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Abstract. In this paper I review three key topics in CFD that have kept researchers
busy for half a century. First, the concept of upwind differencing, evident for 1-D
linear advection. Second, its implementation for nonlinear systems in the form of high-
resolution schemes, now regarded as classical. Third, its genuinely multidimensional
implementation in the form of residual-distribution schemes, the most recent addition.
This lecture focuses on historical developments; it is not intended as a technical review
of methods, hence the lack of formulas and absence of figures.

Key words: Upwind difference; high-resolution method; compressible flow; nonlinear conservation
laws.

1 Why upwind differencing?

Upwind differencing is a way of differencing the spatial-derivative terms in the advection
equation, and is almost as old as CFD, starting with the work of Courant, Isaacson and
Rees (1952 [12]). In their paper, the choice of an upwind-biased stencil follows rather
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naturally from the “backward” variant of the Method of Characteristics. In the course of
the decades further evidence has been gathered in support of upwind disceretizations.

• Godunov, 1959. The Russian mathematician S. K. Godunov [18] favored the first-
order-accurate upwind scheme among a family of simple descretizations, because it
is the most accurate one that preserves the monotonicity of an initially monotone
discrete solution.

• Fromm, 1968. IBM researcher Jacob Fromm [16] constructed higher-order advection
schemes with low dispersive error, by combining schemes with predominantly nega-
tive and predominantly positive phase errors: “Zero Average Phase Error Method.”
The resulting schemes turn out to be upwind biased.

• Wesseling, 1973. Dutch aerospace engineer (turned numerical analyst) Pieter Wes-
seling [64] used Parseval’s theorem to relate the numerical error committed by ad-
vection schemes to the Fourier transform of the intial-value distribution. For two
different families of advection schemes he found it is an upwind scheme that mini-
mizes the L2-error made in one time step if the initial values contain a discontinuity.
This would indicate upwind schemes may be the preferred choice for compressible
flow, where shock discontinuities are common and arise even from the smoothest
initial data.

• van Leer, 1986. Reversing Fromm’s procedure, Dutch astrophysicist (turned aerospace
engineer) Bram van Leer [35] developed an operational definition of upwind schemes.
For example, a linear update scheme of the form

uj =
∑

k

Ck(ν)uj+k, (1.1)

is called upwind-biased with respect to the CFL-number range (0,1) if and only if its
coefficents satisfy the symmetry relation

Ck(1 − ν) = C−k−1(ν); (1.2)

here ν is the CFL number. For any such scheme, the result of one step with CFL
number ν followed by a step with CFL-number 1 − ν, is free of dispersion, a quan-
titative expression of Fromm’s idea. It further follows that such a scheme is free of
dispersion for ν = 1/2.

• Jeltsch, 1987. Mathematicians including Swiss Rolf Jeltsch [30], searching for advec-
tion stencils with the greatest potential accuracy for a given number of grid-points,
have proved that these stencils are upwind biased.

The price one has to pay for all this goodness is the computational effort in determining
the advection direction. That is trivial for a linear 1-D advection equation, but a major
effort for nonlinear advection operators hidden in nonlinear systems of multidimensional
conservation laws.
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2 Implementation for nonlinear conservation laws

2.1 Riemann solvers

Having resigned to upwind differencing for advection, I will now discuss the step of imple-
menting this concept in finite-volume fashion for a nonlinear system of conservation laws
such as the Euler equations.

The finite-volume interpretation of the simplest upwind advection scheme is the “donor-
cell” scheme, where the advected quantity streams from the upwind “donor” cell into the
cell to be updated. This terminology stems from the Los Alamos and Livermore National
Laboratories. In his landmark 1959 paper, Godunov developed an ingenious interpreta-
tion of the donor-cell scheme, which could immediately be generalized to the 1-D Euler
equations, or any other hyperbolic system of nonlinear conservation laws. The key to
this generalization is the solution to Riemann’s initial-value problem, that is, the problem
of the inviscid interaction of two uniform gases at a plane interface. Differences between
these states will be resolved by a system of plane waves moving away from the interface. If
the equation of state of the gas is simple, the exact solution in the disturbed region can be
obtained to any precision with medium computational effort, and in an approximate way
with little effort. Often an approximation is sufficient for use in a finite-volume scheme,
since only an interface flux is needed, and the details of the sub-grid solution are averaged
out anyway after each time step.

For two decades Godunov’s finite-volume scheme was of little influence in Western nu-
merical circles, although it was mentioned in the book by R. D. Richtmyer and K. W. Mor-
ton [54]. This changed with the advent of Godunov-type high-resolution schemes [41],
when some of the world’s most talented numerical analysts spent their efforts on, among
other things, developing “approximate Riemann solvers.”

