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Abstract. A hybrid method is presented for determining maximal eigenval-
ue and its eigenvector (called eigenpair) of a large, dense, symmetric matrix.
Many problems require finding only a small part of the eigenpairs, and some
require only the maximal one. In a series of papers, efficient algorithms have
been developed by Mufa Chen for computing the maximal eigenpairs of tridi-
agonal matrices with positive off-diagonal elements. The key idea is to explicit-
ly construct effective initial guess of the maximal eigenpair and then to employ
a self-closed iterative algorithm. In this paper, we will extend Mufa Chen’s al-
gorithm to find maximal eigenpair for a large scale, dense, symmetric matrix.
Our strategy is to first convert the underlying matrix into the tridiagonal form
by using similarity transformations. We then handle the cases that prevent us
from applying Chen’s algorithm directly, e.g., the cases with zero or negative
super- or sub-diagonal elements. Serval numerical experiments are carried out
to demonstrate the efficiency of the proposed hybrid method.
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1 Introduction

The best approach for computing all the eigenpairs (eigenvalues and eigenvec-
tors) of a dense symmetric matrix involves three steps:

• reduction: reduce the given symmetric matrix A to tridiagonal form T (i.e.
nonzero elements only occur on the diagonal and super-/sub-diagonals);

• solution of tridiagonal eigen-problem: compute all the eigenpairs of T;

• back-transformation: map the eigenvectors of T into those of A.

For an N×N matrix, the reduction and back-transformation steps require
O(N3) arithmetic operations each. Note that most algorithms for the tridiago-
nal eigen-problem also had cubic complexity in the worst case, including the QR
algorithm and inverse iteration. As pointed out by [18] the tridiagonal problem
can be the computational bottleneck for large problems taking nearly 70∼80% of
the total time to solve the entire dense problem. As a result, numerous methods
exist for the numerical computation of the eigenvalues of a real tridiagonal matrix
to high accuracy, see, e.g., [2, 10, 11]. To find eigenvalues of a symmetric tridiago-
nal matrix typically requires O(N2) operations [8], although fast algorithms exist
which require O(N lnN) [6].

In practice, many problems require finding only a small part of the eigenval-
ues and eigenvectors; for such problems, finding all the eigenpairs may be time
consuming and wasteful. The problem of computing the maximal eigenpairs has
been a classical subject, and the methods for this problem that are discussed most
are the power method, the inverse method, the Rayleigh quotient method, and
some hybrid method, see, e.g., [1,12,13]. Finding the largest eigenpairs has many
applications in signal processing, control, and recent development of Google’s
PageRank algorithm. In a series of papers, Mufa Chen [3–5] developed some effi-
cient algorithms for computing the maximal eigenpairs for tridiagonal matrices.
The key idea is to explicitly construct effective initials for the maximal eigenpairs
and also employ a self-closed iterative algorithm. The algorithm makes the total
number of iterations independent of the size of the matrix.

In [14], the authors extended Chen’s algorithm to deal with large scale tridiag-
onal matrices. By using appropriate scalings and by optimizing numerical com-
plexity, we make the computational cost for each iteration to be O(N). As a result,
it requires O(N) number of computational cost to obtain the maximal eigenpair.

The main purpose of this paper is to compute the maximal eigenpair for large,
dense, symmetric matrices by further extending Chen’s algorithm. Namely, for
the three steps mentioned above, we first convert the given symmetric matrix to
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a similar tridiagonal one by using the Householder algorithm, and then handle
the tridiagonal eigenpair problem by extending Chen’s algorithm. More precise-
ly, for any full symmetric N×N matrix A, we first convert it into a symmetric
tridiagonal matrix T by a similarity transformation Q:

A=QTTQ. (1.1)

The similarity transformation is implemented by (N−2) Householder transfor-
mations H of the form

H= I−2uuT, (1.2)

where u ∈ R
N is a unit column vector. By making use of the special structure

of the Householder transformation, the whole process of the tridiagonalization
costs about 7

