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Abstract. We present a framework for solving time-dependent partial differential equa-

tions (PDEs) in the spirit of the random feature method. The numerical solution is

constructed using a space-time partition of unity and random feature functions. Two

different ways of constructing the random feature functions are investigated: feature

functions that treat the spatial and temporal variables (STC) on the same footing, or

functions that are the product of two random feature functions depending on spatial

and temporal variables separately (SoV). Boundary and initial conditions are enforced

by penalty terms. We also study two ways of solving the resulting least-squares problem:

the problem is solved as a whole or solved using the block time-marching strategy. The

former is termed the space-time random feature method (ST-RFM). Numerical results

for a series of problems show that the proposed method, i.e. ST-RFM with STC and

ST-RFM with SoV, have spectral accuracy in both space and time. In addition, ST-RFM

only requires collocation points, not a mesh. This is important for solving problems with

complex geometry. We demonstrate this by using ST-RFM to solve a two-dimensional

wave equation over a complex domain. The two strategies differ significantly in terms

of the behavior in time. In the case when block time-marching is used, we prove a lower

error bound that shows an exponentially growing factor with respect to the number of

blocks in time. For ST-RFM, we prove an upper bound with a sublinearly growing factor

with respect to the number of subdomains in time. These estimates are also confirmed

by numerical results.
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1. Introduction

Time-dependent partial differential equations (PDEs), such as diffusion equation, wave

equation, Maxwell equation, and Schrödinger equation, are widely used for modeling the

dynamic evolution of physical systems. Numerical methods, including finite difference

method [11], finite element methods [17], and spectral methods [15], have been proposed

to solve these PDEs. Despite the great success in theory and application, these methods still

face some challenges, to name a few, complex geometry, mesh generation, and possibly high

dimensionality.

Along another line, the success of deep learning in computer vision and natural lan-

guage processing [8] attracts great attention in the community of scientific computing. As

a special class of functions, neural networks are proved to be universal approximators to

continuous functions [3]. Many researchers seek for solving ordinary and partial differ-

ential equations with neural networks [5–7, 9, 14, 16, 19]. Since the PDE solution can be

defined in the variational (if exists), strong, and weak forms, deep Ritz method [5], deep

Galerkin method [16] and physics-informed neural networks [14], and weak adversarial

network [19] are proposed using loss (objective) functions in the variational, strong, and

weak forms, respectively. Deep learning-based algorithms have now made it fairly routine

to solve a large class of PDEs in high dimensions without the need for mesh generation of

any kind.

For low-dimensional problems, traditional methods are accurate, with reliable error

control, stability analysis and affordable cost. However, in practice, coming up with a suit-

able mesh is often a highly non-trivial task, especially for complex geometry. On the con-

trary, machine-learning methods are mesh-free and only collocation points are needed.

Even for low-dimensional problems, this point is still very attractive. What bothers a user

is the absence of reliable error control in machine-learning methods. For example, without

an exact solution, the numerical approximation given by a machine-learning method does

not show a clear trend of convergence as the number of parameters increases.

There are some efforts to combine the merits of traditional methods and deep-learning

based methods. The key ingredient is to replace deep neural networks by a special class

of two-layer neural networks with the inner parameters fixed, known as random features

[12, 13] or extreme learning machine [10]. Random feature functions are proved to be

universal approximators as well, meanwhile only the parameters of the output layer need

to be optimized, leading to a convex optimization problem. Extreme learning machines are

employed to solve ordinary and partial differential equations in [18] and [1], respectively.

Spectral accuracy is obtained for problems with analytic solutions, and the simplicity of

network architectures reduces the training difficulty in terms of execution time and solu-

tion accuracy, compared to deep neural networks. In [4], a special kind of partition of unity

(PoU), termed as domain decomposition, is combined with extreme learning machines to

approximate the PDE solution and the block time-marching strategy is proposed for long

time simulations. Spectral accuracy is obtained in both space and time for analytic solu-

tions, but the error grows exponentially fast in most cases as the simulation time increases.

In [2], combining PoU and random feature functions, the random feature method (RFM) is
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proposed to solve static PDEs with complex geometries. An automatic rescaling strategy is

also proposed to balance the weights of equations and boundary conditions, which is found

to work well for linear elasticity and Stokes flow over complex geometries.

The objective in this article is to propose a methodology for solving time-dependent

PDEs that shares the merits of both traditional and machine learning-based algorithms. This

new class of algorithms can be made spectrally accurate in both space and time. Meanwhile,

they are also mesh-free, making them easy to use even in settings with complex geometry.

