p − ∆p0)L =
2πrLγ12(cos θ− cos θ0), where γ12(cos θ− cos θ0) = γ12 cos θ +γS2 −γS1 is the unbalanced Young

force [12].

In order to find a relation between the displacement velocity v and the unbalanced Young
force FY , two classes of models have been proposed to describe the contact line motion: a)
An Eyring approach, based on the molecular adsorption/desorption processes at the contact
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Figure 7: (a) A molecular picture of the three-phase zone. (b) Shifted potential profile.

line [4]. b) A hydrodynamic approach, assuming that dissipation is dominated by viscous shear
flow inside the wedge [12]. Viscous flows in wedges were calculated by Hua and Scriven [20]. For
wedges of small (apparent) contact angle, a lubrication approximation can be used to simplify
the calculations [12]. As discussed in Sections 2.1 and 2.2, a (molecular scale) cutoff has to be
introduced to remove the logarithmic singularity in viscous dissipation. On the contrary, the
Eyring approach assumes that the molecular dissipation at the tip is dominant. A quantitative
theory is briefly reviewed below.

2.4.2 Blake’s kinetic model

The role of interfacial tension was investigated in a kinetic model by Blake and Haynes [4].
Consider a fluid-fluid interface in contact with a flat solid surface at a line of three-phase contact
(see Fig. 7a). Viewed on a molecular scale, the three-phase line is actually a fluctuating three-
phase zone, where adsorbed molecules of one fluid (at the solid surface) interchange with those
of the other, either by migration at the solid surface or through the contiguous bulk phases. In
equilibrium the net rate of exchange will be zero.

For a three-phase zone moving relative to the solid wall (Fig. 7a), the net displacement,
driven by the unbalanced Young force FY = γ12 cos θ + γS2 − γS1, is due to a nonzero net rate
of exchange. Let ξ be the interfacial thickness, σ be the area of an adsorption site, and λ be the
hopping distance of molecules. The force per adsorption site is approximately σFY /ξ and the
energy shift over distance λ is approximately λσFY /ξ ∼ FY λ2 (see Fig. 7b). This energy shift
leads to two different rates K+ and K−:

K± = k exp

[

− 1

kBT

(

W ∓ 1

2
FY λ2

)]

,

for forward and backward hopping events, respectively. Here W is an activation energy for
hopping. It follows that the velocity of the MCL is v = λ(K+ −K−) ∝ sinh

(

FY λ2/2kBT
)

. For
very small FY , v ∝ FY .
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Figure 8: A boundary layer of fluid at the fluid-solid interface, responsible for viscous momentum trans-

port between fluid and solid. Circles represent fluid molecules and solid squares represent wall molecules.

Blake’s kinetic model shows that fluid slipping can be induced by the unbalanced Young
force at the contact line. Therefore, it emphasizes the role of interfacial tension, though not in a
hydrodynamic formulation. On the contrary, the authors of Ref. [40] considered the viscous shear
stress as the only driving force. In fact a large discrepancy was found between the shear rate
and the microscopic value of the tangential stress (the driving force according to the Navier slip
model). In this paper we will show that in the two-phase interfacial region, such a discrepancy
is exactly caused by the neglect of the non-viscous contribution from interfacial tension.

2.5 From the Navier boundary condition to the generalized Navier boundary
condition: a preliminary discussion

Here we give a preliminary account on the main finding reported in Ref. [34], the GNBC. Based
on the results reviewed in Sections 2.1, 2.2, 2.3, and 2.4, we try to show: a) The Navier boundary
condition may actually work for the single-phase slip region near the MCL. b) In the two-phase
contact-line region, the GNBC is a natural extension of the Navier boundary condition, with
the fluid-fluid interfacial tension taken into account.

2.5.1 Navier boundary condition and slip length

The validity of the Navier boundary condition vslip = −lsn ·
[

(∇v) + (∇v)T
]

has been well
established by many MD studies for single-phase fluids [2, 8, 39, 41]. This boundary condition
is a constitutive equation that locally relates the amount of slip to the shear rate at the solid
surface, though in most of the reported simulations, the hydrodynamics involves no spatial
variation along the solid surface. Physically, the Navier boundary condition is local in nature
simply because intermolecular wall-fluid interactions are short-ranged.

The slip length ls is a phenomenological parameter that measures the local viscous coupling
between fluid and solid. Fig. 8 illustrates the viscous momentum transport between fluid and
solid through a boundary layer of fluid. The thickness of this boundary layer, z0, must be of
molecular scale, within the range of wall-fluid interactions. Now we show that the slip length ls
is defined based on a linear law for tangential wall force and the Newton’s law for shear stress.

Hydrodynamic motion of fluid at the solid surface is measured by the slip velocity vslip
x in

the x direction, defined relative to the (moving) wall. When vslip
x is present, a tangential wall
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force Gw
x is exerted on the boundary-layer fluid, defined as the rate of tangential (x) momentum

transport per unit wall area, from the wall to the (boundary-layer) fluid. Physically, this force
represents a time-averaged effect of wall-fluid interactions, to be incorporated into a hydrody-
namic slip boundary condition. The linear law for Gw

x is expressed by Gw
x = −βvslip, where β is

called the slip coefficient and the minus sign means the fluid-solid coupling is viscous (frictional).
For the boundary layer of molecular thickness, the tangential wall force Gw

x must be balanced
by the tangential fluid force Gf

x =
∫ z0

0 dz (∂xσxx + ∂zσzx), where the integral is over the z-span
of the boundary layer (see Fig. 8), σxx(zx) are the xx(zx) components of the fluid stress tensor,
and ∂xσxx + ∂zσzx is the fluid force density in the x direction. From the equation of tangential
force balance Gw

x + Gf
x = 0, we obtain

∫ z0

0
dz (∂xσxx + ∂zσzx) = ∂x

∫ z0

0
dzσxx(x, z) + σzx(x, z0) = βvslip(x).

This equation should be regarded as a microscopic expression for the Navier slip model: the
amount of slip is proportional to the tangential fluid force at the fluid-solid interface. When the
normal stress σxx varies slowly in the x direction and the tangential stress σzx is caused by shear
viscosity only, the above equation becomes η∂zvx(x, z0) = βvslip(x), where η is the viscosity and
∂zvx(x, z0) is the shear rate “at the solid surface”. For flow fields whose characteristic length
scale is much larger than z0, the boundary layer thickness, we replace z0 by z = 0 and recover the
Navier boundary condition for continuum hydrodynamics, in which the slip length is given by
ls = η/β. To summarize, the hydrodynamic viscous coupling between fluid and solid is actually
measured by the slip coefficient β. The Navier boundary condition, in which the slip length is
introduced, is due to the Newton’s law for viscous shear stress. For very weak viscous coupling
between fluid and solid, β → 0, and thus ls → ∞, making ∂zvx → 0: the fluid-solid interface
becomes a free surface.

2.5.2 Single-phase region

A number of MD studies have shown that for single-phase flows, the Navier boundary condition
is valid in describing the fluid slipping at solid surface [2, 8, 39, 41]. Therefore, we expect that
it can also describe the partial slip observed in the single-phase region near the MCL [40].
However, according to the authors of Ref. [40], the Navier boundary condition failed even in
the single-phase region: the velocity gradient ∂vx/∂z was not proportional to the amount of
slip. This discrepancy was attributed to a breakdown of local hydrodynamics, considering the
very large velocity variations observed near the MCL. Here we present a heuristic discussion,
to explain why such a discrepancy is expected even if the Navier boundary condition actually
works for the single-phase region.

First, the success of the hybrid approaches outlined below strongly indicates that local
hydrodynamics doesn’t break down in the slip region. In Ref. [40], an apparent contact angle
θapp was defined at half the distance between two solid surfaces (see Fig. 5). For θapp < 135◦,
fluid-fluid interfaces could be approximated by planes. The Navier-Stokes equation was solved
for the simplified geometry. For this purpose, the tangential velocity along fluid-fluid interface
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θ     =π/2app

no−slip condition

Navier−Stokes equation

x

z

v
Navier condition

x

O U

Figure 9: Two-dimensional corner flow caused by one rigid plane sliding over another, with constant

inclination θapp = 90◦. In the reference frame of the vertical plane, the horizontal plane is moving to the

left with constant speed U .

was set to be zero (according to the simulation results) and the slip velocity ∆V (r) (measured
relative to the moving wall) was specified as a function of distance r from the MCL: ∆V (r) =
±U exp[−r ln 2/S], with + and − for the lower and upper walls, respectively. This ∆V (r),
proposed according to the MD slip profile, continuously interpolates between the complete slip
at the MCL (∆V (r) = ±U at r = 0) and the no-slip boundary condition (∆V (r) → 0 at
r → ∞). With a proper value chosen for S (≈ 1.8σ), the MD flow fields were reproduced by
solving the Navier-Stokes equation with the above boundary conditions. Recently, an improved
hybrid approach has been used to reproduce the MD simulation results for contact-line motion
in a Poiseuille geometry [15].

To further test the validity of continuum modeling, we have solved the Navier-Stokes equation
for a corner flow [33]. Consider one rigid plane sliding steadily over another, with constant
inclination θapp (see Fig. 9). The fluid is Newtonian and incompressible. The no-slip boundary
condition is applied at the vertical plane and the Navier boundary condition applied at the
horizontal plane. The kinematic condition of vanishing normal component of velocity at the
solid surface requires vx = 0 at the vertical plane and vz = 0 at the horizontal plane, and
hence v = 0 at the intersection O, which is taken as the origin of the coordinate system (x, z).
This corner-flow model resembles the continuum model used in the hybrid approach above, and
produces similar flow fields for quantitative comparison with MD results. In particular, the
corner flow exhibits a slip profile very close to ∆V (r): the slip velocity vx + U shows a linear
decrease over a length scale ∼ ls, the slip length in the Navier condition, followed by a more
gradual decrease. (Note that vx + U = U at O implies complete slip.)

From the hybrid approach with the prescribed slip velocity ∆V (r) to the corner-flow model
with the Navier boundary condition, they indicate that the single-phase region near the MCL
can be modeled by the Navier-Stokes equation for an incompressible Newtonian fluid, supple-
mented by appropriate boundary conditions. Then a simple question arises: Given a continuum
hydrodynamic model that uses the Navier boundary condition and approximately reproduces
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the MD flow fields in the single-phase region near the MCL, why do the MD simulation results
show a large discrepancy between the velocity gradient ∂vx/∂z and the amount of slip?

The answer lies in the fast velocity variation in the vicinity of the MCL, where the flow is
dominated by viscous stress. With the characteristic velocity scale set by U and the characteristic
length scale set by ls, the normal stress σxx must show as well a fast variation along the solid
surface: ∂xσxx ∼ ηU/l2s . According to Section 2.5.1, the microscopic value of the tangential

fluid force Gf
x is given by ∂x

∫ z0

0 dzσxx(x, z) + σzx(x, z0). This expression is necessary because

Gf
x is distributed in a boundary layer of molecular thickness z0. Obviously, to represent Gf

x by
σzx ≈ η∂vx/∂z at z = z0 alone, the normal stress σxx near the solid surface has to vary slowly
in the x direction. This is not the case in the vicinity of the MCL if the Navier slip model
works there, as implied by the continuum corner-flow calculation which yields ∂xσxx ∼ ηU/l2s
near the intersection. (It is reasonable to expect that if the Navier slip model is valid, then the
normal stress measured in MD simulations should in general agree with that from continuum
model calculation with the Navier condition.) Given ∂x

∫ z0

0 dzσxx ∼ ηUz0/l2s according to the
corner-flow model, and that z0 and ls are both ∼ 1σ, it is obvious that considering only η∂vx/∂z

at z = z0 would lead to an appreciable underestimate of Gf
x ∼ ηU/ls in the slip region. In short,

the large discrepancy between the velocity gradient ∂vx/∂z and the amount of slip, observed in
the single-phase slip region near the MCL, cannot be used to exclude the microscopic Navier slip
model and the hydrodynamic Navier slip boundary condition, for if the Navier model is valid,
then the tangential viscous stress η∂vx/∂z, measured at some level away from the solid surface,

is not enough for a complete evaluation of the tangential fluid force Gf
x.