3 N3 operations. After obtaining a tridiagonal matrix T, we may not
be able to employ Chen’s algorithm immediately as the positivity of all super-
and sub-diagonal elements may not hold. Therefore, possible cases including
zero and negative off-diagonal elements may occur. For the case with zero super-
or sub-diagonal elements, we split T into some smaller tridiagonal matrices and
then apply Chen’s algorithm to each of them. For the negative off-diagonal case,
we will introduce a diagonal matrix P depending on the signs of the off-diagonal
elements of T. By using the similarity transformation

W=PTTP, (1.3)

a matrix suitable for Chen’s Algorithm can be obtained. Hence, to obtain the
maximal eigenpair for dense symmetric matrices the total number of operations
is

7

3
N3+pchN, (1.4)

where pch is the iteration constant for Chen’s algorithm. The biggest advantage
of Chen’s algorithm is that the constant pch is quite small (about 10) even for large
size matrices. In contrast, the power method, which is the classical method for
computing maximal eigenpair, costs ppwN2 operations at this step. The iteration
constant for the power method, ppw, becomes very large for large size matrices,
in particular for cases with clustered eigenvalues. The reason is that the conver-
gence rate of the power method depends on the ratio of the second largest eigen-
value over the largest one. In Section 4, our numerical example taken from [15]
shows that ppw can be as big as O(N). Thus, for the cases with clustered eigen-
values, our proposed method has some obvious advantage.

The rest of this paper is organized as follows. In Section 2, we will briefly
review Mufa Chen’s original algorithm designed for tridiagonal matrices. The
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main part Section 3 provides a hybrid algorithm for large dense symmetric ma-
trices. The key element is to extend Chen’s algorithm to handle negative or zero
off-diagonal elements. In Section 4, numerical experiments are carried out to
demonstrate the effectiveness of the proposed hybrid method. Some concluding
remarks will be provided in the final section.

2 Mufa Chen’s algorithm

To better illustrate the proposed hybrid method, we first review Chen’s algorithm
presented in [3, 4] which seeks maximal eigenpair for tridiagonal matrices with
positive off-diagonal elements. Starting from an (N+1)×(N+1) tridiagonal ma-
trix A and by using a shift Q :=A−mI, where I is the identity matrix and

m= max
0≤i≤N

N

∑
j=1

ai,j, (2.1)

we may assume that

Q=















−(b0+c0) b0 0 0 ···
a1 −(a1+b1+c1) b1 0 ···
0 a2 −(a2+b2+c2) b2 ···
...

...
...

. . .
...

0 0 0 aN −(aN+cN)















, (2.2)

where ai,bi >0, ci ≥0 but cj 6≡0. As in [3], define, for 1≤n≤N,

µ0=1, µn=µN−1
bN−1

an
, (2.3)

r0=1+
c0

b0
, rn=1+

an+cn

bn
− an

bnrN−1
, (2.4)

h0=1, hn =hN−1rN−1. (2.5)

Furthermore, define

φn=
N

∑
k=n

1

hkhk+1µkbk
, 0≤n≤N (2.6)

with hN+1= cNhN+aN(hN−hN−1) and bN =1.
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Theorem 2.1. ([3]) For a given tridiagonal matrix A, define m,(ai,bi,ci) as in (2.1)-
(2.2). Set

(ṽ0)i =hi

√

φi, 0≤ i≤N; v0=
ṽ0

‖ṽ0‖2
, (2.7)

where hi,φi are defined by (2.3)-(2.6). Furthermore, let

z0=
1

δ0
; δ0= max

0≤n≤N

[

√

φn

n

∑
k=0

µkh2
k

√

φk+
1√
φn

N

∑
j=n+1

µjh
2
j φ3/2

j

]

. (2.8)

With the initial values v0 and shift δ0, we perform the shifted inverse power method

on matrix Q given in (2.2), which produces a vector sequence of {vk} and associated

Rayleigh quotient {zk}. Then m−zk converges to the largest eigenvalue of A and vk

converges to the corresponding eigenvector.