Our starting point is based on a combination of rather simple and well-known ideas: We use

space-time PoU and random feature functions to represent the approximate solution, the

collocation method to take care of the PDE as well as the boundary conditions in the least-

squares sense, and a rescaling procedure to balance the contributions from the PDE and

initial/boundary conditions in the loss function. This method is called ST-RFM. For time-

dependent problems, a random feature function can depend on both spatial and temporal

variables — i.e. space-time concatenation input (STC), or is the product of two random

feature functions depending on spatial and temporal variables separately (SoV). STC can

be viewed as natural extensions of random feature method for static problems [2], while

SoV may be a better choice for some time-dependent PDEs. Both STC and SoV are proved

to be universal approximators. For long time intervals, PoU for the temporal variable — i.e.

domain decomposition along the time direction, is proposed to solve time-dependent prob-

lems. Error estimates of the ST-RFM and the block-time marching strategy are provided.

ST-RFM yields spectrally accurate results with slowly growing error in terms of the number

of subdomains in time, while the error generated by the block time-marching strategy in [4]

grows exponentially fast in terms of the number of blocks. These findings are confirmed by

numerical results in one and two dimensions.

This article is organized as follows. In Section 2, we present the ST-RFM and prove the

approximation property of STC and SoV. Upper bound error estimate for ST-RFM and lower

bound error estimate for the block time-marching strategy are provided. In Section 3, nu-

merical experiments in one and two dimensions for heat, wave, and Schrödinger equations

are conducted to show the spectral accuracy of the proposed method, and confirm the er-

ror estimates for long time simulations. Application of ST-RFM to a two-dimensional wave

equation over a complex geometry is also provided. Conclusions are drawn in Section 4.

2. Random Feature Method for Solving Time-Dependent PDEs

For completeness, we first recall the RFM for solving static problems. We then intro-

duce the ST-RFM for solving time-dependent PDEs, and prove the universal approximation

property and the error estimate.

2.1. Random feature method for static problems

Let x ∈ Ω ⊂ Rdx , where dx ∈ N+ is the dimension of x , and let du ∈ N+ be the dimension

of output. Consider the following boundary-value problem:

L u(x ) = f (x ), x ∈ Ω,
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Bu(x ) = g (x ), x ∈ ∂Ω,

where f and g are known functions, L and B are differential and boundary operators,

respectively. ∂Ω is the boundary of Ω.

The RFM has the following components. First, N points {x̂ i} are chosen from Ω, typ-

ically uniformly distributed. Then Ω is decomposed to N subdomains {Ωi} with x̂ i ∈ Ωi.

Thus, we have Ω ⊂ ∪iΩi. For each Ωi, a PoU function ψi with support Ωi, i.e. supp(ψi) =

Ωi, is constructed. In one dimension, two PoU functions are commonly used

ψa(x) = I[−1,1](x),

ψb(x) = I[−5/4,−3/4](x)
1+ sin(2πx)

2
+ I[−3/4,3/4](x) + I[3/4,5/4](x)

1− sin(2πx)

2
.

The first PoU is discontinuous, while the second one is continuously differentiable. In high

dimensions, the PoU function ψ can be constructed as a tensor product of dx one-dimen-

sional PoU functions ψ, i.e. ψ(x ) = Π
dx

i=1
ψ(x i).

Then for each Ωi, RFM constructs Jn ∈ N+ random features φi j by a two-layer neural

network with random but fixed parameters k i j and bi j, i.e.

φi j(x ) = σ
�

k⊤i j li(x ) + bi j

�

, j = 1,2, . . . , Jn, (2.1)

where the nonlinear activation function σ is chosen as the hyperbolic tangent or trigono-

metric functions in [2]. In (2.1), each component of k i j and bi j is independently sampled

from U(−Rm,Rm), where Rm ∈ R+ controls the magnitude of parameters. In particular,

both the weights and the biases are fixed in the optimization procedure. Moreover, li(x ) is

a linear transformation to transform inputs in Ωi to [−1,1]dx . The approximate solution in

RFM is the linear combination of these random features together with the PoU

uM (x ) =

N
∑

i=1

ψi(x )

Jn∑

j=1

ui jφi j(x ), (2.2)

where ui j ∈ R are unknown coefficients to be sought and M = N · Jn denotes the degree of

freedom. For vectorial solutions, we approximate each component of the solution by (2.2),

i.e.