2.5.3 Two-phase region

The linear law for tangential wall force, Gw
x = −βvslip

x , describes the hydrodynamic viscous
coupling between fluid and solid. Assume that in the two-phase region, the two fluids interact
with the wall independently. Then the tangential wall force becomes Gw

x = −βvslip
x at the

contact line, with the slip coefficient given by β = (β1ρ1 + β2ρ2)/(ρ1 + ρ2), where β1 and β2 are
the slip coefficients for the two single-phase regions separated by the fluid-fluid interface, and
ρ1 and ρ2 are the local densities of the two fluids in the contact-line region. Obviously, β varies
between β1 and β2 across the fluid-fluid interface.

The equation of tangential force balance Gw
x + Gf

x = 0 must hold as well in the two-phase
region. Therefore the Navier slip model is still of the form

∂x

∫ z0

0
dzσxx(x, z) + σzx(x, z0) = βvslip(x).

Nevertheless, this does not lead to the Navier boundary condition η∂zvx = βvslip anymore
because in the two-phase region, the tangential stress is not contributed by shear viscosity only:
there is a non-viscous component in σzx, caused by the fluid-fluid interfacial tension. Put in an
ideal form of decomposition, the tangential stress σzx(x, z) at level z can be expressed as

σzx(x, z) = σv
zx(x, z) + σY

zx(x, z),
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where σv
zx is the viscous component due to shear viscosity and σY

zx (the tangential Young stress) is
the non-viscous component, which is narrowly distributed in the two-phase interfacial region and
related to the interfacial tension through

∫

int dxσY
zx(x, z) = γ cos θ(z). Here

∫

int dx denotes the
integration across the fluid-fluid interface along the x direction, γ is the interfacial tension, and
θ(z) is the angle between the interface and the x direction at level z. Physically, the existence of
a fluid-fluid interface causes an anisotropy in the stress tensor in the two-phase interfacial region.
The interfacial tension is an integrated measure of that stress anisotropy. When expressed in a
coordinate system different from the principal system, the stress tensor is not diagonalized and a
nonzero σY

zx appears. In the presence of shear flow, while the shear viscosity leads to the viscous
component σv

zx in σzx, the non-viscous component σY
zx is still present. A detailed discussion on

the stress decomposition will be given in Section 7.3.
Consider an equilibrium state in which the tangential stress σ0

zx is balanced by the gradient
of the normal stress σ0

xx:

∂x

∫ z0

0
dzσ0

xx(x, z) + σ0
zx(x, z0) = 0,

where the superscript 0 denotes equilibrium quantities. Here the equilibrium tangential stress
σ0

zx is narrowly distributed in the two-phase interfacial region and related to the interfacial
tension through

∫

int dxσ0
zx(x, z) = γ cos θ0(z). (There is no viscous stress in equilibrium, and

hence σ0
zx is caused by the interfacial tension only.) Subtracting the equation of equilibrium

force balance from the expression of Navier slip model, we obtain

∂x

∫ z0

0
dz[σxx(x, z) − σ0

xx(x, z)] + [σzx(x, z0) − σ0
zx(x, z0)]

= ∂x

∫ z0

0
dz[σxx(x, z) − σ0

xx(x, z)] + [σv
zx(x, z0) + σY

zx(x, z0) − σ0
zx(x, z0)]

= βvslip(x).

This equation will be the focus of our continuum deduction from molecular hydrodynamics.
In fact it leads to the GNBC which governs the fluid slipping everywhere, from the two-phase
contact-line region to the single-phase regions away from the MCL. This will be elaborated in
Sections 4, 5, 7, and 8.

To summarize, our preliminary analysis shows that compared to the single-phase region
where the tangential stress is due to shear viscosity only, the two-phase region has the tangential
Young stress as the additional component. Naturally, the Navier boundary condition, which
considers the tangential viscous stress only, needs to be generalized to include the tangential
Young stress.

3 Statement of results

We have carried out MD simulations for immiscible two-phase flows in a Couette geometry (see
Fig. 10) [34]. The two immiscible fluids were modeled by using the Lennard-Jones (LJ) potentials
for the interactions between fluid molecules. The solid walls were modeled by crystalline plates.
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V

V

x

z

y

H

Figure 10: Schematic of the immiscible Couette flow. Two immiscible fluids (empty and solid circles)

are confined between two solid walls (solid squares) that are parallel to the xy plane and separated by a

distance H. The Couette flow is generated by moving the top and bottom walls at a speed V along ±x,

respectively.

More technical details will be presented in Sections 4 and 7. The purpose of carrying out MD
simulations is threefold: (1) To uncover the boundary condition governing the MCL, denoted
the GNBC; (2) To fix the material parameters (e.g. viscosity, interfacial tension, etc) in our
hydrodynamic model; (3) To produce velocity and interface profiles for comparison with the
continuum hydrodynamic solutions.

Our main finding is the GNBC:

βvslip
x = σ̃zx = σv

zx + σ̃Y
zx.

Here β is the slip coefficient, vslip
x is the tangential slip velocity measured relative to the (mov-

ing) wall, and σ̃zx is the hydrodynamic tangential stress, given by the sum of the viscous stress
σv

zx and the uncompensated Young stress σ̃Y
zx. The validity of the GNBC has been verified by a

detailed analysis of MD data (Sections 4, 7, and 8) plus a comparison of the MD and continuum
results (Section 6). Compared to the conventional Navier boundary condition which includes the
tangential viscous stress only, the GNBC captures the uncompensated Young stress as the addi-
tional component. Together, the tangential viscous stress and the uncompensated Young stress
give rise to the near-complete slip at the MCL. The uncompensated Young stress arises from the
deviation of the fluid-fluid interface from its static configuration and is narrowly distributed in
the fluid-fluid interfacial region. Obviously, far away from the MCL, the uncompensated Young
stress vanishes and the GNBC becomes the usual Navier Boundary condition βvslip

x = σv
zx.

We have incorporated the GNBC into the Cahn-Hilliard (CH) hydrodynamic formulation
of two-phase flow [7, 24] to obtain a continuum hydrodynamic model [34]. The continuum
model may be briefly described as follows. The CH free energy functional [5] is of the form

F [φ] =
∫

dr
[

K (∇φ)2 /2 + f(φ)
]

, where φ(r) is the composition field defined by φ(r) = (ρ2 −
ρ1)/(ρ2 + ρ1), with ρ1 and ρ2 being the local number densities of the two fluid species, f(φ) =
−rφ2/2 + uφ4/4, and K, r, u are parameters which can be determined in MD simulations by
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measuring the interface width ξ =
√

K/r, the interfacial tension γ = 2
√

2r2ξ/3u, and the two
homogeneous equilibrium phases φ± = ±

√

r/u (= ±1 in our case). The two coupled equations
of motion are the CH convection-diffusion equation for φ and the Navier-Stokes equation (with
the addition of the capillary force density):

∂φ

∂t
+ v · ∇φ = M∇2µ, (3.1)

ρm

[

∂v

∂t
+ (v · ∇)v

]

= −∇p + ∇ · σv + µ∇φ + mρgext, (3.2)

together with the incompressibility condition ∇·v = 0. Here M is the phenomenological mobility
coefficient, ρm is the fluid mass density, p is the pressure, σv is the Newtonian viscous stress
tensor, µ∇φ is the capillary force density with µ = δF/δφ being the chemical potential, and
mρgext is the external body force density (for Poiseuille flows). The boundary conditions at
the solid surface are vn = 0, ∂nµ = 0 (n denotes the outward surface normal), a relaxational
equation for φ at the solid surface:

∂φ

∂t
+ v · ∇φ = −ΓL(φ), (3.3)

and the continuum form of the GNBC:

βvslip
x = −η∂nvx + L(φ)∂xφ, (3.4)

Here Γ is a (positive) phenomenological parameter, L(φ) = K∂nφ + ∂γwf (φ)/∂φ with γwf (φ)

being the fluid-solid interfacial free energy density, β is the slip coefficient, vslip
x is the (tangential)

slip velocity relative to the wall, η is the viscosity, and L(φ)∂xφ is the uncompensated Young
stress.

Compared to the Navier boundary condition, the additional component captured by the
GNBC in Eq. (3.4) is the uncompensated Young stress σ̃Y

zx. Its differential expression is given
by

σ̃Y
zx = L(φ)∂xφ = [K∂nφ + ∂γwf (φ)/∂φ]∂xφ (3.5)

at z = 0. Here the z coordinate is for the lower fluid-solid interface where ∂n = −∂z (same
below), with the understanding that the same physics holds at the upper interface. It can
be shown that the integral of this uncompensated Young stress along x across the fluid-fluid
interface yields

∫

int
dx[L(φ)∂xφ](x, 0) = γ cos θsurf

d + ∆γwf , (3.6)

where
∫

int dx denotes the integration along x across the fluid-fluid interface, γ is the fluid-fluid

interfacial tension, θsurf
d is the dynamic contact angle at the solid surface, and ∆γwf is the

change of γwf (φ) across the fluid-fluid interface, i.e., ∆γwf ≡
∫

int dx∂xγwf (φ). The Young’s

equation relates ∆γwf to the static contact angle θsurf
s at the solid surface:

γ cos θsurf
s + ∆γwf = 0, (3.7)
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which is obtained as a phenomenological expression for the tangential force balance at the contact
line in equilibrium. Substituting Eq. (3.7) into Eq. (3.6) yields

∫

int
dx[L(φ)∂xφ](x, 0) = γ(cos θsurf

d − cos θsurf
s ), (3.8)

implying that the uncompensated Young stress arises from the deviation of the fluid-fluid in-
terface from its static configuration. Equations (3.5), (3.6), (3.7), and (3.8) will be derived in
Section 5. In essence, our results show that in the vicinity of the MCL, the tangential viscous
stress −η∂nvx as postulated by the usual Navier boundary condition can not account for the
contact-line slip profile without taking into account the uncompensated Young stress. This is
seen from both the MD data and the predictions of the continuum model.

Besides the external conditions such as the shear speed V and the wall separation H, there
are nine parameters in our continuum model, including ρm, η, β, ξ, γ, |φ±|, M , Γ, and θsurf

s .

The values of ρm, η, β, ξ, γ, |φ±|, and θsurf
s were directly obtained from MD simulations. The

values of the two phenomenological parameters M and Γ were fixed by an optimized comparison
with one MD flow field. The same set of parameters (corresponding to the same local properties
in a series of MD simulations) has been used to produce velocity fields and fluid-fluid interface
shapes for comparison with the MD results obtained for different external conditions (V , H,
and flow geometry). The overall agreement is excellent in all cases, demonstrating the validity
of the GNBC and the hydrodynamic model.

The CH hydrodynamic formulation of immiscible two-phase flow has been successfully used to
construct a continuum model. We would like to emphasize that while the phase-field formulation
does provide a convenient way of modeling that is familiar to us, it should not be conceived as
the unique way. After all, what we need is to incorporate our key finding, the GNBC, into a
continuum formulation of immiscible two-phase flow. The GNBC itself is simply a fact found in
MD simulations, independent of any continuum formulation.