Although the above theorem gives a useful initial eigenpair approximation,
using the inverse iteration in general requires many iterations. This in turn s-
lows down the convergence of the computation. To improve this, a more robust
and accurate method was introduced in [4]. First, we take the similarity transfor-
mation on Q using the diagonal matrix Diag(hi), whose main diagonal is by the
vector h, i.e.,

Q̃=Diag(hi)
−1QDiag(hi). (2.9)

It is easy to check that Q̃ is of the following form

Q̃=















−b̃0 b̃0 0 0 ···
ã1 −(ã1+ b̃1) b̃1 0 ···
0 ã2 −(ã2+ b̃2) b̃2 ···
...

...
...

. . .
...

0 0 0 ãN −(ãN+ b̃N)















, (2.10)

where ãi, b̃i >0. We then define

ν0=1, νn=νN−1
b̃N−1

ãn
, 1≤n≤N, (2.11)

ϕn=
N

∑
k=n

1

νkb̃k

, 0≤n≤N. (2.12)

Similar as before, we define

δ̃0= max
0≤k≤N

[

√
ϕk

k

∑
i=0

νi
√

ϕi+
1√
ϕk

N

∑
j=k+1

νj ϕ
3/2
j

]

. (2.13)

With the above preparations, we are now ready to state Chen’s algorithm:
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• Choose the initial eigenpair using (2.12) and (2.13): ω(0)=
√

ϕ,

v(0)=
ω

(0)

‖ω(0)‖2

, z(0)=
1

δ̃0
.

• For n=1,2,···, solve the linear equation

(

−Q̃−z(n−1) I
)

ω=v(n−1) (2.14)

and then define v(n)=ω/‖ω‖2.

• Update z(n)=1/δ̃n with

δ̃n= max
0≤k≤N

1

v
(n)
k

[

ϕk

k

∑
i=0

νiv
(n)
i +

N

∑
j=k+1

νj ϕjv
(n)
j

]

(2.15)

until
∣

∣z(n)−z(n−1)
∣

∣ is smaller than some given tolerance.

• Output the largest eigenpair as λmax(A)=m−z(n), g=Diag(hi)v
(n).

Note that the key contribution of the above algorithm is the use of the iteration
(2.15), which was first introduced in [4].

3 An extension to dense symmetric matrices

In this section, we will extend Chen’s algorithm to the general symmetric matri-
ces. The first step is to convert the symmetric matrices into tridiagonal ones by
similarity transformation, which is implemented by the Householder transfor-
mation (HT).

3.1 Tridiagonalization

We first introduce

Hw= I−2wwT , with wTw=1, w∈R
N . (3.1)

Lemma 3.1. For any u∈R
N and v∈R

N such that ‖u‖2=‖v‖2, there exists a House-

holder transformation H such that

v=Hu,
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where

w=
u−v

‖u−v‖2
, and H= I−2wwT. (3.2)

It is easy to check that an HT defined by (3.2) is symmetric and orthogonal,
i.e.,

H=HT, HT H= I. (3.3)

Now we use HTs to convert any symmetric matrix A into tridiagonal form. First,
we split A as

A=

(

a11 rT
1

r1 A22

)

, (3.4)

with
r1=(a21,a31,··· ,aN1)

T , A22=
(

aij

)N

i,j=2
. (3.5)

We define
v1=(σ1,0,··· ,0)T, where σ1=−sign(a21)‖r1‖2. (3.6)

Note that if sign(a21)=0, we can just take σ1=‖r1‖2. It can be verified that

‖v1‖2=‖r1‖2. (3.7)

From Lemma 3.1 we can find an Householder transformation H1 such that

H1r1=v1,

where

u1= r1−v1, and H1= I−2
u1uT

1

uT
1 u1

. (3.8)

We let

U1=

(

1
H1

)

, (3.9)

which gives that

A(2)=U1AU1=

(

a11 vT
1

v1 H1A
(1)
22 H1

)

:=

(

η1 vT
1

v1 A2

)

. (3.10)

It is easy to check that U1 is a HT and the associating reflection vector is defined
as

w1=

(

0
u1

)

, and U1= I−2w1w1
T.
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Using the same procedure above on A2 and following similar processes yield U2,
U3, ···, UN−2 such that

A(N−2)=

(

N−2

∏
j=1

UN−1−j

)

A
N−2

∏
j=1

Uj

=















η1 σ1

σ1 η2 σ2
. . . . . . . . .