uM (x ) =
�

u1
M (x ), . . . ,u

du

M (x )
�⊤

. (2.3)

To find the optimal set of parameters {ui j}, RFM evaluates the original problem on

collocation points and formulates a least-squares problem. To be specific, RFM samples

Q ∈ N+ collocation points x i,1, . . . , x i,Q in each Ωi, and computes the rescaling parameters

λ
p

i,k,q
> 0 and λb

i,k,e
> 0 for i ∈ [N], k ∈ [du], q ∈ [Q] and e ∈ [Q] satisfying x i,e ∈ ∂Ω. Let

λ
p

i,q
= diag(λ

p

i,1,q
, . . . ,λ

p

i,du,q
)⊤ and λb

i,e
= diag(λb

i,1,e
, . . . ,λb

i,du,e
)⊤. Then the random feature

method minimizes

Loss
�

{ui, j,k}
�

=

N
∑

i=1

 

Q
∑

q=1



λ
p

i,q

�

L uM (x i,q)− f (x i,q)
�


2

2
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+
∑

x i,e∈∂Ω



λb
i,e

�

BuM (x i,e)− g (x i,e)
� 


2

2

!

, (2.4)

where uM is of the form (2.3) and ui, j,k is the k-th coefficient of the random feature φi j .

The above problem (2.4) is a linear least-squares problem whenL andB are linear op-

erators. Moreover, when the discontinuous PoU ψa is used, continuity conditions between

adjacent subdomains must be imposed by adding regularization terms in (2.4), while no

regularization is required when ψb is used for second-order equations. By minimizing

(2.4), the optimal coefficients u∗ = (u∗
i jk

, )⊤ are obtained and the numerical solution is

constructed by (2.3).

2.2. Space-time random feature method

Now, we consider time-dependent PDEs of the following form with the final time T > 0:

L u(x , t) = f (x , t), x , t ∈ Ω× [0, T ],

Bu(x , t) = g (x , t), x , t ∈ ∂Ω× [0, T ],

I u(x , 0) = h(x ), x ∈ Ω,

(2.5)

where f , g and h are known functions and I is the initial operator.

Following the same routine as in RFM, we construct a partition of Ω × [0, T ]. First,

we decompose the spatial domain Ω to Nx subdomains where each subdomain Ωi contains

a central point x̂ i . We then decompose the temporal interval [0, T ] to Nt subdomains —

i.e.

[0, T ) = [t0, t1)∪ [t1, t2), . . . , [tNt−1, tNt
),

where each subdomain contains a central point t̂ i = (t i−1 + t i)/2. The product of the PoUs

in space and in time results in the space-time PoU — i.e.

ψix ,it
(x , t) =ψix

(x )ψit
(t),

where ix and it are indices for spatial and temporal subdomains, respectively.

Next, we generalize spatial random features (2.1) to space-time random features. There

are two options. The first can be viewed as a natural extension of (2.1), where the con-

catenation of spatial and temporal variables is fed into φi j as the input and the output is

a random feature function — i.e.

φix ,it , j
(x , t) = σ

��

k x
ix ,it , j

�⊤
lix
(x ) + kt

ix ,it , j
lit (t) + bix ,it , j

�

. (2.6)

Here k x
ix ,it , j

and kt
ix ,it , j

are the weights associated with spatial and temporal inputs, respec-

tively. bix ,it , j
is the bias, lix

(x ) and lit (t) are linear transformations from x ∈ Ωix
to [−1,1]dx

and from t ∈ [t it−1, t it
] to [−1,1], respectively. (2.6) is called STC.

The second option is to use separation of variables, which mimics the technique of

separation of variables for solving PDEs

φix ,it , j
(x , t) = σ

��

k x
ix ,it , j

�⊤
lix
(x ) + bx

ix ,it , j

�

σ
�

kt
ix ,it , j

lit (t) + bt
ix ,it , j

�

. (2.7)
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In this formulation, the space-time random feature is a product of the spatial random fea-

ture and the temporal random feature, thus we term it as SoV. For both random features,

the degrees of freedom M = Nx · Nt · Jn.

The combination of these space-time random features and PoU leads to the following

approximate solution in the scalar case:

uM (x , t) =

Nx∑

ix=1

Nt∑

it=1

ψix
(x )ψit

(t)

Jn∑

j=1

uix ,it , j
φix ,it , j

(x , t), (2.8)

where uix ,it , j
is the unknown coefficient to be sought. A vectorial solution uM can be for-

mulated in the same way as that in (2.3), i.e.

uM (x , t) =
�

u1
M (x , t), . . . ,u

du

M (x , t)
�⊤

. (2.9)

For the k-th component of uM , we denote the coefficient associated to φix ,it , j
by uix ,it , j,k

.