Let me dwell upon the most popular approximate Riemann solvers developed in those
days, and their individual pros and cons. They can be ordered according to how closely
they adhere to the wave structure of the exact Riemann solution. The most detailed
approximations of the wave system are found in the solvers of British aeronautical engineer
Phil Roe (1981 [55]) and American mathematician Stan Osher (1981 [49]). The former
solver is based on a local lineaization of the flow equations; the latter replaces shock waves
by simple compression waves [36]. With these models the flux imbalance between two
cells is split into contributions from forward-moving and backward-moving waves; hence
we speak, rather clumsily, of “flux-difference splitting”, or, more elegantly, of “fluctuation
splitting”.

A family of solvers in which a smaller or larger number of waves are “lumped” was
presented by the Israeli mathematician Ami Harten (†1994), CFD’s American nestor Peter
Lax, and Bram van Leer (1983 [24]); this approach is now indicated by the initials HLL. It
is particularly useful when the detailed Riemann solution is complicated, as for extended
hydrodynamics [8] and magnetohydrodynamics [51], or when a steady flow solution is
sought in which certain kinds of waves never appear [52]. The latest and most efficient
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descendant in this family is HLLL, a flux due to aerospace engineer (turned space scientist)
Timur Linde (2000 [45]).

In “flux-vector splitting” or simply “flux splitting”, the fluxes themselves are split into
forward and backward contributions. This may be interpreted as the result of transport
by particles rather than by waves, and is related to methodology for integrating the Boltz-
mann equation. Representative of such methods are the “Beam Scheme” of astronomer
Kevin Prendergast (1974 [58]), a true “Boltzmann solver,” the splitting of NASA Ames’
Joe Steger (†1992) and Bob Warming (1981 [61]), which turned out to be a special case
of the Beam Scheme, and the differentiable splitting of van Leer (1982 [34]). Currently,
the most advanced CFD methods founded on the Boltzmann equation are due to Hong-
Kong-based Kun Xu [66], a former student of Prendergast.

Computational aerodynamicists became particularly fond of upwind flux formulas be-
cause these produced the narrowest possible shock structures in transonic flow simula-
tions [3, 42]. It can be shown that the upwind flux formula based on Roe’s approximate
Riemann solver yields a steady normal-shock structure (if aligned with the grid) that con-
tains at most one internal cell, whereas the differential flux formulas of Osher [49] and van
Leer [34] include one or two internal cells. This property is lost for shocks oblique to the
grid, which serves as a motivation for the search of truly multi-D upwind methods (see
the last section).

While scoring high in shock representation, flux splitting can be shown to lead to
diffusion across contact discontinuities and shear layers, even if these are steady and aligned
with the grid [43]. This type of numerical error is absent for detailed Riemann solvers like
Roe’s or Osher’s, which explicitely recognize such waves. A hybrid splitting, combining
the best of fluctuation splitting (accuracy) and flux splitting (simplicity) was developed by
NASA Lewis’ Meng-Sing Liou and Chris Steffen (1993) under the name AUSM (Advection
Upwind Split Method). It has become a very popular numerical flux function; for the latest
update on the AUSM family see Liou (2001 [46]).

Helpful Hint Nr. 1. Riemann-solver-based fluxes have nothing to do with limiters, used
in higher-order schemes to avoid numerical oscillations. There is no such thing as a “TVD
Riemann solver;” using such language reveals ignorance.

This, though, leads us to the next subject.

2.2 High-resolution schemes

Interlaced with the evolution of upwind methods is the history of high-resolution schemes:
schemes that are at least second-order accurate in regions where the solution is smooth,
while capturing discontinuities as narrow, monotone structures.

For an appreciation of the problem of designing a high-resolution scheme for the Euler
equations it is useful to first consider modeling the linear advection of a step function.
Here we immediately run into a famous theorem included by Godunov in his 1959 paper:
if an advection scheme preserves the monotonicity of the solution it is at most first-order
accurate. This result could discourage anyone attempting to improve advection schems;
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fortunately, there is a way to circumvent it. In the proof of this theorem it is tacitly
assumed that the linear advection equation is approximated by a linear discretization; once
nonlinear discretizations are admitted the theorem no longer stands and high-resolution
schemes become possible.