4 Molecular dynamics I

4.1 Geometry and interactions

MD simulations have been carried out for two-phase immiscible flows in Couette geometry (see
Figs. 10 and 11) [34]. Two immiscible fluids were confined between two planar solid walls
parallel to the xy plane, with the fluid-solid boundaries defined by z = 0, H. The Couette
flow was generated by moving the top and bottom walls at a constant speed V in the ±x
directions, respectively. Periodic boundary conditions were imposed along the x and y directions.
Interaction between fluid molecules separated by a distance r was modeled by a modified LJ
potential

Uff = 4ε
[

(σ/r)12 − δff (σ/r)6
]

,

where ε is the energy scale, σ is the range scale, with δff = 1 for like molecules and δff = −1
for molecules of different species. (The negative δff was used to ensure immiscibility.) The
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average number density for the fluids was set at ρ = 0.81σ−3. The temperature was controlled
at 2.8ε/kB. (This high temperature was used to reduce the near-surface layering induced by
the solid wall.) Each wall was constructed by two [001] planes of an fcc lattice, with each wall
molecule attached to a lattice site by a harmonic spring. The mass of the wall molecule was set
equal to that of the fluid molecule m. The number density of the wall was set at ρw = 1.86σ−3.
The wall-fluid interaction was modeled by another LJ potential

Uwf = 4εwf

[

(σwf/r)12 − δwf (σwf/r)6
]

,

with the energy and range parameters given by εwf = 1.16ε and σwf = 1.04σ, and δwf for
specifying the wetting property of the fluid. There is no locked layer of fluid molecules at the
solid surface. We have considered two cases. In the symmetric case, the two fluids have the
identical wall-fluid interactions with δwf = 1. Consequently, the static contact angle is 90◦ and
the fluid-fluid interface is flat, parallel to the yz plane. In the asymmetric case, the two fluids
have different wall-fluid interactions, with δwf = 1 for one and δwf = 0.7 for the other. As
a consequence, the static contact angle is 64◦ and the fluid-fluid interface is curved in the xz
plane. In most of our simulations, the shearing speed V was on the order of 0.1

√

ε/m, the sample
dimension along y was 6.8σ, the wall separation along z varied from H = 6.8σ to 68σ, and the
sample dimension along x was set to be long enough so that the uniform single-fluid shear flow
was recovered far away from the MCL. Steady-state quantities were obtained from time average
over 105τ or longer where τ is the atomic time scale

√

mσ2/ε. Throughout the remainder of
this paper, all physical quantities are given in terms of the LJ reduced units (defined in terms
of ε, σ, and m).

4.2 Boundary-layer tangential wall force

We denote the region within z0 = 0.85σ from the wall the boundary layer (BL) (see Fig. 12).
It must be thin enough to ensure sufficient precision for measuring the slip velocity at the solid
surface, but also thick enough to fully account for the tangential wall-fluid interaction force,
which is of a finite range. The wall force can be singled out by separating the force on each fluid
molecule into wall-fluid and fluid-fluid components. The fluid molecules in the BL, being close
to the solid wall, can experience a strong periodic modulation in interaction with the wall. This
lateral inhomogeneity is generally referred to as the “roughness” of the wall potential [41]. When
coupled with kinetic collisions with the wall molecules, there arises a nonzero tangential wall force
density gw

x that is sharply peaked at z ≈ z0/2 and vanishes beyond z ≈ z0 (see Fig. 13). From
the force density gw

x , we define the tangential wall force per unit area as Gw
x (x) =

∫ z0

0 dzgw
x (x, z),

which is the total tangential wall force accumulated across the BL.
The short saturation range of the tangential wall force may be understood as follows. Out

of the BL, each fluid molecule can interact with many wall molecules on a nearly equal basis.
Thus the modulation amplitude (the roughness) of the wall potential would clearly decrease
with increasing distance from the wall. That’s why the tangential wall force tends to saturate
at z ≈ z0, which is still within the cutoff distance of wall-fluid interaction. On the contrary, the
normal wall force arises from the direct wall-fluid interaction, independent of whether the wall
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Figure 11: Schematic of simulation geometry. (a) Static configurations in the symmetric and asymmetric

cases. Here fluid 2 is sandwiched between fluid 1 due to the periodic boundary condition along the x

direction. In the symmetric case, the static contact angle is 90◦ and the fluid-fluid interface is flat, parallel

to the yz plane. In the asymmetric case, the static contact angle is not 90◦ and the fluid-fluid interface

is curved in the xz plane. (b) Dynamic configuration in the symmetric case.

potential is rough or not. Consequently, the normal wall force saturates much slower than the
tangential component.

We have measured the slip velocity and the tangential wall force in the BL. Spatial resolution
along the x direction was achieved by evenly dividing the BL into bins, each ∆x = 0.85σ or
0.425σ. The slip velocity vslip

x was obtained as the time average of fluid molecules’ velocities
inside the BL, measured relative to the moving wall; the tangential wall force Gw

x was obtained
from the time average of the total tangential wall force experienced by the fluid molecules in the
BL, divided by the bin area in the xy plane. As reference quantities, we also measured Gw0

x in the
static (V = 0) configuration. Fig. 14 shows vslip

x and Gw
x measured in the dynamic configuration

and Gw0
x measured in the static configuration. It is seen that in the absence of hydrodynamic

motion (V = 0), the static tangential wall force Gw0
x is not identically zero everywhere. Instead,

it has some fine features in the contact-line region (a few σ’s) (see Fig. 14b). This nonzero
static component in the tangential wall force arises from the microscopic organization of fluid
molecules in the contact-line region.

The static component is also present in Gw
x measured in the dynamic configuration, as shown

by Fig. 14b. To see the effects arising purely from the hydrodynamic motion of the fluids, we
subtract Gw0

x from Gw
x through the relation

G̃w
x = Gw

x − Gw0
x ,

where G̃w
x is the hydrodynamic part in Gw

x . In the notations below, the over tilde will denote
the difference between that quantity and its static part. We find the hydrodynamic tangential
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Figure 12: Boundary layer at the lower fluid-solid interface. The empty and solid circles indicate the

instantaneous molecular positions of the two fluids projected onto the xz plane. The solid squares denote

the wall molecules. The dashed line indicates the level of z = z0.

wall force per unit area, G̃w
x , is proportional to the local slip velocity vslip

x :

G̃w
x (x) = −βvslip

x (x), (4.1)

where the proportionality constant β is the slip coefficient. In Fig. 15, G̃w
x is plotted as a function

of vslip
x . The symbols represent the values of G̃w

x and vslip
x measured in the BL. The lines represent

the values of G̃w
x calculated from −βvslip

x using vslip
x measured in the BL and β = (β1ρ1 +

β2ρ2)/(ρ1 + ρ2), with β1,2 the slip coefficients for the two fluid species and ρ1,2 the molecular
densities of the two fluid species measured in the BL. Independent measurements determined
β1 = β2 = 1.2

√
εm/σ3 for the symmetric case, β1 = 1.2

√
εm/σ3 and β2 = 0.532

√
εm/σ3 for the

asymmetric case. (The dependence of β on β1,2 and ρ1,2 assumes the two fluids interact with
the wall independently. The desired expression is obtained by expressing G̃w

x as the weighted
average of G̃w1

x = −β1v
slip1
x and G̃w2

x = −β2v
slip2
x and noting vslip1

x ≈ vslip2
x to within 10%).

4.3 Tangential fluid force

In either the static equilibrium state (where G̃w
x = 0) or the dynamic steady state (where

G̃w
x 6= 0), local force balance necessarily requires the stress tangential to the fluid-solid interface

to be the same on the two sides. Therefore, the hydrodynamic tangential fluid force per unit
area, G̃f

x, must be proportional to the slip velocity vslip
x :

G̃f
x(x) = βvslip

x (x), (4.2)

such that G̃f
x(x) + G̃w

x (x) = 0 according to Eq. (4.1). (The MD evidence for this force balance

will be presented in Section 7.) Physically, G̃f
x is the hydrodynamic force along x exerted on a
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Figure 13: Subdividing the BL into thin sections, we plot the reduced tangential wall force density

as a function of distance z away from the boundary. The solid lines are averaged gw
x (z) in thin sec-

tions at different x, normalized by the corresponding total wall force per unit area. The dashed line

is a smooth Gaussian fit. It is seen that gw
x (z) is a function sharply peaked at z ≈ z0/2. Note that

∫ z0

0
dz[gw

x (x, z)/Gw
x (x)] = 1.

BL fluid element by the surrounding fluids, and may be expressed as

G̃f
x(x) =

∫ z0

0
dz[∂xσ̃xx(x, z) + ∂zσ̃zx(x, z)]

= σ̃zx(x, z0) + ∂x

∫ z0

0
dzσ̃xx(x, z), (4.3)

using the fact that σ̃zx(x, 0) = 0. (More strictly, σ̃zx(x, 0−) = 0 because there is no fluid below

z = 0, hence no momentum transport across z = 0.) Here σ̃xx(zx) = σxx(zx) − σ0
xx(zx), with σ

(0)
xx

being the normal component and σ
(0)
zx the tangential component of the fluid stress tensor in the

dynamic (static) configuration.

4.4 Sharp boundary limit

The form of G̃f
x in Eq. (4.3) is derived from the fact that the tangential wall force is distributed

in a BL of finite thickness (Figs. 12 and 13). Now we take the sharp boundary limit by letting
the tangential wall force strictly concentrate at z = 0: g̃w

x (x, z) = G̃w
x (x)δ(z) with the same

G̃w
x (x) per unit area. As shown in Fig. 13, the tangential wall force density is a sharply peaked

function. By taking the sharp boundary limit the normalized peaked function is replaced by
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Figure 14: Slip velocity and tangential wall force (in reduced units) measured in the BL at the lower

fluid-solid interface. (a) The slip velocity vslip
x = vx + V is plotted as a function of x. The solid line

denotes the dynamic symmetric case with V = 0.25
√

ε/m and H = 13.6σ; the dashed line denotes the

dynamic asymmetric case with V = 0.2
√

ε/m and H = 13.6σ. The slip at the contact line (x ≈ 0) is

near-complete, i.e., vslip
x ≈ V . (b) The tangential wall force is plotted as a function of x. The solid line

denotes Gw
x in the dynamic symmetric case; the dashed line denotes Gw

x in the dynamic asymmetric case.

The dotted line denotes Gw0
x in the static symmetric case; the dot-dashed line denotes Gw0

x in the static

asymmetric case. Note that Gw0
x vanishes out of the contact-line region.

δ(z). Rewriting G̃f
x in Eq. (4.3) as

G̃f
x(x) =

∫ z0

0−
dz[∂xσ̃xx(x, z) + ∂zσ̃zx(x, z)]

= σ̃zx(x, 0+) +

∫ z0

0+

dz[∂xσ̃xx(x, z) + ∂zσ̃zx(x, z)],

we obtain

G̃f
x(x) = σ̃zx(x, 0+) = βvslip

x (x), (4.4)

because local force balance requires ∂xσ̃xx + ∂zσ̃zx = 0 above z = 0+. Therefore, in the sharp
boundary limit σ̃zx varies from σ̃zx(x, 0−) = 0 to σ̃zx(x, 0+) = G̃f

x(x) at z = 0 such that

(∇ · σ̃) · x̂ = G̃f
x(x)δ(z),

in balance with the tangential wall force density g̃w
x (x, z) = G̃w

x (x)δ(z). Equation (4.4) may
serve as a boundary condition in hydrodynamic calculation if a continuum (differential) form of
σ̃zx(x, 0+) is given. This will be accomplished in Section 5.2.
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Figure 15: 1/G̃w
x plotted as a function of 1/vslip

x (in reduced units). Symbols are MD data measured

in the BL at different x locations. The circles denote the symmetric case with V = 0.25
√

ε/m and

H = 13.6σ; the squares denote the asymmetric case with V = 0.2
√

ε/m and H = 13.6σ. The solid

and dashed lines are calculated from Eq. (4.1) for the symmetric and asymmetric cases, respectively, as

described in the text. The lower-right data segment corresponds to the lower BL, whereas the upper-left

segment corresponds to the upper BL. The slopes of the two dotted lines are given by β−1
1,2 , which are

proportional to the slip length.