By substituting (2.8) or (2.9) into (2.5), we define the loss function on collocation

points. Denote {x ix ,it ,1
, . . . , x ix ,it ,Q x

} spatial collocation points in the ix -th spatial subdo-

main and (it − 1)T/Nt = t ix ,it
= t ix ,it ,0

< t ix ,it ,1
< · · · < t ix ,it ,Q t

= it T/Nt temporal colloca-

tion points in the it -th temporal subdomain, respectively. In RFM, we define the rescaling

parameters λe
ix ,it ,qx ,qt

, λb
ix ,it ,e,qt

and λi
ix ,it ,qx

for ix ∈ [Nx], it ∈ [Nt], qx ∈ [Q x], qt ∈ [Q t]

and e ∈ [Q x] satisfying x ix ,it ,e
∈ ∂Ω. Then the ST-RFM minimizes

Loss
�

{uix ,it , j,k
}
�

=

Nx∑

ix=1

Nt∑

it=1

 

Q x∑

qx=1

Q t∑

qt=1



λe
ix ,it ,qx ,qt

�

L u(x ix ,it ,qx
, t ix ,it ,qt

)− f (x ix ,it ,qx
, t ix ,it ,qt

)
� 


2

+
∑

x ix ,it ,e∈∂Ω

Q t∑

qt=1



λb
ix ,it ,e,qt

�

Bu(x ix ,it ,e
, t ix ,it ,qt

)− g (x ix ,it ,e
, t ix ,it ,qt

)
�


2

+ Iit=1

Q x∑

qx=1



λi
ix ,it ,qx

�

I u(x ix ,it ,qx
, 0)− h(x ix ,it ,qx

)
�


2

!

(2.10)

to find the numerical solution of the form (2.9). Moreover, when Nx > 1 or Nt > 1 and

ψa is used, continuity conditions between adjacent spatial (temporal) subdomains must be

imposed by adding regularization terms in (2.10), while no regularization is required when

ψb is used for second-order equations.

For better illustration of this method, we consider an example with du = 1, the initial

operator I being identity and rescaling parameters being one. For convenience, we set

Nx = 1 and relabel it by i without confusion. Under these settings, we introduce two

matrix-valued functions Φi(t), Li(t) and three induced matrices as follows:

Φi(t) =
�

φi, j(x i,q, t),
�

∈ RQ x×Jn , Φi,0 = Φi(t i,0), Φi,1 = Φi(t i,Q t
),

Li(t) =
�

Lφi, j(x i,q, t),
�

∈ RQ x×Jn , Li =
�

Li(t i,0)
⊤, . . . ,Li(t i,Q t−1)

⊤�⊤ ,
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where q is the row index and j is the column index. Then we construct the matrix A as

follows:

Ai =
�

0(Jn×(i−1)(Q t+1)Q x )
,Φ⊤

i,0
,L⊤

i
,−Φ⊤

i,1
,0(Jn×((Nt−i)(Q t+1)−1)Q x )

�⊤
, A =

�

A1, . . . ,ANt

�

.

Define the following vectors:

h =
�

h(x 1,1),h(x 1,2), . . . ,h(x 1,Q x
)
�⊤

,

f i, j =
�

f (x i,1, t i, j), f (x i,2, t i, j), . . . , f (x i,Q x
, t i, j)

�⊤
,

f i =
�

f ⊤i,0, f ⊤i,1, . . . , f ⊤i,Q t−1

�⊤
,

then we construct the vector b =
∑Nt

i=1
bi, where

b1 =
�

h⊤, f ⊤
1

,0⊤
((Nt−1)(Q t+1)Q x )

�⊤
,

bi =
�

0⊤
(((i−1)(Q t+1)+1)Q x )

, f ⊤
i

,0⊤
((Nt−i)(Q t+1)Q x )

�

for i = 2, . . . , Nt .

Let u ∈ RNt Jn , then the optimal coefficient uS by ST-RFM is obtained by

uS =min
u
‖(Au − b)‖2. (2.11)

For time-dependent partial differential equations, Dong et al. [4] proposed the block

time-marching strategy. Block time-marching strategy solves Eq. (2.5) in each time block

individually and applies the numerical results in i-th block at the terminal time as the initial

conditions of (i+1)-th block. Let Nb ∈ N+ be the number of time blocks, and let Nt = 1 for

simplicity. For first-order equations in time, we present the detailed process of block time-

marching strategy in Algorithm 2.1, and the optimal coefficient uB is the concatenation of

optimal coefficients in all time blocks.