The realization that Godunov’s theorem could be circumvented came at the start of
the 1970s, when, within the span of one year, three independent approaches were launched
for the construction of oscillation-free higher-order advection schemes. Astrophysicist Jay
Boris (Naval Research Laboratory) presented the first non-oscillatory second-order scheme
SHASTA - Sharp and Smooth Transport Algorithm - at a seminar course in Trieste in
August 1971 [4], followed by another astrophysicist, Bram van Leer (then at Leiden Obser-
vatory, Netherlands), who presented a non-oscillatory modification of the Lax-Wendroff
scheme at the 3rd International Conference on Numerical Methods in Fluid Dynamics
(ICNMFD) in Paris in July 1972 [37]. These approaches, while quite distinct, are similar
in their use of nonlinearity to prevent numerical oscillations in regions of strongly varying
solution gradients, a theme that has persisted in hyperbolic method development ever
since. It is useful to discuss the two approaches separately in some detail. As to the third,
Russian approach, see the subsection “A historical injustice.”

The algorithms developed by Boris, D. L. Book et al. are known as Flux-Corrected
Transport (FCT) methods and have a predictor-corrector structure. A first-order, non-
oscillatory scheme is used to estimate the solution at the advanced time level; a correction
step then removes the large dissipative error made in the first step, uncovering a solution
with second- or third-order accuracy. During the second step the corrective fluxes are
compared to the provisional solution values and limited where necessary, in order to ensure
that no new extrema will arise, nor existing extrema grow. The comparison step makes
the overall method nonlinear: the coefficients in the scheme depend on the solution itself,
even when applied to a linear equation.

The development of FCT methods is described in four key papers published in the
period 1973-79 in the Journal of Computational Physics (JCP), viz., a sequence of three
by Boris et al. [5–7] and a fourth by S. Zalesak [67], also at NRL. FCT methods are
widely used for simulating violent time-dependent flows, but are less suited for steady-
state calculations and therefore have had little influence on computational aerodynamics.

The methodology of van Leer was published in a series of five papers, starting with
the above conference paper; the other four appeared in JCP in the period 1974-79 [38–41].
In this work, oscillations are regarded as the result of oscillatory interpolation of the
discrete intitial values; the remedy therefore consists of introducing non-oscillatory or
monotonicity-preserving interpolation. The simplest higher-order schemes reconstruct a
linear or quadratic distribution in a cell using three contiguous cell averages. Monotonicity
is preserved by limiting the values of the first and second derivatives of the distribution.

Following Godunov, van Leer’s schemes include fluxes derived from the solution of Rie-
mann problems. When combined with higher-order reconstruction this leads to upwind-
biased differencing, hence the name MUSCL - Monotone Upstream Scheme for Conserva-
tion Laws - given to the first computer code based on the above principles. This code was
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written at Leiden Observatory by astrophysicist Paul Woodward. It uses piecewise linear
interpolation and achieves second-order accuracy for smooth flow. MUSCL and its sequel
PPM (Piecewise Parabolic Method) were advanced and popularized in the early 1980s by
Woodward and numerical analyst Phil Colella at Lawrence Livermore Laboratory [10,11].
A landmark paper is their 1984 JCP review [65], an elaborate comparative study in which
Godunov-type schemes, FCT and more traditional methods are pitted against one another.

The emergence of high-resolution Godunov-type methods created yet another research
trend: designing effective limiters for use in one-dimensional higher-order reconstruction
[32,60,62]. Particularly interesting is the history of the involvement of Ami Harten.

Initially Harten did not embrace the concept of non-oscillatory interpolation, because
it seemed restricted to one space dimension. Instead he was inspired by the work of Lax’s
student James Glimm [17], who had shown that the total variation of the solution of a
scalar 1-D conservation law can not increase, and actually decreases in a shock. By analogy,
Harten introduced the total variation of a discrete function as a measure of its oscillatory
nature [20, 21], a quantity with the promise of multidimensional applicability. This led
to the formulation of Total-Variation-Diminishing (TVD) schemes for scalar nonlinear
conservation laws; the acronym TVD quickly became synonymous with high-resolution,
usually upwind, schemes (see Helpful Hint Nr. 1 above). Harten derived local conditions
sufficient for ensuring the TVD property; for a linear conservation law these reduce to the
constraint of monotone interpolation. It later was shown by numerical analysts Jonathan
Goodman and Randy LeVeque [19] that the total variation is too blunt a tool to be of use
in constraining multi-dimensional discrete functions: a multi-dimensional TVD advection
scheme can be no better than first-order accurate.

Harten then returned to non-oscillatory interpolation theory, and, from 1985 onward,
developed the theory of Essentially Non-Oscillatory (ENO) interpolation, joined by Osher,
numerical analyst Björn Engquist, mechanical engineer Sukumar Chakravarthy, Osher’s
student Chi-Wang Shu [22,23,25,59] and others. ENO schemes are only Total-Variation-
Bounded (TVB) and do generalize to multi-dimensional equations.