5 Continuum hydrodynamic model

For decades numerous models have been proposed to resolve the boundary condition problem for
the contact-line motion [4,7,19,21,24,38,43], but so far none has proved successful by reproducing
the slip velocity profiles observed in MD simulations [28,40]. In particular, based on the extreme
(velocity) variations in the slip region, a breakdown of local hydrodynamic description in the
immediate vicinity of the MCL has been suggested [40].

The main purpose of this paper is to present a continuum hydrodynamic model that is capable
of reproducing MD results in the molecular-scale vicinity of the MCL [34]. For this purpose,
we have derived a differential form for Eq. (4.4) (the continuum GNBC, Eq. (3.4)) using the
Cahn-Hilliard hydrodynamic formulation of two-phase flow [7, 24]. Our model consists of the
convection-diffusion equation in the fluid-fluid interfacial region (Eq. (3.1)), the Navier-Stokes
equation for momentum transport (Eq. (3.2)), the relaxational equation for the composition at
the solid surface (Eq. (3.3)), and the GNBC (Eq. (3.4)).

5.1 Cahn-Hilliard free energy functional

The CH free energy was proposed to phenomenologically describe an interface between two
coexisting phases [5]. In terms of the composition order parameter φ = (ρ2 − ρ1)/(ρ2 + ρ1), the
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CH free energy functional reads

F =

∫

dr

[

1

2
K (∇φ)2 + f(φ)

]

,

with f(φ) = −1
2rφ2 + 1

4uφ4. Two thermally stable phases are given by φ± = ±
√

r/u at which
∂f/∂φ = 0. An interface can be formed between the phases of φ+ and φ− in coexistence.

5.1.1 Chemical potential

The chemical potential µ is defined by

µ =
δF

δφ
= −K∇2φ − rφ + uφ3,

from which the diffusion current J = −M∇µ is obtained with M being the mobility coefficient.
The convection-diffusion equation (Eq. (3.1)) comes from the continuity equation

Dφ

Dt
=

∂φ

∂t
+ v · ∇φ = −∇ · J.

5.1.2 Interfacial tension

A few important physical quantities can be derived from the CH free energy. We first derive the
interfacial tension γ for the interface formed between φ+ and φ−. In equilibrium, the spatial
variation of φ is determined by the condition that µ(r) is constant, i.e.,

−K∂2
zφ − rφ + uφ3 = constant.

Here the interface is assumed to be in the xy plane with the interface normal along the z direction
and the constant equals to zero because limz→±∞ φ = φ± and limz→±∞ µ = 0. The interfacial
profile is solved to be

φ0(z) = φ+ tanh
z√
2ξ

,

with ξ =
√

K/r being a characteristic length along the interface normal. The first integral is

−1

2
K (∂zφ)2 + f(φ) = C,

where the integral constant C equals f(φ±). It follows the interfacial free energy per unit area,
i.e., the interfacial tension, is given by

γ =

∫

dz

[

1

2
K (∂zφ)2 + f(φ) − f(φ±)

]

=

∫

dzK (∂zφ)2 .

Using the interfacial profile φ0(z), we obtain

γ =
Kφ2

±√
2ξ

∫

dz̄ cosh−4 z̄ =
2
√

2Kφ2
±

3ξ
=

2
√

2r2ξ

3u
.
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5.1.3 Capillary force and Young stress

We now turn to the forces arising from the interface. Consider a virtual displacement u(r) and
the corresponding variation in φ, δφ(r) = −u(r) · ∇φ. The change of the free energy due to this
δφ is

δF =

∫

dr

[

∂f(φ)

∂φ
δφ

]

+

∫

dr







∂
[

1
2K (∇φ)2

]

∂(∂jφ)
δ (∂jφ)







=

∫

dr [µδφ] +

∫

ds [K∂nφδφ]

= −
∫

dr [g · u] +

∫

ds
[

σY
niui

]

,

where g = µ∇φ is the capillary force density in the Navier-Stokes equation (Eq. (3.2)), and
σY

ni = −K∂nφ∂iφ is the tangential Young stress (the i direction is along the fluid-solid interface,
i ⊥ n).

The body force g(r) = µ∇φ can be reduced to the familiar curvature force in the sharp
interface limit [6]. The unit vector normal to the level sets of constant φ is given by m = ∇φ/|∇φ|
and

µ∇φ = [−K∇2φ − rφ + uφ3]|∇φ|m
= −K∇2

t φ|∇φ|m + [−K∂2
mφ − rφ + uφ3]|∇φ|m

where ∇t and ∂m denote the differentiations tangential and normal to the interface respectively.
For gently curved interfaces, the order parameter φ along the interface normal can be approx-
imated by the one-dimensional stationary solution φ0, i.e., −K∂2

mφ − rφ + uφ3 ≈ 0. Hence,
µ∇φ ≈ −K∇2

t φ|∇φ|m, from which we obtain the desired relation

µ∇φ ≈ K|∇φ|2κm ≈ γκδ(lm)m,

where κ = −∇2
t φ/|∇φ| is the curvature and γ ≈

∫

dlmK (∇φ)2 ≈
∫

dlmK (∂mφ)2 is the interfa-
cial tension, with lm being the coordinate along the interface normal and the interface located
at lm = 0.

For gently curved interfaces, K∂nφ ≈ K∂mφ cos θsurf , where n is the outward (solid) surface
normal, m the (fluid-fluid) interface normal, and θsurf the angle at which the interface intersects
the solid surface (n · m = cos θsurf ). For the tangential Young stress σY

zx = K∂nφ∂xφ at
z = 0 where n = −z and i = x, the integral

∫

int dxσY
zx along x across the interface equals

to
∫

int dxK∂nφ∂xφ = (
∫

int dφK∂mφ) cos θsurf , where
∫

int dφK∂mφ =
∫

int dlmK (∂mφ)2 = γ.
Hence,

∫

int
dxσY

zx = γ cos θsurf , (5.1)

where θsurf may be the dynamic contact angle at the solid surface θsurf
d or the static contact

angle θsurf
s . This

∫

int dxσY
zx is the tangential force per unit length at the contact line (aligned

along y), exerted by the fluid-fluid interface of tension γ, which intersects the solid wall at the
contact angle θsurf . So it equals to γ cos θsurf .
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5.1.4 Young’s equation

The Young’s equation for the static contact angle θsurf
s can be derived as well. Consider the

interfacial free energy at the fluid-solid interface, Fwf =
∫

dsγwf (φ). Minimizing the total free
energy F + Fwf with respect to φ at the solid surface yields

[

K∂nφ +
∂γwf (φ)

∂φ

]

φeq

= 0, (5.2)

from which an equation of local tangential force balance
[

σ̃Y
zx

]

φeq

=
[

σY
zx + ∂xγwf (φ)

]

φeq

= σ0
zx + ∂xγwf (φeq) = 0, (5.3)

is obtained at z = 0. Here σ̃Y
zx = σY

zx+∂xγwf is the uncompensated Young stress (first introduced
in Eq. (3.5)), φeq is the equilibrium composition field, and σ0

zx denotes the static Young stress
σY

zx(φeq). Integrating Eq. (5.3) along x across the interface leads to the Young’s equation

γ cos θsurf
s + ∆γwf = 0 (Eq. (3.7)), where γ cos θsurf

s =
∫

int dxσ0
zx and ∆γwf ≡

∫

int dx∂xγwf (φ)
is the change of fluid-solid interfacial free energy per unit area across the fluid-fluid interface.
A microscopic picture for the Young’s equation as an (integrated) equation of tangential force
balance will be elaborated in Section 7.2.1.

5.2 Two boundary conditions

Equations (5.2) and (5.3) are boundary conditions for the equilibrium state. In the dynamic
steady state, however, neither K∂nφ + ∂γwf (φ)/∂φ = L(φ) nor σY

zx + ∂xγwf (φ) = L(φ)∂xφ
vanishes. In fact, the nonzero L(φ) is responsible for the relaxation of φ at the solid surface
while the nonzero L(φ)∂xφ is necessary to a slip boundary condition that is able to account for
the near-complete slip at the MCL.

The convection-diffusion equation (Eq. (3.1)) is fourth-order in space. Consequently, besides
the usual impermeability condition ∂nµ = 0, one more boundary condition is needed. The
dynamics of φ at the solid surface is plausibly assumed to be relaxational, governed by the
first-order extension of Eq. (5.2). More explicitly, when the system is driven away from the
equilibrium, both ∂φ/∂t + v · ∇φ and L(φ) become nonzero, and they are related to each other
by a linear relation

∂φ

∂t
+ v · ∇φ ∝ L(φ).

This leads to Eq. (3.3) with Γ introduced as a phenomenological parameter.
The GNBC (Eq. (3.4)) is obtained by substituting

σ̃zx(x, 0+) = σzx(x, 0) − σ0
zx(x, 0) = σv

zx(x, 0) + σY
zx(x, 0) − σ0

zx(x, 0)
= σv

zx(x, 0) + σY
zx(x, 0) + ∂xγwf

= σv
zx(x, 0) + σ̃Y

zx.
(5.4)

into Eq. (4.4). Here the hydrodynamic tangential stress σ̃zx is decomposed into a viscous
component σv

zx and a non-viscous component σ̃Y
zx. The viscous component is simply given by
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σv
zx = η∂zvx; the non-viscous component is the uncompensated Young stress σ̃Y

zx, given by
σ̃Y

zx = σY
zx + ∂xγwf (φ) (Eq. (3.5)). According to Eq. (5.3), this uncompensated Young stress

vanishes in the equilibrium state. But in a dynamic configuration, from the integral of σ̃Y
zx along

x across the fluid-fluid interface (Eqs. (3.6), (3.7), and (3.8))
∫

int
dxσ̃Y

zx = γ cos θsurf
d + ∆γwf = γ(cos θsurf

d − cos θsurf
s ),

there is always a non-viscous contribution to the total tangential stress σ̃zx as long as the fluid-
fluid interface deviates from its static configuration.

In Section 6 we will show that the GNBC, with the uncompensated Young stress included,
can account for the slip velocity profiles in the vicinity of the MCL, especially the near-complete
slip at the contact line. In Sections 7.2 and 7.3 we will present more MD evidence supporting
the GNBC. A “derivation” of the GNBC, based on the tangential force balance (Section 7.2)
and the tangential stress decomposition (Section 7.3), will be given in Section 8.

5.3 Dimensionless equations

Dimensionless equations suitable for numerical computation are obtained as follows. We scale
φ by |φ±| =

√

r/u, length by ξ =
√

K/r, velocity by the wall speed V , time by ξ/V , and
pressure/stress by ηV/ξ. In dimensionless forms, the convection-diffusion equation is

∂φ

∂t
+ v · ∇φ = Ld∇2(−∇2φ − φ + φ3), (5.5)

the Navier-Stokes equation is

R
[

∂v

∂t
+ (v · ∇)v

]

= −∇p + ∇2v + B(−∇2φ − φ + φ3)∇φ, (5.6)

the relaxational equation for φ at the solid surface is

∂φ

∂t
+ vx∂xφ = −Vs

[

∂nφ −
√

2

3
cos θsurf

s sγ(φ)

]

, (5.7)

and the GNBC is

[Ls(φ)]−1 vslip
x = B

[

∂nφ −
√

2

3
cos θsurf

s sγ(φ)

]

∂xφ − ∂nvx. (5.8)

Here sγ(φ) = (π/2) cos(πφ/2) is from the fluid-solid interfacial free energy

γwf (φ) = (∆γwf/2) sin(πφ/2),

which denotes a smooth interpolation between ±∆γwf/2. Five dimensionless parameters appear
in the above equations. They are (1) Ld = Mr/V ξ, which is the ratio of a diffusion length Mr/V
to ξ, (2) R = ρV ξ/η, (3) B = r2ξ/uηV = 3γ/2

√
2ηV , which is inversely proportional to the

capillary number Ca = ηV/γ, (4) Vs = KΓ/V , and (5) Ls(φ) = η/β(φ)ξ, which is the ratio
of the slip length ls(φ) = η/β(φ) to ξ, where β(φ) = (1 − φ)β1/2 + (1 + φ)β2/2. A numerical
algorithm based on a fixed uniform mesh has been presented in Ref. [34].
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6 Comparison of MD and continuum results

To demonstrate the validity of our continuum model, we have obtained numerical solutions that
can be directly compared to the MD results for flow field and fluid-fluid interface shape. We have
carried out the MD-continuum comparison in such a way that virtually no adjustable parameter
is involved in the continuum calculations. This is achieved as follows.