σN−2 ηN−1 σN−1

σN−1 ηN















:=B. (3.11)

Let U=U1U2 ···UN−2. It is cleat that U is an orthogonal matrix, and the following
result holds

B=UT AU, (3.12)

where we have used the fact that each Uj is symmetric and orthogonal.

Remark 3.1. We point out that σ1=−sign(a21)‖r1‖2 is chosen to reduce possible

numerical overflow due to (3.8). More precisely, note that

u1=(a21+sign(a21)‖r1‖2,a31,··· ,aN1)
T , (3.13)

which gives ‖u1‖2 ≥ |a21|+‖r1‖2. However, if we take the opposite sign, i.e.,

σ1=sign(a21)‖r1‖2, then the estimate will change to ‖u1‖2≥||a21|−‖r1‖2|, which

indicates that in some possible cases instability may occur in (3.8) as ‖u1‖2 may

become very small.

Remark 3.2. To save the storages of Uj, we only need to keep the refection vec-

tors wj associating with Uj, which yields O(N2) storage. Meanwhile, it only takes

O(N) instead of O(N2) operations when performing the product of an House-

holder transformation with a vector:

Hwv=
(

I−2wwT
)

v=v−2
(

wTv
)

w. (3.14)

3.2 Zero off-diagonal elements

After tridiagonalization, the super-/sub-diagonal elements may not be all posi-
tive which prevent us from using Chen’s algorithm directly. We first fix the case
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that the off-diagonals have zero elements. Without loss of generality, we assume
that there is only one zero element: σk=0. In this case, let us split B as

B=

(

B1

B2

)

, (3.15)

where

B1=















η1 σ1

σ1 η2 σ2
. . . . . . . . .

σk−2 ηk−1 σk−1

σk−1 ηk















, B2=















ηk+1 σk+1

σk+1 ηk+2 σk+2
. . . . . . . . .

σN−2 ηN−1 σN−1

σN−1 ηN















.

Lemma 3.2. For B given by (3.15), assume that (λ,p) and (µ,q) are eigenpairs of B1

and B2 respectively. Then (λ,p̃) and (µ,q̃) are eigenpairs of B, where

p̃=

(

p

0(N−k)×1

)

, q̃=

(

0k×1

q

)

. (3.16)

Based on the above lemma, we can derive following proposition easily.

Proposition 3.1. Given an block diagonal matrix B

B=











B1

B2
. . .

Bk











. (3.17)

If (λ,p) is an eigenpair of Bj, then (λ,p̃) is an eigenpair of B with

p̃=
(

01,··· ,0j−1,p,0j+1,··· ,0k

)T
, (3.18)

where 0i has the same size as row size of Bi for each i.

Hence, when multi zero off-diagonal elements occur, we can apply the algo-
rithm to Bj respectively.
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3.3 Negative off-diagonal elements

If the off-diagonals have negative elements (but all no zero), we define

P=diag(p1,p2,··· ,pN), (3.19)

where

p1=1, and pk =
sign(σk−1)

pk−1
for 2≤ k≤N. (3.20)

It is seen that pk is either 1 or −1. Hence, it is easy to verify that P is symmetric
and orthogonal, i.e., PT =P and PTP= I, and satisfies

PTBP=















η1 |σ1|
|σ1| η2 |σ2|

. . . . . . . . .

|σN−2| ηN−1 |σN−1|
|σN−1| ηN















.

Clearly, with this similarity transformation, we can guarantee that all off-diagonal
elements are positive.

3.4 Complexity of storage and operations

We first present our hybrid scheme, Algorithm 1, which can be used to compute
the maximal eigenpair.