In these schemes a systematic procedure selects the discrete stencil whose data will
give the smoothest interpolant, i. e., the function with the lowest values of its derivatives.
This procedure is nonlinear everywhere, that is, even in regions where there is not the
slightest danger of numerical oscillations arising. In later years ENO has been replaced by
the milder version WENO (Weighted ENO [29]). A particularly attractive formulation of
limiters comparable to WENO is due to Hung Huynh at NASA Glenn [28]. His limiters
are based on three arguments, but the notation is terse owing to the introduction of the
concept of the “median” of three numbers.

The ENO procedure is the only known non-oscillatory interpolation that allows a truly
multidimensional extension, albeit very costly. The single paper about this subject is due
to the French numerical analyst Rémi Abgrall [1].

Helpful Hint Nr. 2. A limiter is a nonlinear algorithm that reduces the high-derivative
content of an subgrid interpolant in order to make it non-oscillatory; it is not the in-
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terpolant itself. Calling standard polynomial interpolation a “limiter” is a bad practice,
again revealing the ignorance of the speaker. This habit was probably caused by the ap-
pearance of interpolants with built-in limiter, such as “harmonic gradient averaging” due
to van Leer (1977 [41]), and similar techniques due to Dutch astronomer Dick van Albada
(1982 [2]) and Dutch aerospace engineer Barry Koren (1989 [32]). Such interpolants can
still be written as a target polynomial interpolant modified by a limiter; for instance, the
harmonic average of successive finite-differences,

(∆W )j =

{

1

2

(

1

∆−Wj
+

1

∆+Wj

)}

−1

, (2.1)

may be written as

(∆W )j =
∆+Wj + ∆−Wj

2

{

1 −

(

∆+Wj − ∆−Wj

∆+Wj + ∆−Wj

)2
}

. (2.2)

The first factor is the standard central difference, the second factor is the limiter. Note that
the limiter contains a discretization of the logarithmic second derivative of the solution:

(

∆+Wj − ∆−Wj

∆+Wj + ∆−Wj

)2

≈
(∆x)2

4

(

∂ ln
∣

∣

∂W
∂x

∣

∣

∂x

)2

. (2.3)

It is this quantity that senses the high rate of change of the solution gradient at the foot
and head of a captured discontinuty.

Helpful Hint Nr. 3. Limiters of the type introduced by van Leer reduce the higher-
order content of the sub-grid interpolant for the sake of monotonicity, regardless of what
conservation law is to be integrated. Using the expression “flux limiter” is therefore
inappropriate and reveals ignorance.

It is true that limiting the interpolant has an effect on the fluxes; Osher has actually
published shemes in which the limiting is applied to interpolants of split fluxes. This
approach, motivated by doubtful computational savings, is undesirable, as split fluxes are
less smooth than the solution itself. In particular, they are nondifferentiable in a sonic
point, unlike the solution.

In the corrector step of an FCT scheme, though, the fluxes indeed are limited; in this
case the term “flux limiting” is appropriate.

2.3 A historical injustice

It has been pointed out to me by Dr. Vladimir Sabelnikov, formerly of TsAGI, the Cen-
tral Aerodynamical National Laboratory near Moscow, that a scheme closely resembling
MUSCL (including limiting) was developed in this laboratory by V. P. Kolgan (1972 [31]).
Kolgan died young; his work apparently received little notice outside TsAGI. When I
visited Novosibirsk in 1978 in order to present MUSCL to Godunov and to find out if
anything similar had been developed in the Soviet Union, the approach appeared to be
new to Godunov. He was not aware of Kolgan’s work.

OPEN ACCESS

DOI https://doi.org/2006-CiCP-7954 | Generated on 2024-12-22 19:04:14



199 Bram van Leer / Commun. Comput. Phys., 1 (2006), pp. 192-206

2.4 Hancock’s scheme

Soon after its publication (1979 [41]), MUSCL was greatly simplified by UC Berkeley
graduate (fluid mechanics) Steve Hancock (1980), while developing the PISCES indus-
trial simulation code for Physics International (later absorbed by MacNeal-Schwendler).
Hancock’s predictor-corrector version would have remained buried in a bulky code manual
if not for its description and use in a paper by van Albada, van Leer and Bill Roberts
(astronomer, UVA) on numerical methods for cosmic gas dynamics. (NB: the same pa-
per includes the first description of van Albada’s limiter.) I will use the present occasion
to bring it once more to the attention of the CFD community, as it has been a regular
workhorse in my department, both in the Keck CFD Laboratory and in the graduate CFD
curriculum. The method is remarkably robust; for example, it handles the double-blast-
wave problem of Woodward and Colella [65] without any special attention.