There are totally nine material parameters in our continuum model. They are ρm, η, β, ξ, γ,
|φ±|, M , Γ, and θsurf

s . (Note (1) For the asymmetric case, two unequal slip coefficients β1 and β2

are involved in β; (2) The three parameters ξ, γ, and |φ±| are equivalent to the three parameters

K, r, and u in the CH free energy density; (3) θsurf
s is for ∆γwf = −γ cos θsurf

s .) Among the
nine parameters, seven are directly obtainable (measurable) in MD simulations. They are ρm,

η, β1,2, ξ, γ, |φ±|, and θsurf
s . (The fluid mass density ρm is set in MD simulations, the viscosity

η and the slip coefficients β1,2 can be measured in suitable single-fluid MD simulations, the in-
terfacial thickness ξ can be obtained by measuring the interfacial profile φ = (ρ2 − ρ1)/(ρ2 + ρ1)
in MD simulations, the interfacial tension γ can be obtained by measuring an integral of the
pressure/stress anisotropy in the interfacial region [26], |φ±| = 1 means the total immiscibility of

the two fluids, and the static contact angle θsurf
s is directly measurable.) The two phenomeno-

logical parameters M and Γ have been introduced to describe the composition dynamics in the
interfacial region. Their values are fixed by an optimized MD-continuum comparison. That
is, one MD flow field is best matched by varying the continuum flow field with respect to the
values of M and Γ. Once all the parameter values are obtained (7 measured in MD simulations
and 2 fixed by one MD-continuum comparison), our continuum hydrodynamic model can yield
predictions that can be readily compared to the results from a series of MD simulations with
different external conditions (V , H, and flow geometry). The overall agreement is excellent
in all cases, thus demonstrating the validity of the GNBC and the hydrodynamic model. We
emphasize that the MD-continuum agreement has been achieved both in the molecular-scale
vicinity of the contact line and far way from the contact line. This opens up the possibility of
not only continuum simulations of nano- and microfluidics involving immiscible components, but
also macroscopic immiscible flow calculations that are physically meaningful at the molecular
level. (Molecular-scale details may be resolved through the iterative grid redistribution method
without significantly compromising computation efficiency, see [35,37]).

6.1 Immiscible Couette flow

6.1.1 Two symmetric cases

In Figs. 16 and 17 we show the MD and continuum velocity fields for two symmetric cases of
immiscible Couette flow. In MD simulations, these two cases have the same local properties (fluid
density, temperature, fluid-fluid interaction, wall-fluid interaction, etc) but different external
conditions (H and V ). Correspondingly, the continuum results are obtained using the same set

of nine material parameters ρm, η, β (= β1 = β2), ξ, γ, |φ±|, M , Γ, and θsurf
s .
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6.1.2 Two asymmetric cases

In Figs. 18 and 19 we show the MD and continuum velocity fields for two asymmetric cases of
immiscible Couette flow. In MD simulations, these two cases have the same local properties (fluid
density, temperature, fluid-fluid interaction, wall-fluid interaction, etc) but different external
conditions (H and V ). Correspondingly, the continuum results are obtained using the same set

of ten material parameters ρm, η, β1, β2, ξ, γ, |φ±|, M , Γ, and θsurf
s . In particular, among these

parameters, β2 and θsurf
s are measured in MD simulations while all the others directly come

from the symmetric cases. Therefore, the comparison here is without adjustable parameters.

6.1.3 From near-complete slip to uniform shear flow

From Figs. 16, 17, 18, and 19, we see that at the MCL, the slip is near-complete, i.e., vx ≈ 0
and |vslip

x | ≈ V , while far away from the contact line, the flow field is not perturbed by the
fluid-fluid interface and the single-fluid uniform shear flow is recovered. The slip amount in
the uniform shear flow is 2lsV/(H + 2ls), vanishing in the limit of H À ls. Here we encounter
an intriguing question: In a mesoscopic or macroscopic system, what is the slip profile which
consistently interpolates between the near-complete slip at the MCL and the no-slip boundary
condition that must hold at regions far away? Large-scale MD and continuum simulations have
been carried out to answer this question [35].

6.1.4 Steady-state fluid-fluid interface

In Fig. 20 we show the MD and continuum fluid-fluid interface profiles for one symmetric and
one asymmetric cases whose velocity fields are shown in Figs. 16 and 18.

6.2 Immiscible Poiseuille flow

In order to further verify that the continuum model is local and the parameter values are local
properties, hence applicable to different flow geometries, we have carried out MD simulations
and continuum calculations for immiscible Poiseuille flows. We find that the continuum model
with the same set of parameters is capable of reproducing the MD results for velocity field and
fluid-fluid interface profile, shown in Fig. 21. Similar to what we have observed in Couette flows,
here at the MCL the slip is near-complete, i.e., vx ≈ 0 and |vslip

x | ≈ V , while far away from
the contact line, the flow field is not perturbed by the fluid-fluid interface and the single-fluid
unidirectional Poiseuille flow is recovered. In particular, the slip amount in the unidirectional
Poiseuille flow vanishes in the limit of H À ls.

We emphasize that the overall agreement is excellent in all cases (from Fig. 16 to 21),
therefore the validity of the GNBC and the hydrodynamic model is well affirmed.

6.3 Flow in narrow channels

It is generally believed that continuum hydrodynamic predictions tend to deviate more from
the “true” MD results as the channel is further narrowed [42]. This tendency has indeed been
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Figure 16: Comparison of the MD (symbols) and continuum (lines) velocity profiles (vx(x) and vz(x) at

different z levels) for a symmetric case of immiscible Couette flow (V = 0.25(ε/m)1/2 and H = 13.6σ).

The profiles are symmetric about the center plane z = H/2, hence only the lower half is shown at

z = 0.425σ (circles and solid lines), 2.125σ (squares and dashed lines), 3.825σ (diamonds and dotted

line), and 5.525σ (triangles and dot-dashed lines). The MD velocity profiles were measured by dividing

the fluid space into 16 layers along z, each of thickness H/16 = 0.85σ.
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Figure 17: Comparison of the MD (symbols) and continuum (lines) velocity profiles (vx(x) and vz(x) at

different z levels) for a symmetric case of immiscible Couette flow (V = 0.05(ε/m)1/2 and H = 27.2σ).

The profiles are symmetric about the center plane z = H/2, hence only the lower half is shown at

z = 0.85σ (circles and solid lines), 4.25σ (squares and dashed lines), 7.65σ (diamonds and dotted line),

and 11.05σ (triangles and dot-dashed lines). The MD velocity profiles were measured by dividing the

fluid space into 16 layers along z, each of thickness H/16 = 1.7σ.
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Figure 18: Comparison of the MD (symbols) and continuum (lines) velocity profiles (vx(x) and vz(x) at

different z levels) for an asymmetric case of immiscible Couette flow (V = 0.2(ε/m)1/2 and H = 13.6σ),

shown at z = 0.425σ (circles and solid lines), 2.975σ (squares and long-dashed lines), 5.525σ (diamonds

and dotted line), 8.075σ (up-triangles and dot-dashed lines), 10.625σ (down-triangles and dashed lines),

13.175σ (left-triangles and solid lines). Although the solid lines are used to denote two different z levels,

for each solid line, whether it should be compared to circles or left-triangles is self-evident (same for the

next figure). The MD velocity profiles were measured by dividing the fluid space into 16 layers along z,

each of thickness H/16 = 0.85σ.
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Figure 19: Comparison of the MD (symbols) and continuum (lines) velocity profiles (vx(x) and vz(x) at

different z levels) for an asymmetric case of immiscible Couette flow (V = 0.1(ε/m)1/2 and H = 27.2σ),

shown at z = 0.85σ (circles and solid lines), 5.95σ (squares and long-dashed lines), 11.05σ (diamonds

and dotted line), 16.15σ (up-triangles and dot-dashed lines), 21.25σ (down-triangles and dashed lines),

26.35σ (left-triangles and solid lines). The MD velocity profiles were measured by dividing the fluid space

into 16 layers along z, each of thickness H/16 = 1.7σ.
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Figure 20: Comparison of the MD (symbols) and continuum (lines) fluid-fluid interface profiles, defined

by ρ1 = ρ2 (φ = 0). The circles and dotted line denote the symmetric immiscible Couette flow with

V = 0.25(ε/m)1/2 and H = 13.6σ; the squares and dashed line denote the asymmetric immiscible

Couette flow with V = 0.2(ε/m)1/2 and H = 13.6σ. The MD profiles were measured by dividing the

fluid space into 16 layers along z, each of thickness H/16 = 0.85σ.
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Figure 21: Comparison of the MD (symbols) and continuum (lines) results for an asymmetric case of

immiscible Poiseuille flow. An external force mgext = 0.05ε/σ is applied on each fluid molecule in the x

direction, and the two walls, separated by H = 13.6σ, move at a constant speed V = 0.51(ε/m)1/2 in

the −x direction in order to maintain a time-independent steady-state interface. (a) Fluid-fluid interface

profiles, defined by ρ1 = ρ2 (φ = 0). (b) vx(x) at different z levels. The profiles are symmetric about the

center plane z = H/2, hence only the lower half is shown at z = 0.425σ (circles and solid line), 2.125σ

(squares and dashed line), 3.825σ (diamonds and dotted line), and 5.525σ (triangles and dot-dashed

line). The MD profiles were measured by dividing the fluid space into 16 layers along z, each of thickness

H/16 = 0.85σ.
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Figure 22: Comparison of the MD (symbols) and continuum (lines) velocity profiles (vx(x) and vz(x) at

different z levels) for a symmetric case of immiscible Couette flow (V = 0.25(ε/m)1/2 and H = 6.8σ). The

profiles are symmetric about the center plane z = H/2, hence only the lower half is shown at z = 0.425σ

(circles and solid lines), 1.275σ (squares and dashed lines), 2.125σ (diamonds and dotted line), and 2.975σ

(triangles and dot-dashed lines). The MD velocity profiles were measured by dividing the fluid space into

8 layers along z, each of thickness H/8 = 0.85σ.

observed but the deviation is not serious for H as small as 6.8σ, as shown in Fig. 22. This
deviation is presumably due to the short-range molecular layering induced by the rigid wall [23].
As the channel becomes narrower, the layered part of the fluids occupies a relatively larger space,
thus making the MD-continuum comparison less satisfactory.

6.4 Temperature effects

Most of our MD results have been obtained by setting the temperature at 2.8ε/kB, above the
liquid-gas coexistence region. Such a high temperature was used to reduce the fluid layering
at the solid wall [23]. Similar two-fluid simulations have also been performed for temperatures
ranging from 1.2ε/kB to 3.0ε/kB. We find that the MD results can always be reproduced by
our continuum model, with material parameters (e.g. viscosity, interfacial tension, and slip
length) varying with the temperature. In Fig. 23 we show the MD velocity profiles obtained at
the temperatures 1.4ε/kB and 2.8ε/kB. It can be seen that they are qualitatively very close to
each other. The quantitative difference is due to the different material parameters at different
temperatures.

Finally we list in Table 1 the parameter values in the continuum hydrodynamic model, used
for the MD-continuum comparison at T = 2.8ε/kB.
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Table 1: Parameter values used in the continuum hydrodynamic calculations for the MD-continuum

comparison at T = 2.8ε/kB .