We now discuss the complexity of the algorithm:

• In Step 1, the whole process of tridiagonalization takes O(N3) operations
and O(N2) storage for storing w1,··· ,wN−2 associated with the Household-
er transformations U1,··· ,UN−2. Even though the cost of operations looks
very expensive, the tridiagonalization is necessary for getting all eigenpairs.
Note in Matlab this is done by using the function eig(·). Moreover, the re-
sulting tridiagonal matrix will be useful to compute all the eigenpairs if we
are not just interested in the maximal eigenpair.

• In Step 2, it does not increase the operation cost.

• In Step 3, the simple similarity transformation only takes N operations.

• In Step 4, the optimal operation cost O(pN) is achieved in [14], where p is
the number of the iterations in Chen’s algorithm. It is shown by numerical
examples that this iteration number is small even for very large matrices.
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Algorithm 1 A hybrid method for computing the maximal eigenpair

Given: a symmetric matrix A∈R
N×N.

Step 1. Following Section 3.1 to find HTs of U1,··· ,UN−2 and using these HTs

to convert A into a tridiagonal matrix B.

Step 2. If some off-diagonal elements in B are zero, then the splitting tech-

niques in Section 3.2 is used.

Step 3. If some off-diagonal elements in B are negative, then the similarity

transformation defined in Section 3.3 is used.

Step 4. Apply Chen’s algorithm in Section 2 to get the maximal eigenpair for

the tridiagonal matrices in Steps 1-3.

Step 5. Take the back-transformations of ones in Step 1 and Step 3 to recover

the maximal eigenpair of A.

• In Step 5, the inverse similarity transformation in Step 3 only takes N op-
erations and it takes N(N−2) operations for the series inverse similarity
transformation in Step 1, see Remark 3.2.

4 Numerical experiments

In this section, we will take several numerical examples to demonstrate the per-
formance of the extension of the proposed hybrid algorithm.

Example 4.1. Consider the signed Gauss-Laguerre quadrature matrix with a sign

factor γj in front of β j given below

Gs
N+1=















α0 γ0β0 0 0 ···
γ0β0 α1 γ1β1 0 ···

0 γ1β1 α2 γ2β2 ···
...

...
...

. . .
...

0 0 0 γN−1βN−1 αN















, (4.1)

where

αi =2i+1+α, βi =
√

(i+1)(i+1+α), i≥0,

and α is chosen as α=−0.25.
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Figure 1: (Example 4.1) the largest eigenvalue in the signed Gauss-Laguerre quadrature versus the
matrix size N (left), the corresponding relative errors (middle), and the total number of iterations
(right).

If we choose the sign factor γj ≡ 1, the matrix becomes the original Gauss-
Laguerre quadrature matrix given in [9], which is tested in our precious work
[14]. In this example, we set γj=(−1)j. Hence, the off-diagonal elements can be
negative. The original Chen’s algorithm cannot be applied directly as it requires
the positivity of super-/sub-diagonal elements. Using the technique in (3.19)-
(3.20), we define

P=diag(1,1,−1,−1,1,1,−1,−1,···)T,

which ends up with

GN+1 :=PTGs
N+1P=















α0 β0 0 0 ···
β0 α1 β1 0 ···
0 β1 α2 β2 ···
...

...
...

. . .
...

0 0 0 βN−1 αN















. (4.2)

In Fig. 1, we display the growth of the largest eigenvalue with respect to the
matrix size N. It is noticed that the eigenvalue grows almost quadratically with
respect to N. By use of the method given by Chen [4] together with scaling and
recurrence techniques proposed in [14], the corresponding approximation errors
can reach the machine accuracy after 9 iterations for N=1500.

We further increase the value of N to 10000, and the corresponding numerical
results are presented in Table 1. It is observed that very accurate approximations
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Table 1: (Example 4.1) Numerical approximation for the largest eigenvalue of the signed Gauss-
Laguerre quadrature problem with N = 10000. The exact value of the largest eigenvalue is λmax =
3.987464700035208e+04.

# iteration Numerical Absolute Error Relative Error

0 3.989034126621150e+04 15.69 3.94e-04

3 3.988599366128229e+04 11.35 2.85e-04

6 3.987752624280322e+04 2.88 7.22e-05

9 3.987464796093082e+04 9.61e-04 2.41e-08

11 3.987464700035210e+04 5.82e-11 1.46e-15

are obtained after 10 iterations even for such a large size. In fact, as the largest
eigenvalue is of order 104 it takes a couple of more iterations for this case.