Below are coding instructions for the 1-D description given to all advanced CFD stu-
dents for use in their first computing project; the trivial 2-D extension is regularly used
in the second project (see van Leer [33]).

Hancock’s predictor-corrector scheme.

Hancock’s scheme is a MUSCL scheme implemented in predictor-corrector fashion,
similar to the Richtmyer version of Lax-Wendroff. It includes the following steps (conver-
sions among state quantities omitted).

1. Reconstruct linear subcell distributions of a complete set of state variables; these
may be the conserved variables ρ, ρu, ρE. In practice, though, it is not such a good
idea to use ρE, which must remain greater than ρu2/2; independent interpolation of
ρ, ρu and ρE does not guarantee this. Better use ρ, ρu, p, or even primitive variables
ρ, u, p; call the latter set W.
You’ll work only with uniform grids, so you don’t have to worry about variations in
∆x. In this case it suffices to define

δWj = ave (Wj − Wj−1, Wj+1 − Wj) , (2.4)

where the average may include your favorite limiter. Keep the following averages
available:

ave(a, b) =
a + b

2
; (algebraic) (2.5)

ave(a, b) =

{

minmod
(

a+b
2

, 2a, 2b
)

, ab > 0,
0, ab ≤ 0;

(double minmod) (2.6)

ave(a, b) =

{

minmod{maxmod(a, b), minmod(2a, 2b)}, ab > 0,
0, ab ≤ 0.

(superbee) (2.7)

Observe that these three form a hierarchy. Double minmod limits the algebraic
average of a and b to twice the smaller of the two: the weakest limiting still avoiding
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under/overshoots. Superbee, moreover, discards any unlimited value of the algebraic
average in favor of the larger of the two, yielding artificial steepening wherever there
is no danger of under/overshooting.

2. Advance the solution inside cell j by half the full time-step, using the nonconservative
equations in terms of the primitive variables,

Wt + (AW )jWx = 0, (2.8)

where the coefficient matrix AW is similar to AU and reads

AW =





u ρ 0
0 u 1

ρ

0 ρa2 u



 . (2.9)

The predictor step thus becomes

W̃j = Wj −
∆t

2∆x
AW δWj . (2.10)

3. Now compute time-centered interface values using the old gradients (this is OK in a
second-order scheme):

W̃j− 1

2
R = W̃j −

1

2
δWj , (2.11)

W̃j+ 1

2
L = W̃j +

1

2
δWj . (2.12)

4. Compute time-centered interface fluxes by solving a Riemann problem, exactly or
approximately, at each interface:

F̃j+ 1

2

= F
(

W̃j+ 1

2
L,W̃j+ 1

2
R

)

. (2.13)

5. Finally, advance the solution over the full time-step, using the time-centered interface
fluxes:

Uj = Uj −
∆t

∆x

(

F̃j+ 1

2

− F̃j− 1

2

)

. (2.14)

Variation 1: if you set δW = 0 everywhere you’ll get back the first-order upwind scheme;
this is useful for debugging, or for studying the quality of your numerical flux near a sonic
point. Of course there are cheaper ways to embed the first-order scheme in your program.
In this project, though, we are not interested in comparing second- to first-order accuracy;
that’s too elementary.

Variation 2: instead of the primitive variables you may use the characteristic variables
Vk in the predictor step, which actually are the most appropriate choice when gradient
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limiting is expected. They also give the “cleanest” results. Consult me.

Helpful Hint Nr. 4. The coefficient matrix AW in the primitive equations is often
referred to as the “primitive Jacobian,” This is incorrect use of the term Jacobian. A
Jacobian matrix is the derivative of one vector to another one, and AW is not the derivative
of a vector. The confusion stems from the fact that the coefficient matrix AU in the
conservative equations is a true Jacobian, since it results from differentiating the flux
vector with respect to the conservative state vector (“flux Jacobian”). Granted, AW does
follow from AU by a similarity transformation. I will therefore not go so far as to say
that using the term “primitive Jacobian” reveals the ignorance of the speaker, since the
mistake is sufficiently subtle. But I encourage avoiding it.

3 Multidimensional extensions

The traditional way of extending upwind differencing to multidimensional equations is by
doing it dimension by dimension. This means that numerically all transport is done by
waves moving normal to the cell faces. The finite-volume technique will still be consistent
and may even be highly accurate for smooth flow, but discontinuities oblique to grid faces
will be worse resolved than those aligned with the grid. More diffusive schemes may not
show such directionality in their resolution, but that does not make them any better. On
the contrary, the sensitivity of the upwind scheme’s numerical error to the direction of a
captured discontinutiy is revealing and contains the key to its remedy.