ρm ≈ 0.81m/σ3 η ≈ 1.95
√

εm/σ2

ls1 = η/β1 ≈ 1.3σ ls2 = η/β2 ≈ 1.3σ or 3.3σ
ξ ≈ 0.33σ γ ≈ 5.5ε/σ2 |φ±| = 1

M ≈ 0.023σ4/
√

mε Γ ≈ 0.66σ/
√

mε cos θsurf
s = 0 or ≈ 0.38

7 Molecular dynamics II

We have formulated a continuum hydrodynamic model based on the CH free energy and the
GNBC. The solutions of the model equations agree with the MD results remarkably well. This
indicates that our model captures the right physics, and hence more MD evidences can be ob-
tained to support the continuum GNBC (Eq. (3.4)) which takes into account the uncompensated
Young stress. This necessarily requires a reliable measurement of fluid stress near the solid sur-
face, plus a decomposition of the tangential stress into two components, one being viscous and
the other interfacial, as expressed by Eq. (5.4).

7.1 Measurement of fluid stress

Irving and Kirkwood [22] have shown that in the hydrodynamic equation of momentum trans-
port, the stress tensor (flux of momentum) may be expressed in terms of the molecular variables
as

σ(r, t) = σK(r, t) + σU (r, t),

where σK is the kinetic contribution to the stress tensor, given by

σK(r, t) = −
〈

∑

i

mi

[

pi

mi
− V(r, t)

] [

pi

mi
− V(r, t)

]

δ(xi − r)

〉

,

and σU is the contribution of intermolecular forces to the stress tensor, given by

σU (r, t) = −1

2

〈

∑

i

∑

j 6=i

(xi − xj)Fijδ(xi − r)

〉

.

Here mi, pi, and xi are respectively the mass, momentum, and position of molecule i, V(r, t)
is the local average velocity, Fij is the force on molecule i due to molecule j, and 〈· · ·〉 means
taking the average according to a normalized phase-space probability distribution function.

The Irving-Kirkwood expression has been widely used for stress measurement in MD simu-
lations. However, as pointed out by the authors themselves [22], the above expression for σU

represents only the leading term in an asymptotic expansion, accurate when the interaction range
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Figure 23: Comparison of the MD (symbols) and continuum (lines) velocity profiles (vx(x) at different

z levels) for two symmetric cases of immiscible Couette flow at different temperatures. (a) The case of

T = 1.4ε/kB , V = 0.25(ε/m)1/2, and H = 13.6σ, with a weak wall-fluid interaction and a high ratio of

ρw to ρ (compared to case b here). (b) The case of T = 2.8ε/kB , V = 0.25(ε/m)1/2, and H = 13.6σ,

with εwf = 1.16ε, σwf = 1.04σ, δwf = 1, and ρw/ρ = 2.3. The profiles are symmetric about the center

plane z = H/2, hence only the lower half is shown at z = 0.425σ (circles), 2.125σ (squares), 3.825σ

(diamonds), and 5.525σ (triangles). The MD velocity profiles were measured by dividing the fluid space

into 16 layers along z, each of thickness H/16 = 0.85σ. The slip length for (a) is larger than that for (b).

Therefore, far away from the contact line, the slip amount in (a) (≈ 0.1(ε/m)1/2) is larger than that in

(b) (≈ 0.05(ε/m)1/2).

is small compared to the range of hydrodynamic variation. As a consequence, this leading-order
expression for σU is not accurate enough near a fluid-fluid or a fluid-solid interface. Unfortu-
nately, this point has not been taken seriously. For the MCL problem, a knowledge of the stress
distributions at both the fluid-fluid and the fluid-solid interfaces is of fundamental importance
to a correct understanding of the underlying physical mechanism. Therefore, a reliable stress
measurement method is imperative.

To have spatial resolution along the x and z directions, the sampling region was evenly
divided into bins, each ∆x = 0.425σ by ∆z = 0.85σ in size. The stress components σxx and
σzx were obtained from the time averages of the kinetic momentum transfer plus the fluid-
fluid interaction forces across the fixed-x and z bin surfaces. More precisely, we have directly
measured the x component of the fluid-fluid interaction forces acting across the x(z) bin surfaces,
in order to obtain the xx(zx) component of σU . For example, in measuring σUzx at a designated
z-oriented bin surface, we recorded all the pairs of fluid molecules interacting across that surface.
Here “acting/interacting across” means that the line connecting a pair of molecules intersects the
bin surface (the so-called Irving-Kirkwood convention [22]). For those pairs, we then computed
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Figure 24: Schematic illustration for the measurement of the zx component of σU . The horizontal solid

lines (separated by short vertical lines) represent bin surfaces with surface normal along the z direction.

Circles denote fluid molecules. The dashed lines connect pairs of interacting molecules. Here the bin

surfaces and the molecules are projected onto the xz plane. Molecules that appear to be close to each

other may not be in the interaction range if their distance along y is too large. A pair of interacting

molecules may act across more than one bin surface. Here the (1,3) pair acts across the surfaces A and

C while the (1,5) pair acts across the surfaces B and D. At each bin surface the stress measurement

must run over all the pairs acting across that surface. For surface D, there are three pairs of interacting

molecules (1,5), (2,4), and (2,5) that contribute to the zx component of σU .

σUzx at the given bin surface from

σUzx =
1

δsz

∑

(i,j)

Fijx,

where δsz is the area of z-oriented bin surface, (i, j) indicate all available pairs of fluid molecules
interacting across the bin surface, with molecule i being “inside of ẑδsz” and molecule j being
“outside of ẑδsz” (molecule i is below molecule j), and Fijx is the x component of the force on
molecule i due to molecule j. For a schematic illustration see Fig. 24.

7.2 Boundary-layer tangential force balance

From the data of stress measurement, we now present the MD evidence for the BL tangential
force balance, first introduced in Section 4.3 for obtaining Eq. (4.2) from Eq. (4.1).

7.2.1 Static tangential force balance

We start from the tangential force balance in the static configuration (V = 0). As first pointed
out in Section 4.2, the static tangential wall force Gw0

x shows molecular-scale features in the
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contact-line region, due to the microscopic organization of fluid molecules there. Then according
to the local force balance, static fluid stress must vary in such a way that the total force density
vanishes. An integrated form of the static tangential force balance is given by Gw0

x (x)+Gf0
x (x) =

0, where Gw0
x (x) =

∫ z0

0 dzgw0
x (x, z) and the static tangential fluid force Gf0

x (x) is of the form

Gf0
x (x) =

∫ z0

0
dz[∂xσ0

xx(x, z) + ∂zσ
0
zx(x, z)] = σ0

zx(x, z0) + ∂x

∫ z0

0
dzσ0

xx(x, z). (7.1)

Here σ0
xx and σ0

zx are the xx and zx components of fluid stress in the static configuration, both
measured as reference quantities. In Fig. 25 we show

∫ z0

0 dzσ0
xx, σ0

zx(z0), Gf0
x , and Gw0

x (which
is the same as in Fig. 14b). In the symmetric case,

∫

int dxσ0
zx(x, z0)

∫

int dx∂x

∫ z0

0 dzσ0
xx(x, z),

and
∫

int dx
∫ z0

0 dzgw0
x (x, z) all vanish because θsurf

s = 90◦. For the asymmetric case, Gw0
x (x) +

Gf0
x (x) = 0 means

σ0
zx(x, z0) + ∂x

∫ z0

0
dzσ0

xx(x, z) +

∫ z0

0
dzgw0

x (x, z) = 0, (7.2)

which corresponds to the continuum equation (Eq. (5.3))
[

σY
zx + ∂xγwf

]

φeq

= 0 at the solid

surface. Here σ0
zx(x, z0) corresponds to the continuum σY

zx(φeq) at the solid surface while
∂x

∫ z0

0 dzσ0
xx +

∫ z0

0 dzgw0
x corresponds to the continuum ∂xγwf (φeq) at the solid surface. The

Young’s equation (Eq. (3.7)) γ cos θsurf
s +∆γwf = 0 is then obtained through integration, using

∫

int
dxσ0

zx(x, z0) =

∫

int
dxσY

zx = γ cos θsurf
s (7.3)

and
∫

int
dx∂x

∫ z0

0
dzσ0

xx +

∫

int
dx

∫ z0

0
dzgw0

x =

∫

int
dx∂xγwf = ∆γwf . (7.4)

Here γ cos θsurf
s and ∆γwf are the two tangential forces per unit length along the contact line

(along y), the former due to the tilt of the fluid-fluid interface (θsurf
s 6= 90◦) while the latter due

to the different wall-fluid interactions for the two fluid species. In fact, equations (7.3) and (7.4)

are the microscopic definitions for the two continuum quantities γ cos θsurf
s and ∆γwf in the

Young’s equation, whose validity is based on the microscopic tangential force balance expressed
in Eq. (7.2).

7.2.2 Dynamic tangential force balance

An integrated form of the dynamic tangential force balance is given by Gw
x (x) + Gf

x(x) = 0,

where Gw
x (x) =

∫ z0

0 dzgw
x (x, z) and the dynamic tangential fluid force Gf

x(x) is of the form

Gf
x(x) =

∫ z0

0
dz[∂xσxx(x, z) + ∂zσzx(x, z)] = σzx(x, z0) + ∂x

∫ z0

0
dzσxx(x, z). (7.5)

Here σxx and σzx are the xx and zx components of fluid stress in the dynamic configuration. In
Fig. 26 we show

∫ z0

0 dzσxx, σzx(z0), and Gw
x . From a comparison between Figs. 25 and 26, we
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Figure 25: Profiles of
∫ z0

0
dzσ0

xx, σ0
zx(z0), Gf0

x , and Gw0
x for the lower BL. The horizontal axes are x/σ.

We show
∫ z0

0
dzσ0

xx (ε/σ2) in (a) for the symmetric case and in (c) for the asymmetric case. For clarity,

σ0
xx has been vertically displaced such that in the symmetric case, σ0

xx = 0 far from the interface, and in

the asymmetric case, σ0
xx = 0 at the center of the interface. The profiles of σ0

zx(z0), Gf0
x , and Gw0

x (ε/σ3)

are plotted in (b) for the symmetric case and in (d) for the asymmetric case. The squares denote σ0
zx(z0),

the diamonds denote Gf0
x , and the solid triangles denote Gw0

x . Both (b) and (d) show Gw0
x (x) = −Gf0

x (x).

can see that the dynamic quantities
∫ z0

0 dzσxx, σzx(z0), and Gw
x indeed show features seen from

the static quantities
∫ z0

0 dzσ0
xx, σ0

zx(z0), and Gw0
x , respectively. This is particularly evident in

the asymmetric case where the static quantities vary more appreciably. The reason to take the
static quantities as reference quantities is now clear: a hydrodynamic quantity must be obtained
from the corresponding dynamic quantity by subtracting its static part, formally expressed as

Q̃ = [Q]dynamic − [Q]static ,

where the over tilde denotes the hydrodynamic quantity (first introduced for G̃w
x in Section 4.2).

In Fig. 27 we show the MD evidence for the BL hydrodynamic tangential force balance, which
is expressed as G̃w

x (x) + G̃f
x(x) = 0. This equation is necessary for Eqs. (4.1) and (4.2) to hold

simultaneously.

In summary, to verify the static/dynamic tangential force balance, we need to (1) identify the

BL where the tangential wall force G
w(0)
x is distributed; (2) measure the normal and tangential

components of stress σ
(0)
xx and σ

(0)
zx according to the original definition of stress; (3) calculate the

tangential fluid force G
f(0)
x according to Eq. (7.1)/(7.5).
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Figure 26: Profiles of
∫ z0

0
dzσxx, σzx(z0), and Gw

x for the lower BL. The horizontal axes are x/σ. We

show
∫ z0

0
dzσxx (ε/σ2) in (a) for the symmetric case (V = 0.25

√

ε/m and H = 13.6σ) and in (c) for the

asymmetric case (V = 0.2
√

ε/m and H = 13.6σ). The profiles of σzx(z0) and Gw
x (ε/σ3) are plotted

in (b) for the symmetric case and in (d) for the asymmetric case. The squares denote σzx(z0) and the

diamonds denote Gw
x . Note that in the vicinity of the contact line, Gw

x + σzx(z0) 6= 0. The importance of

the x-gradient of the z-integrated normal stress ∂x

∫ z0

0
dzσxx is therefore evident.
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Figure 27: Hydrodynamic force balance for the lower BL. The circles represent the symmetric case (V =

0.25
√

ε/m and H = 13.6σ); the squares represent the asymmetric case (V = 0.2
√

ε/m and H = 13.6σ).