Example 4.2. Consider a symmetric random matrix taken as

H=
1

2
√

n



















χN−1 N(0,2)
N(0,2) χN−2 N(0,2)

N(0,2) χn−3 N(0,2)
. . . . . . . . .

N(0,2) χn−k N(0,2)
N(0,2) χn−k−1



















, (4.3)

where N(0,2) is a zeros-mean Gaussian with variance 2, and χr is the square-

root of a χ2-distributed number with r degrees of freedom. We take n= 106 and

k=1000.

Note that N(0,2) may contain nonpositive numbers, so the techniques pro-
posed in Steps 2 and 3 in Algorithm 1 must be used. In Fig. 2, we first show the
elements and the distribution of eigenvalues. It is observed that indeed some of
the off-diagonal elements are nonpositive. It is further seen that the main diag-
onal are close to 1, and the eigenvalues are densely clustered in (0.997,1.002). It
would take thousands of iterations if the power method is used since the ratio of
the second largest eigenvalue over the largest eigenvalue is very close to 1. We
have tested these random matrices tens of times. Each test takes about 15∼ 20
iterations to achieve 10∼15 significant digits. Table 2 presents one typical test for
the largest eigenvalue approximation.

In the following two examples, two kinds of dense symmetric matrices will
be considered.
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Figure 2: (Example 4.2) the distribution of elements and eigenvalues.

Table 2: (Example 4.2) The approximations of the largest eigenvalue in each iteration.

# iteration Numerical Error

1 1.002470857648490 6.878357132089619e-05

6 1.002454385910175 5.231183300624664e-05

11 1.002430848213373 2.877413620439029e-05

16 1.002408106105916 6.032028747160467e-06

21 1.002402074077465 2.955413691552167e-13

Example 4.3. Consider the classical Hilbert matrix H = (Hij) ∈ R
N×N given as

follows.

Hij=(i+ j−1)−1, 1≤ i, j≤N. (4.4)

The Hilbert matrix comes from the least square approximation of functions on
(0,1) by polynomials with the natural basis {1,x,··· ,xN−1}, i.e.,

min
a0,a1,···,aN−1

E(a0,a1,··· ,aN−1)= min
a0 ,a1,···,aN−1

1

2

∫ 1

0
( f (x)−PN(x))

2dx, (4.5)
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Figure 3: (Example 4.3) elements after tridiagonalization: upper row for N = 100, bottom row for
N=1000.

where PN(x) = a0+a1x+···+aN−1xN−1. The ith normal equation ∂E/∂ai−1 = 0
leads to

N

∑
j=1

∫ 1

0
xi+j−2dxaj−1=

∫ 1

0
xi−1 f (x)dx, (4.6)

further amounting to

N

∑
j=1

(i+ j−1)−1aj =
∫ 1

0
xi−1 f (x)dx=: fi . (4.7)

This yields a linear system

Ha= f, (4.8)

where H is the Hilbert matrix. It is well known that the Hilbert matrix is highly
ill-conditioned.

We first perform the tridiagonalization process to the Hilbert matrix, and the
elements of the main diagonal and the super-/sub-diagonal are plotted in Fig. 3.
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Figure 4: (Example 4.3) numerical performances of Algorithm 1 for Hilbert matrices.

It is seen that all elements decay exponentially, reaching the machine limit after
N = 20. We then propose to chop super-/sub-diagonal elements to zero when
they are smaller than 10−15. In this setting, the original Chen’s algorithm cannot
be used directly due to zero super-/sub-diagonal elements. To fix this, we apply
the splitting technique presented in Section 3.2.

In Fig. 4, we present the numerical results, which contains the numerical er-
rors and number of iterations needed for each N. It is observed that the iteration
number stays at the constant number 4, while the absolute errors almost reach
the machine accuracy. We emphasize that only 4 iterations are required even the
size of the Hilbert matrix is as large as 2000×2000.