Already in the early 1980s a start was made with the development of directional
upwinding. Davis (1984 [14]) rotated the frame of the Riemann solver to the shock-
normal direction, in order to get better shock resolution. Various methods of this type
followed, e.g., those by Levy et al. (1993 [44]) and Dadone and Grossman (1991 [13]).
A more radical approach is that of Rumsey et al. (1993 [57]), in which the numerical
flux is based on a rotated Riemann solver plus a shear wave normal to the other waves.
Unfortunately, flux formulas based on rotated frames, where the rotation angle follows
from flow gradients, are not robust when used in higher-order schems. They do achieve
the goal of uniform resolution of shocks and shears independent of direction.

A more fundamental and robust approach, which also has its roots in the 1980s and
is due to Roe (1986 [56]), is that of the “genuinely multidimensional” upwind schemes.
These may be regarded as the true multi-D generalization of 1-D fluctuation splitting.
The multi-D residual is decomposed into contributions of different physical origin; these
are then sent downwind in order to represent advection, or distributed omnidirectionally
when representing subsonic acoustic propagation. These methods are best formulated
on simplex-type (finite-element) grids and include newly developed, compact limiters for
avoiding oscillations.

The schemes have almost exclusively been designed for marching to a steady solution;
only recently there has been some activity in formulating time-accurate extensions, e.g.
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by Hubbard and Roe (2000 [26]).

Genuinely multi-D schemes have matured during the 1990s owing to the efforts of Roe
et al. at the University of Michigan in Ann Arbor and Herman Deconinck et al. at the Von
Kármán Institute near Brussels. Milestones were the doctoral theses of Lisa Mesaros (1995,
UMich [47]) and Henri Paillère (1995, VKI [50]). The approach has become popular only
in Europe, where it is actually used for solving industrial flow problems. A comprehensive
report describing the European effort up to 1996 is the BRITE/EURAM project book
edited by Deconinck and Koren (1997 [15]).

The state of the art is probably still defined by the theses of Dutchman Erwin van der
Weide (1998, TU Delft, NL [63]) and Roumanian Doru Caraeni (2000, TI Lund, S [9]).
van der Weide solves complex steady viscous rocket-base-flow problems. His findings are
that the method does fulfil its promise of uniform resolution regardless of direction, but
that convergence to a steady solution suffers, probably because of the compact, highly
nonlinear limiters. Caraeni develops a third-order-accurate scheme for Large-Eddy Simu-
lation (LES). Temporal accuracy is achieved by using the scheme only in an inner iterative
(pseudo-time) loop, which solves an outer, implicit update scheme.

The newer name for the multi-D upwind methods is “residual-distribution schemes”.
Roe, Abgrall and Z.-J. Wang (Iowa State University) are currently working on achieving
high-order accuracy without going outside one vertex-defined cell. These techniques are
starting to look more and more like Discontinuous-Galerkin methods. Their justification
lies in large-eddy and turbulence simulation, as well as in climate modeling.

Roe and students have also been studying the coupling of residual-distribution schemes
to grid adaptation [48,53].

While the research on residual-distribution schemes has greatly increased our insight in
the structure of the flow equations and our ability to numerically represent the flow physics
with minimal grid bias, the reality is that the American aeronautical community has not
bought into this methodology. Presumably, the advent of high-performance computing
and promise of massively parallel computing has quelled any drive toward a systematic
modernization of CFD algorithms. It is easy to be cynical or at least sceptical regarding
the impact of current cutting-edge algorithm research on the CFD-users community. I
personally believe, though, that the next round of gains in CFD will not come from
hardware improvement but, once again, from method development.

In this paper I have made a point of indicating the disciplines and nationalities of
important contributors to the development of CFD in the past half century. In doing this
I wanted to emphasize that CFD was developed by people of all walks of life, not just by
aeronautical engineers. It is a tribute to our aerospace community that it has had the
openness of mind to absorb the very best other disciplines had to offer. Where excellence
is the prime goal, xenophobia has no place. May other disciplines follow in our footsteps.

Those with further interest in upwind and high-resolution schemes are encouraged to
consult the book “Upwind and High-Resolution Schemes” [27], an anthology of key papers
on the subject, preceded by a technical introduction by Phil Roe and a historical review
by myself, from which I have heavily borrowed for this paper.

OPEN ACCESS

DOI https://doi.org/2006-CiCP-7954 | Generated on 2024-12-22 19:04:14



203 Bram van Leer / Commun. Comput. Phys., 1 (2006), pp. 192-206

Acknowledgements

I am indebted to Phil Roe for Helpful Hint Nr. 4 in Section 2.4.