Algorithm 2.1 Block time-marching strategy to solve time-dependent PDEs.

1: Ã1 =
�

Φ
⊤
1,0, L⊤1

�⊤
, b̃1 =

�

g⊤, f ⊤1
�⊤

;

2: uB
1 =minu ‖Ã1u − b̃1‖2;

3: for i = 2,3, . . . , Nb do

4: Ãi =
�

Φ
⊤
i,0

, L⊤
i

�⊤
, b̃i =

�
�

uB
i−1

�⊤
Φ
⊤
i−1,1

, f ⊤i

�⊤
;

5: uB
i =minu ‖Ãiu − b̃i‖2;

6: end for

7: uB =
��

uB
1

�⊤
,
�

uB
2

�⊤
, . . . ,

�

uB
Nb

�⊤�⊤
.
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2.3. Approximation properties

Both concatenation random features and separation-of-variables random features are

universal approximators. To prove these, we first recall the definition of sigmoidal functions

in [3].

Definition 2.1. A functionσ is called sigmoidal if limz→+∞σ(z) = 1 and limz→−∞σ(z) = 0.

The approximation property of STC is given in the following theorem.

Theorem 2.1. Let σ be any continuous sigmoidal function. Then finite sums of

GC(x , t) =

N
∑

j=1

u jσ
��

k x
j

�⊤
x + kt

j t + b j

�

(2.12)

are dense in C(Ω × [0, T ]). In other words, given any f ∈ C(Ω × [0, T ]) and ε > 0, there

exists a sum GC(x , t) such that

|GC(x , t)− f (x , t)| < ε for all x , t ∈ Ω× [0, T ].

Proof. It is a direct consequence of [3, Theorem 2].

Corollary 2.1. When using the hyperbolic tangent as the activation function in (2.12), the

finite sums (2.12) are dense in C(Ω× [0, T ]).

Proof. Considering the continuous sigmoidal function σ̃(z) = 1/(1+ e−z), we note that

tanh(z) = 2σ̃(2z)− 1. From Theorem 2.1, there is a sum

G̃J (x , t) =

Ñ
∑

j=1

ũ jσ̃
��

k̃
x

j

�⊤
x + k̃t

j t + b̃ j

�

such that
�

�G̃J(x , t)− f (x , t)
�

� <
ε

2
.

Define û = (
∑Ñ

j=1
ũ j)/2. If û = 0, then the finite sum

GC(x , t) =

Ñ
∑

j=1

1

2
ũ j tanh

�

1

2

��

k̃
x

j

�⊤
x + k̃t

j
t + b̃ j

�
�

satisfies

�

�GC (x , t)− f (x , t)
�

� =

�

�

�

�

�

Ñ
∑

j=1

1

2
ũ j

�

2σ̃
��

k̃
x

j

�⊤
x + k̃t

j
t + b̃ j

�

− 1
�

− f (x , t)

�

�

�

�

�

=
�

�G̃J (x , t)− f (x , t)
�

� <
ε

2
< ε.
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If û 6= 0, since Ω ⊂ Rdx is compact and thus is bounded and closed, there exist k̂
x
, k̂t

and b̂ such that �

�

�tanh
��

k̂
x�⊤

x + k̂t t + b̂
�

− 1

�

�

� <
ε

|û|
holds for all (x , t) ∈ Ω× [0, T ]. Then the finite sum

GC(x , t) =

Ñ
∑

j=1

1

2
ũ j tanh

�

1

2

��

k̃
x

j

�⊤
x + k̃t

j t + b̃ j

�
�

+
1

2
û tanh

��

k̂
x�⊤

x + k̂t t + b̂
�

satisfies

|GC(x , t)− f (x , t)| =
�

�

�

�

�

Ñ
∑

j=1

1

2
ũ j

�

2σ̃
��

k̃
x

j

�⊤
x + k̃t

j
t + b̃ j

�

− 1
�

+
1

2
û tanh

��

k̂
x�⊤

x + k̂t t + b̂
�

− f (x , t)

�

�

�

�

≤
�

�G̃J (x , t)− f (x , t)
�

�+
1

2
|û|
�

�

�tanh
��

k̂
x�⊤

x + k̂t t + b̂
�

− 1

�

�

�

<
ε

2
+
ε

2
= ε

for all (x , t) ∈ Ω× [0, T ].