The empty symbols denote G̃w
x ; the solid symbols denote −G̃f

x. It is seen that G̃w
x (x) = −G̃f

x(x).
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7.3 Tangential Young stress

Here we present the MD evidence for the decomposition of the tangential stress. In a dynamic
configuration, away from the interfacial region the tangential viscous stress σv

zx = η(∂zvx +∂xvz)
is the only component in the (single-fluid) tangential stress σzx. But in the (two-fluid) interfacial
region, the tangential stress σzx can be decomposed into a viscous component σv

zx and a non-
viscous component σY

zx:

σzx = σv
zx + σY

zx, (7.6)

where σv
zx is still η(∂zvx + ∂xvz) and σY

zx is the tangential Young stress, satisfying

Σd ≡
∫

int
dxσY

zx(x, z) = γ cos θd(z). (7.7)

Here θd(z) is the dynamic interfacial angle at level z. Equation (7.6) is essential to obtaining
Eq. (5.4) for σ̃zx(x, 0). In a static configuration, the viscous stress σv

zx vanishes and σzx becomes
σ0

zx, satisfying

Σs ≡
∫

int
dxσ0

zx(x, z) = γ cos θs(z), (7.8)

where θs(z) is the static interfacial angle at level z. Fig. 28 shows that both σY
zx and σ0

zx are
nonzero in the interfacial region only. The inset to Fig. 28 shows the evidence for Eqs. (7.7)
and (7.8), which identify σY

zx and σ0
zx as the dynamic and static Young stresses.

Equations (7.7) and (7.8) can be derived from the mechanical definition for the interfacial
tension γ [26]:

γ =

∫

int
dlm

[

P⊥(lm) − P‖(lm)
]

,

i.e., γ is the integral (along the interface normal across the interface) of the difference between the
normal and parallel components of the pressure, where lm is the coordinate along the interface
normal m, and P⊥ and P‖ are the pressure-tensor components normal and parallel to the
interface, respectively. (Note that far away from the interface the pressure is isotropic and
P⊥ = P‖). When the interfacial angle θd (or θs) is 90◦, the interface normal m = x and the
non-viscous stress tensor in the interfacial region is diagonal in the xyz coordinate system:

σnon−viscous =





−P⊥ 0 0
0 −P‖ 0

0 0 −P‖



 = −P⊥I + (P⊥ − P‖)(I − mm),

where I is the identity matrix. According to this expression, when the interfacial angle θd (or θs)
deviates from 90◦ (see Fig. 29), the Young stress σY

zx (or σ0
zx) arises from the interfacial stress

anisotropy as the off-diagonal zx component of the microscopic stress tensor:

σ
Y (0)
zx = z · σnon−viscous · x = (P⊥ − P‖) [z · (I − mm) · x]

= −(P⊥ − P‖)mzmx = (P⊥ − P‖) cos θd(s) sin θd(s),
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Figure 28: Dynamic and static Young stresses at z = z0. The solid circles denote σ0
zx in the static

symmetric case; the empty circles denote σY
zx in the dynamic symmetric case (V = 0.25

√

ε/m and

H = 13.6σ); the solid squares denote σ0
zx in the static asymmetric case; the empty squares denote σY

zx in

the dynamic asymmetric case (V = 0.2
√

ε/m and H = 13.6σ). Here σY
zx was obtained by subtracting the

viscous component η(∂zvx + ∂xvz) from the total tangential stress σzx. Inset: Σd,s plotted as a function

of γ cos θd,s at different z levels. Here θd,s was measured from the time-averaged interfacial profiles. The

symbols have the same correspondence as in the main figure. The data indicate Σd,s = γ cos θd,s.

where mz = − cos θd(s) and mx = sin θd(s). It follows that

Σd(s) ≡
∫

int
dxσY (0)

zx (x, z) =

∫

int
dx(P⊥ − P‖) cos θd(s) sin θd(s)

=

∫

int
dlm(P⊥ − P‖) cos θd(s)

= γ cos θd(s),

where θd(s) is treated as a constant along x and dx sin θd(s) = dlm.

8 The generalized Navier boundary condition

We want to “derive” the continuum GNBC using the MD results in Sections 4 and 7. For this
purpose we first need to establish the correspondence between the stress components measured
in MD and those defined in the continuum hydrodynamics. This correspondence is essential
to obtaining the microscopic dynamic contact angle θsurf

d , which is defined in the continuum
hydrodynamics (see Eq. (3.6) and (3.8)) but not directly measurable in MD simulations (because
of the diffuse BL).
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Figure 29: Schematic illustration for the origin of the tangential Young stress σ
Y (0)
zx as an off-diagonal

component of the microscopic stress tensor.

8.1 MD-continuum correspondence

It has been verified that for a BL of finite thickness, the GNBC is given by

βvslip
x (x) = Gf

x(x) − Gf0
x (x)

=
∂

∂x

∫ z0

0
dz

[

σxx(x, z) − σ0
xx(x, z)

]

+
[

σzx(x, z0) − σ0
zx(x, z0)

]

,
(8.1)

in which only MD measurable quantities are involved. Now we interpret these MD-measured
quantities in terms of the various continuum variables in the hydrodynamic model. In so doing
it is essential to note the following. (1) σxx can be decomposed into a molecular component
and a hydrodynamic component: σxx = Txx + σHD

xx . Meanwhile, σ0
xx can be composed into

the same molecular component and a hydrostatic component: σ0
xx = Txx + σHS

xx . Physically,
Txx is the normal stress σ0

xx for the case of a flat, static fluid-fluid interface. Such an interface
exists in the symmetric case (θsurf

s = 90◦) for any value of H. It also exists in the asym-

metric case (θsurf
s 6= 90◦) for H → ∞ (with vanishing curvature ∼ 1/H). In either case, the

interface has zero curvature and the hydrostatic stress σHS
xx vanishes according to the Laplace’s

equation: σ0
xx → Txx as σHS

xx → 0. (To be more precise, γ cos θsurf
s and ∆γwf should be de-

fined in Eqs. (7.3) and (7.4) when the fluid-fluid interface has zero curvature. However, in the

asymmetric case where ∆γwf (= −γ cos θsurf
s ) is nonzero, there is a static interfacial curvature

≈ 2 cos θsurf
s /H. This results in a hydrostatic σHS

xx , which should be subtracted from σ0
xx in the

left-hand side of Eq. (7.4). That is, ∆γwf should be obtained with σ0
xx replaced by Txx. Mean-

while, due to the static interfacial curvature, the static interfacial angle θs(z0) determined by

cos θs(z0) = γ−1
∫

int dxσ0
zx(x, z0) is a bit different from the true θsurf

s . In fact, cos θs(z0) deviates

from cos θsurf
s by the BL-integrated curvature ≈ 2z0 cos θsurf

s /H.) The molecular component
Txx exists even if there is no hydrodynamic fluid motion or fluid-fluid interfacial curvature. On
the contrary, the hydrodynamic component σHD

xx arises from the hydrodynamic fluid motion
and interfacial curvature. In the static configuration, σHD

xx becomes σHS
xx , which comes from the
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interfacial curvature.
(2) σzx(x, z0) can be decomposed into a viscous component plus a Young component : σzx(x, z0) =
σv

zx(x, z0) + σY
zx(x, z0) with σv

zx = η(∂zvx + ∂xvz) and
∫

int dxσY
zx(x, z0) = γ cos θd(z0) (Eqs. (7.6)

and (7.7)).
(3) σ0

zx(x, z0) is the static Young stress: i.e.,
∫

int dxσ0
zx(x, z0) = γ cos θs(z0) (Eq. (7.8)).

Using the above relations, we integrate Eq. (8.1) along x across the fluid-fluid interface and
obtain

∫

int
dxβvslip

x (x) = ∆

[
∫ z0

0
dzσHD

xx (x, z)

]

+

∫

int
dxσv

zx(x, z0) + γ cos θd(z0)

−∆

[
∫ z0

0
dzσHS

xx (x, z)

]

− γ cos θs(z0), (8.2)

where ∆
[

∫ z0

0 dzσ
HD(HS)
xx

]

is the change of the z-integrated σ
HD(HS)
xx across the interface:

∆

[
∫ z0

0
dzσHD(HS)

xx

]

≡
∫

int
dx∂x

∫ z0

0
dzσHD(HS)

xx .

According to the Laplace’s equation, the hydrostatic stress is directly related to the static
curvature κs:

−∆σHS
xx = γκs,

and the z-integrated curvature
∫ z0

0 dzκs equals to cos θs(z0) − cos θsurf
s . Hence,

−∆

∫ z0

0
dzσHS

xx = γ

∫ z0

0
dzκs = γ

[

cos θs(z0) − cos θsurf
s

]

. (8.3)

Substituting Eq. (8.3) into Eq. (8.2) yields

∫

int
dxβvslip

x (x) = ∆

∫ z0

0
dzσHD

xx (x, z) +

∫

int
dxσv

zx(x, z0) + γ cos θd(z0) − γ cos θsurf
s . (8.4)

In order to interpret Eq. (8.4) in the continuum hydrodynamic formulation with a sharp BL, it
is essential to note the following:

(1) The sum of the first three terms on the right-hand side of Eq. (8.4) is the net fluid force
along x exerted on the three fluid sides of a BL fluid element in the interfacial region;

(2) The last term in the right-hand side of Eq. (8.4), −γ cos θsurf
s , is the net wall force along x,

∆γwf =
∫

int dx∂xγwf , which arises from the wall-fluid interfacial free energy jump across

the fluid-fluid interface, in accordance with the Young’s equation ∆γwf + γ cos θsurf
s = 0.
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8.2 Extrapolated dynamic contact angle

Now we take the sharp boundary limit to relate the net fluid force

∆

∫ z0

0
dzσHD

xx (x, z) +

∫

int
dxσv

zx(x, z0) + γ cos θd(z0)

in Eq. (8.4) to the tangential stresses (viscous and non-viscous) at the solid surface. The purpose

of doing so is to obtain the surface contact angle θsurf
d through extrapolation. Note that θsurf

d

is not directly measurable in MD simulations due to the diffuse BL. Only the extrapolated θsurf
d

can be compared to the contact angle in continuum calculations.
In Section 4.4, we take the sharp boundary limit by assuming a tangential wall force con-

centrated at z = 0: g̃w
x (x, z) = G̃w

x (x)δ(z). While g̃w
x becomes a δ function, G̃w

x (x) per unit area
remains the same. Using the equation of local force balance ∂xσ̃xx + ∂zσ̃zx = 0 above z = 0+,
we obtain σ̃zx(x, 0+) = G̃f

x(x) as the tangential stress at the solid surface (Eq. (4.4)). The
extrapolation here follows this spirit. We turn to the Stokes equation in the BL:

−∂xp + ∂xσv
xx + ∂zσ

v
zx + µ∂xφ = 0, (8.5)

obtained from the x-component of Eq. (3.2) by dropping the inertial term and the external
force term. Integrating Eq. (8.5) along z across the BL and then along x across the fluid-fluid
interface, we obtain

∆

{
∫ z0

0
dz [−p(x, z) + σv

xx(x, z)]

}

+

∫

int
dxσv

zx(x, z0) + γ cos θd(z0)

=

∫

int
dxσv

zx(x, 0) + γ cos θsurf
d . (8.6)

Two relations have been used in obtaining Eq. (8.6):
(1) The capillary force density in the sharp interface limit [6] is given by

µ∂xφ ' γκδ(x − xint),

where κ is the interfacial curvature and xint the location of the interface along x (see Section
5.1.3).
(2) The z-integrated curvature gives

∫ z0

0
dzκ = cos θd(z0) − cos θsurf

d .