References

[1] R. Abgrall, Design of an essentially non-oscillatory reconstruction procedure on finite-element
type meshes, NASA Langley Research Center Hampton, ICASE Report 91-84, 1991.

[2] G. D. van Albada, B. van Leer and J. W. W. Roberts, A comparative study of computational
methods in cosmic gas dynamics, Astron. Astrophys., 108 (1982), 76–84.

[3] W. K. Anderson, J. L. Thomas and B. van Leer, Comparison of finite volume flux vector
splittings for the Euler equations, AIAA J., 24 (1985), 1453–1460.

[4] J. P. Boris, A fluid transport algorithm that works, in: Computing as a Language of Physics,
International Atomic Energy Commission, 1971, pp. 171–189.

[5] J. P. Boris and D. L. Book, Flux-corrected transport III: Minimal error FCT methods, J.
Comput. Phys., 20 (1976), 397–431.

[6] J. P. Boris and D. L. Book, Flux-corrected transport I: SHASTA, a fluid-transport algorithm
that works, J. Comput. Phys., 11 (1973), 38–69.

[7] J. P. Boris, D. L. Book and K. H. Hain, Flux-corrected transport II: Generalization of the
method, J. Comput. Phys., 18 (1974), 248–283.

[8] S. L. Brown, P. L. Roe and C. P. T. Groth, Numerical solution of 10-moment model for
nonequilibrium gasdynamics, AIAA Paper 95-1677, 1995.

[9] D. A. Caraeni, Development of a multidimensional residual distribution solver for large Eddy
simulation of industrial turbulent flows, Ph.D. Thesis, Lund Institute of Technology, 2000.

[10] P. Colella, A direct Eulerian MUSCL scheme for gas dynamics, SIAM J. Sci. Stat. Comput.,
6 (1985), 104–117.

[11] P. Colella and P. R. Woodward, The piecewise-parabolic method (PPM) for gas-dynamical
simulations, J. Comput. Phys., 54 (1984), 174–201.

[12] R. Courant, E. Isaacson and M. Rees, On the solution of non-linear hyperbolic differential
equations by finite differences, Commun. Pure Appl. Math., 5 (1952), 243–255.

[13] A. Dadone and B. Grossman, A rotated upwind scheme for the Euler equations, AIAA Paper
91-0635, 1991.

[14] S. F. Davis, A rotationally-biased upwind difference scheme for the Euler equations, J. Com-
put. Phys., 56 (1984), 65–92.

[15] H. Deconinck and B. Koren (Eds.), Euler and Navier-Stokes solvers using multidimensional
upwind schemes and multigrid acceleration, Notes Numer. Fluid Mech., vol. 57, 1997.

[16] J. E. Fromm, A method for reducing dispersion in convective difference schemes, J. Comput.
Phys., 3 (1968), 176–189.

[17] J. Glimm and P. D. Lax, Decay of solutions of systems of nonlinear hyperbolic conservation
laws, Memoirs Amer. Math. Soc., 101 (1970), 112.

[18] S. K. Godunov, A finite-difference method for the numerical computation and discontinuous
solutions of the equations of fluid dynamics, Mat. Sb., 47 (1959), 271–306.

[19] J. B. Goodman and R. J. LeVeque, On the accuracy of stable schemes for 2D conservation
laws, Math. Comput., 45 (1985), 15–21.

[20] A. Harten, High-resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49
(1983), 357–393.

OPEN ACCESS

DOI https://doi.org/2006-CiCP-7954 | Generated on 2024-12-22 19:04:14



Bram van Leer / Commun. Comput. Phys., 1 (2006), pp. 192-206 204

[21] A. Harten, On a class of high resolution total variation stable finite difference schemes, SIAM
J. Numer. Anal., 21 (1984), 1–23.

[22] A. Harten, S. Osher, B. Engquist and S. R. Chakravarthy, Some results on uniformly high-
order accurate essentially non-oscillatory schemes, J. Appl. Num. Math., 2 (1986), 347–377.

[23] A. Harten, B. Engquist, S. Osher and S. R. Chakravarthy, Uniformly high-order accurate
non-oscillatory schemes III, J. Comput. Phys., 71 (1987), 231–303.

[24] A. Harten, P. D. Lax and B. van Leer, Upstream differencing and Godunov-type schemes for
hyperbolic conservation laws, SIAM Rev., 25 (1983), 35–61.

[25] A. Harten and S. Osher, Uniformly high-order accurate non-oscillatory schemes I, SIAM J.
Numer. Anal., 24 (1987), 279–309.