Example 4.4. This example comes from [15]. We generate real symmetric and

positive definite matrices using the MATLAB function randsvd. More precisely,

we use Higham’s test matrices [16] by the following MATLAB command

>>A=gallery(randsvd,N,−cnd,mode)

The eigenvalue distribution and condition number of A can be controlled by the

input arguments mode∈{1,2,3,4,5} and cnd :=α≥1, as described below:

• mode=1, one large: λ1≈1, λi ≈α−1, i=2,··· ,N;

• mode=2, one small: λN ≈α−1, λi ≈1, i=1,··· ,N−1;

• mode=3, geometrically distributed: λi ≈α−(i−1)/(N−1), i=1,··· ,N;

• mode = 4, arithmetically distributed: λi ≈ 1−(1−α−1)(i−1)/(N−1), i =
1,··· ,N;

OPEN ACCESS

DOI https://doi.org/10.4208/cmr.2020-0005 | Generated on 2024-12-19 02:10:26



T. Tang and J. Yang / Commun. Math. Res., 36 (2020), pp. 93-112 109

• mode = 5, random with uniformly distributed logarithm: λi ≈ α−r(i), i =
2,··· ,N, where r(i) are pseudo-random values drawn from the standard u-

niform distribution on (0,1).

In this example, we fix mode= 3 and cnd= 1.5, and will compare our hybrid
method Algorithm 1 with the power method. The power method is the classical
algorithm for computing the maximal eigenvector:

v(k+1)=
Av(k)

‖Av(k)‖
, k=1,2,··· , (4.9)

and similarly for the eigenvalue.
Before presenting the numerical results, let us look at the parameter effects.

Since mode= 3 and α= 1.5, the convergence speed of the power method with p
iterations is given by

O
((

λ2

λ1

)p)

≈1.5−
p

N−1 . (4.10)

In order to get accurate approximations, we need to take p> N. Thus, the total
number of computations of the power methods is dominated by O(N2) for a full
matrix without particular structures.

Fig. 5 compares the numerical performances of Algorithm 1 and the power
method. As expected, the power methods take very large number of iterations
to achieve satisfactory results. On the other hand, our hybrid method only takes
very small number of iterations. Thanks to the code for tridiagonalization given
in [17], the CPU time of our methods takes only 3% of the one used by the power
method.

5 Concluding remarks

The problem considered in this work is the efficient computation of the maximum
eigenvalue and its corresponding eigenvector of a large, dense, symmetric matrix
to a prescribed tolerance. Finding the maximal eigenpair can be a tough job. The
whole algorithm can be O(N3) when N is sufficiently large. As most efficient
algorithms to find eigenvalues and eigenvectors use the Householder algorith-
m, even the most powerful algorithm requires O(N3) operation. Knowing that
we cannot improve the Householder algorithm, we look for ways to increase the
speed for finding the maximal eigenpairs of the corresponding tridiagonal matri-
ces. The complexity of most existing algorithms for this part is proportional to
the matrix size N, together with an iteration constant. A significant breakthrough
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Figure 5: (Example 4.4) Comparisons of numerical performances of the power method (left column)
with Algorithm 1 (right column).

on computing maximal eigenpair for tridiagonal matrices has been proposed by
Chen recently, which minimizes the cost of the iteration.

Our work in this paper extends Chen’s idea to deal with the maximal eigen-
pair problem for large and dense matrices. Numerical tests and comparisons are
made to study the performance of the proposed algorithm, which suggest that
our hybrid method is fast and reliable for computing the maximal eigenpairs.
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We close this work with two general remarks on the application of the algo-
rithm presented in this paper. The first is that the algorithm can be extended to
non-symmetrical cases, as long as the underlying matrix can be tridiagonalized.
As demonstrated in [14], Chen’s method can deal with non-symmetrical tridi-
agonal matrices. The second remark is that the present method may be further
extended to obtain partial or all eigenpairs by combining some shift inverse tech-
niques. This will be a meaningful future work which can provide an effective
numerical algorithm to obtain all eigenpairs with 7

3 N3+pchN2 operations, where
the constant pch is small.
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