The local force balance along x is expressed by Eq. (8.5). Accordingly, the tangential force
balance for the BL fluids in the integration region (

∫

int dx
∫ z0

0 dz) is expressed by Eq. (8.6), where
∆

{∫ z0

0 dz [−p(x, z) + σv
xx(x, z)]

}

is the net fluid force on the left and right (∓x-oriented) surfaces,
∫

int dxσv
zx(x, z0) + γ cos θd(z0) is the fluid force on the z = z0 surface, and

∫

int dxσv
zx(x, 0) +

γ cos θsurf
d is the tangential fluid force at the solid surface.
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Figure 30: (a) For the real tangential wall force continuously distributed between z = 0 and z = z0,

the tangential stress in the fluid is continuous, vanishing at z = 0. (b) In the sharp boundary limit, the

tangential wall force is considered to be concentrated at z = 0. Accordingly, the net fluid force on the

fluids bound by A, B, C, and D (at z = 0+) is considered to be zero. In other words, the net fluid force

on the three surfaces A, B, and C is fully transmitted to the tangential stress at the surface D at z = 0+

(Eq. (8.6)). So there arises an abrupt change of the tangential stress from 0 at z = 0− to G̃f
x at z = 0+,

by which the concentrated wall force is balanced.

Substituting Eq. (8.6) into Eq. (8.4) and identifying the normal stress −p + σv
xx with σHD

xx :

−p + σv
xx = σHD

xx ,

we obtain
∫

int
dxβvslip

x (x) =

∫

int
dxσv

zx(x, 0) + γ cos θsurf
d − γ cos θsurf

s , (8.7)

which is identical to the integral of the continuum GNBC along x across the fluid-fluid interface
(Eqs. (3.4), (3.5), (3.6), and (3.8)). By doing so, we have assumed the tangential wall force is
concentrated at z = 0. (This leads to Eqs. (8.5) and (8.6) between z = 0+ and z = z0.) In
essence, the above extrapolation is to obtain the tangential stresses (viscous and non-viscous) at
the solid surface when the limit of g̃w

x (x, z) = G̃w
x (x)δ(z) is taken, as illustrated in Fig. 30. For

G̃w
x (x) distributed in the diffuse BL, there is actually no tangential stress at the solid surface.

Only in the sharp boundary limit does a nonzero tangential stress appear at z = 0+, equal to
the net fluid force accumulated from z = 0− to z = z0 in the diffuse BL.

It is worth emphasizing that the right-hand side of Eq. (8.7) is
∫

int dxσ̃zx(x, 0+), where
σ̃zx(x, 0+) is the extrapolated tangential stress in Eq. (4.4). Its continuum expression is given
by Eq. (5.4). Equation (8.7) concludes our “derivation” of (an integrated form of) the continuum
GNBC from the MD results presented in Sections 4 and 7.

Equation (8.6) constitutes the basis for obtaining the dynamic contact angle θsurf
d from MD

data. The dominant behavior of
∫ z0

0 dz (−p + σv
xx) =

∫ z0

0 dzσHD
xx is a sharp drop across the fluid-

fluid interface. This stress drop implies a large curvature in the BL, which pulls the extrapolated
θsurf
d closer to θsurf

s . We show the BL-integrated normal stress
∫ z0

0 dzσ̃xx =
∫ z0

0 dz
[

σxx − σ0
xx

]

in Fig. 31, where the large stress drop across the fluid-fluid interface is clearly seen. (In the
asymmetric case, due to the small difference between σ0

xx and Txx, σ̃xx is not precisely the
hydrodynamic stress σHD

xx . In fact, σ̃xx = σHD
xx − σHS

xx . Nevertheless, ∆
∫ z0

0 dzσHS
xx is on the

order of 2γz0 cos θsurf
s /H, much smaller than the magnitude of the stress drop shown in Fig. 31.)

OPEN ACCESS

DOI https://doi.org/2006-CiCP-7949 | Generated on 2024-12-27 00:42:14



Qian, Wang and Sheng / Commun. Comput. Phys., 1 (2006), pp. 1-52 47

−20 −10 0 10 20

x
 
/ 

−11.0

−10.5

−10.0

−9.5

−9.0

−8.5

B
L
−

in
te

g
ra

te
d
 n

o
rm

a
l 
s
tr

e
s
s

σ

Figure 31:
∫ z0

0
dzσ̃xx(x, z) =

∫ z0

0
dz

[

σxx(x, z) − σ0
xx(x, z)

]

plotted as a function of x. The circles denote

the symmetric case (V = 0.25
√

ε/m and H = 13.6σ) and the squares denote the asymmetric case

(V = 0.2
√

ε/m and H = 13.6σ). For clarity, σ0
xx was vertically displaced such that σ0

xx = 0 far from the

interface in the symmetric case, and for the asymmetric case, σ0
xx = 0 at the center of the interface (same

as in Fig. 25).

In the partial-slip region at the vicinity of the MCL,
∫ z0

0 dzσ̃xx shows a fast variation along x
as well. This means that the BL tangential force balance cannot be established unless the
gradient of the BL-integrated normal stress is taken into account (see Eqs. (4.3), (7.1), and
(7.5)). It is worth pointing out that the stress variation depicted in Fig. 31 is also produced by
the continuum hydrodynamic calculations, in semi-quantitative agreement with the MD data.
In Fig. 32 we show the continuum profiles of layer-integrated pressure, obtained for a symmetric
case of Couette flow. It is readily seen that the magnitude of the pressure change across the
fluid-fluid interface decays away from the solid surface quickly. This conforms to the interface
profile shown in Fig. 20: the interfacial curvature quickly decreases with the increasing distance
from the solid surface.

8.3 The importance of the uncompensated Young stress

According to Eq. (7.6), the hydrodynamic tangential stress σ̃zx(x, z0) can be decomposed into
the viscous component σv

zx and the non-viscous component σ̃Y
zx:

σ̃zx(x, z0) = σv
zx(z) + σ̃Y

zx(x, z0).

In Fig. 33 we show that away from the interfacial region the tangential viscous stress σv
zx(x, z0) =

η(∂zvx + ∂xvz)(x, z0) is the only nonzero component, but in the interfacial region σ̃Y
zx = σzx −

σv
zx − σ0

zx = σY
zx − σ0

zx is dominant, thereby accounting for the failure of the Navier boundary
condition to describe the contact line motion. Therefore away from the MCL region the Navier
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Figure 32:
∫ z+z0/2

z−z0/2
dzp(x, z) obtained for the symmetric case of V = 0.25

√

ε/m and H = 13.6σ, plotted

as a function of x. The profiles are symmetric about the center plane z = H/2, hence only the lower

half is shown at z = 0.425σ (solid line), 2.125σ (dashed line), 3.825σ (dotted line), and 5.525σ (dot-

dashed lines). The solid line denotes the BL-integrated pressure, in semi-quantitative agreement with

the
∫ z0

0
dzσ̃xx(x, z) profile (circles) shown in Fig. 31. (Note that in Fig. 31 the MCL is placed at x ≈ 0

while here it is shifted to x ≈ −3.9σ, same as in Figs. 16, 20, and 23b.)

boundary condition is valid, but in the interfacial region it clearly fails to describe the contact
line motion.

We have measured the z-integrated σ̃xx = σxx − σ0
xx in the BL. The dominant behavior is

a sharp drop across the interface, as shown in Fig. 31 for both the symmetric and asymmetric
cases. As already pointed out in Section 8.2, this stress drop means a large curvature in the
BL, which pulls the extrapolated θsurf

d closer to θsurf
s . The value of θsurf

d obtained through
extrapolation is 88 ± 0.5◦ for the symmetric case and 63 ± 0.5◦ for the asymmetric case at the
lower boundary, and 64.5± 0.5◦ at the upper boundary. These values are noted to be very close
to θsurf

s . Yet the small difference between the dynamic and static contact angles is essential in
accounting for the near-complete slip at the MCL.

In essence, our results show that in the vicinity of the MCL, the tangential viscous stress σv
zx

as postulated by the Navier boundary condition can not give rise to the near-complete MCL slip
without taking into account the tangential Young stress σY

zx in combination with the gradient of
the (BL-integrated) normal stress σxx. For the static configuration, the Young stress is balanced
by the normal stress gradient, leading to the Young’s equation. It is only for a MCL that there
is a component of the Young stress which is no longer balanced by the normal stress gradient,
and this uncompensated Young stress is precisely the additional component captured by the
GNBC but missed by the traditional Navier boundary condition.
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Figure 33: Two components of the hydrodynamic tangential stress at z = z0, plotted as a function

of x. The symbols connected by dashed lines denote σ̃Y
zx; the solid and dotted lines represent the

viscous component. Here the symmetric case is represented by circles and solid line; the asymmetric case

represented by squares and dotted line. In the contact line region the non-viscous component is almost

one order of magnitude larger than the viscous component. The difference between the two components,

however, diminishes towards the boundary, z = 0, due to the large interfacial pressure drop (implying a

large curvature) in the BL, thereby pulling θsurf
d closer to θsurf

s .

9 Concluding remarks

In summary, we have found the slip boundary condition, i.e., the GNBC, for the contact-line
motion. Based on this finding, we have formulated a hydrodynamic model that is capable of
reproducing the MD results of slip profile, including the near-complete slip at the MCL. It should
be noted, however, that the present continuum formulation can not calculate fluctuation effects
that are important in MD simulations.

Based on the results and experiences obtained in the present study of the MCL, we have
been working on the following.

(1) Large scale MD simulations on two-phase immiscible flows show that associated with the
MCL, there is a very large 1/x partial-slip region, where x denotes the distance from the contact
line. This power-law partial-slip region has been reproduced in large-scale adaptive continuum
calculations [35, 37] based on the local, continuum hydrodynamic formulation presented in this
paper. MD simulations and continuum solutions both indicate the existence of a universal slip
profile in the Stokes-flow regime, well described by vslip(x)/V = 1/(1 + x/als), where vslip is
the slip velocity, V the speed of moving wall, ls the slip length, and a is a numerical constant
∼ 1 [35]. A large 1/x partial slip region is significant, because the outer cutoff length scale
directly determines the integrated effects, such as the total steady-state dissipation. While in
the past the 1/x stress variation away from the MCL has been known [20], to our knowledge
the fact that the partial slip also exhibits the same spatial dependence has not been previously
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seen, even though the validity of the Navier boundary condition at high shear stress has been
verified [2, 8, 39,41].

(2) By explicitly taking into account the long-range wall-fluid interactions, our hydrodynamic
model for two-phase immiscible flow at the solid surface can be used to investigate the dry
spreading of a pure, nonvolatile liquid, attracted towards the solid by long-range van der Waals
forces [12]. The precursor film, driven by the gradient of disjoining pressure due to the long-range
force [9], was observed decades ago [13, 17, 25]. Nevertheless, the theoretical analysis remains
to be difficult, because of a wide separation of different length scales involved [12, 14, 18, 32].
Application of our model to this multi-scale problem is currently underway.

(3) Decades ago it became well known that the driven cavity flow is incompatible with the no-
slip boundary condition, since the latter would lead to stress singularity and infinite dissipation
(known as corner-flow singularity) [3, 29]. While MD studies [27] have clearly demonstrated
relative fluid-wall slipping near the corner intersection, the exact rule that governs this relative
slip has been left unresolved. Based on the simulation technique developed in the present study,
we have verified the validity of the Navier boundary condition in governing the fluid slipping
in driven cavity flows. We have used this discovery to formulate a continuum hydrodynamics
whose predictions are in remarkable quantitative agreement with the MD simulation results at
the molecular level [33].
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