[26] M. E. Hubbard and P. L. Roe, Compact high-resolution algorithms for time-dependent ad-
vection on unstructured grids, Int. J. Numer. Meth. Fl., 33 (2001), 711–736.

[27] M. Y. Hussaini, B. van Leer and J. H. van Rosendale (Eds.), Upwind and High-Resolution
Schemes, Springer, 1997.

[28] H. T. Huynh, Accurate upwind methods for the Euler equations, SIAM J. Numer. Anal.,
32(5) (1995), 1565-1619.

[29] G.-S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes, J. Comput.
Phys., 126 (1996), 202–228.

[30] R. Jeltsch and J. H. Smit, Accuracy barriers of difference schemes for hyperbolic equations,
SIAM J. Numer. Anal., 24 (1987), 1–11.

[31] V. P. Kolgan, Application of the principle of minimum values of the derivative to the con-
struction of finite-difference schemes for calculating discontinuous solutions of gas dynamics,
Scientific Notes of TsAGI, 3 (1972), 68–77.

[32] B. Koren, Multigrid and Defect Correction for the Steady Navier-Stokes Equations,
Ph.D. Thesis, Technische Universiteit Delft, 1989.

[33] B. van Leer, CFD education: Past, present, future, Comput. Fluid Dynam. J., 9 (2000),
157–163, special issue.

[34] B. van Leer, Flux-vector splitting for the Euler equations, NASA Langley Research Center
Hampton, ICASE Report 82-30, 1982.

[35] B. van Leer, On numerical dispersion by upwind differencing, Appl. Numer. Math., 2 (1986),
379–384.

[36] B. van Leer, On the relation between the upwind-differencing schemes of Godunov, Engquist-
Osher and Roe, SIAM J. Sci. Stat. Comput., 5 (1984), 1–20.

[37] B. van Leer, Towards the ultimate conservative difference scheme. I. The quest of monoticity,
Lect. Notes Phys., 18 (1973), 163–168.

[38] B. van Leer, Towards the ultimate conservative difference scheme. II. Monoticity and conser-
vation combined in a second-order scheme, J. Comput. Phys., 14 (1974), 361–370.

[39] B. van Leer, Towards the ultimate conservative difference scheme. III. Upstream-centered
finite-difference schemes for ideal compressible flow, J. Comput. Phys., 23 (1977), 263–275.

[40] B. van Leer, Towards the ultimate conservative difference scheme. IV. A new approach to
numerical convection, J. Comput. Phys., 23 (1977), 276–299.

[41] B. van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel
to Godunov’s method, J. Comput. Phys., 32 (1979), 101–136.

[42] B. van Leer, Upwind-difference methods for aerodynamic problems governed by the Euler
equations, in: Bjorn E. Engquist, Stanley Osher and Richard C. J. Somerville (Eds.), Large-
Scale Computations in Fluid Mechanics, AMS, Lectures in Applied Mathematics, 22 Part 2,
1985, pp. 327–336.

OPEN ACCESS

DOI https://doi.org/2006-CiCP-7954 | Generated on 2024-12-22 19:04:14



205 Bram van Leer / Commun. Comput. Phys., 1 (2006), pp. 192-206

[43] B. van Leer, J. L. Thomas, P. L. Roe and R. W. Newsome, A comparison of numerical
flux formulas for the Euler and Navier-Stokes equations, in: AIAA 8th Computational Fluid
Dynamics Conference, Hawaii, 1987.

[44] D. Levy, K. G. Powell and B. van Leer, Use of a rotated Riemann solver for the two-
dimensional Euler equations, J. Comput. Phys., 106 (1993), 201–214.

[45] T. Linde, A practical, general-purpose Riemann solver for hyperbolic conservation laws, in:
M. J. Baines (Ed.), Numerical Methods in Fluid Dynamics VII, ICFD, Seventh International
Conference on Numerical Methods for Fluid Dynamics, Clarendon, 2001.

[46] M. S. Liou, Ten years in the making – AUSM-family, AIAA Paper 2001-2521, 2001.
[47] L. M. Mesaros, Multi-dimensional Fluctuation Splitting Schemes for the Euler Equations on

Unstructured Grids, Ph.D. Thesis, University of Michigan, 1995.
[48] H. Nishikawa, On Grids and Solutions from Residual Minimization, Ph.D. Thesis, University

of Michigan, 2001.
[49] S. Osher and F. Solomon, Upwind schemes for hyperbolic systems of conservation laws, Math.

Comput., 38 (1982), 339–374.
[50] H. Paillère, Multidimensional Upwind Residual Distribution Schemes for the Euler and

Navier-Stokes Equations on Unstructured Grids, Ph.D. Thesis, Université Libre de Brux-
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