For SoV, we first extend the definition of discriminatory functions in [3] as follows.

Definition 2.2. σ is said to be discriminatory if for a measure µ ∈M (Ω× [0, T ])
∫

Ω×[0,T]

σ
�

(k x)⊤x + bx
�

σ(kt t + bt)dµ(x , t)

for all k x ∈ Rdx , kt ∈ R, bx ∈ R and bt ∈ R implies µ = 0.

Lemma 2.1. Any bounded, measurable sigmoidal function σ is discriminatory. In particular,

any continuous sigmoidal function is discriminatory.

Proof. For any x , t, b, k = ((k x)⊤, kt)
⊤, θ = (θ x ,θ t), we have

lim
λ→+∞

σ
�

λ
�

(k x)⊤x + b
�

+ θx

�

=

¨

1, if (k x)⊤x + b > 0,

0, if (k x)⊤x + b < 0

and

σ
�

λ
�

(k x)⊤x + b
�

+ θx

�

= σ(θx ), if (k x)⊤x + b = 0, λ ∈ R.

Thus, σx ,λ(x ) = σ(λ((k
x)⊤x + b) + θx) converges in the pointwise and bounded sense to

γx(x ) =









1, if (k x )⊤x + b > 0,

0, if (k x )⊤x + b < 0,

σ(θx ), if (k x )⊤x + b = 0
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as λ→ +∞. Similarly, we have σt,λ(t) = σ(λ(yt t + θ) +φt) converges in the pointwise

and bounded sense to

γt(t) =









1, if kt t + b > 0,

0, if kt t + b < 0,

σ(θt), if kt t + b = 0

as λ→ +∞.

Denote

Π
x
k,b
=
�

(x , t) | (k x )⊤x + b = 0, kt t + b > 0
	

,

Π
t
k,b
=
�

(x , t) | (k x )⊤x + b > 0, kt t + b = 0
	

.

Let Ik,b be the hyperline defined by {(x , t) | (k x )⊤x + b = 0, kt t + b = 0} and Hk,b be the

space defined by {(x , t) | (k x)⊤x + b > 0, kt t + b > 0}. Then by the Lebesgue Bounded

Convergence Theorem, we have

0=

∫

Ω×[0,T]

σx ,λ(x )σt,λ(t)dµ(x , t) =

∫

Ω×[0,T]

γx(x )γt(t)dµ(x , t)

= µ(Hk,b) +σ(θx )µ
�

Π
x
k,b

�

+σ(θt)µ
�

Π
t
k,b

�

+σ(θx)σ(θt )µ(Ik,b)

for all θ , b, k.

We now show that the measure of all quarter spaces being zero implies that the measure

µ itself must be zero. This would be trivial if µ was a positive measure but here it is not.

For a fixed k and a bounded measurable function h, we define a linear functional F as

F(h) =

∫

Ω×[0,T]

h
�

(k x )⊤x
�

h(kt t)dµ(x , t).

Note that F is a bounded functional on L∞(R) since µ is a finite signed measure. Set h the

indicator function of the interval [θ ,∞), i.e.

h(u) =

¨

1, if u ≥ 0,

0, if u < θ ,

then

F(h) =

∫

Ω×[0,T]

h
�

(k x)⊤x
�

h(kt t)dµ(x , t)

= µ(Ik,−b) +µ
�

Π
x
k,−b

�

+µ
�

Π
t
k,−b

�

+µ(Hk,−b) = 0.

Similarly, f (h) = 0 if h is the indicator function of the open interval (θ ,∞). By linearity,

F(h) = 0 holds for the indicator function of any interval and for any simple function (sum

of indicator functions of intervals). Since simple functions are dense in L∞(R), F = 0.
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In particular, a substitution of bounded measurable functions s(x , t) = sin(m⊤x x +mt t)

and c(x , t) = cos(m⊤x x +mt t) gives

F(c + is) =

∫

Ω×[0,T]

cos
�

m⊤x x +mt t
�

+ i sin
�

m⊤x x +mt t
�

dµ(x , t)

=

∫

Ω×[0,T]

exp
�

i
�

m⊤x x +mt t
��

dµ(m, t) = 0

for all m = (m x , mt). The Fourier transform of µ is zero and we have µ = 0. Hence, σ is

discriminatory.

Remark 2.1. Following the same routine, we can prove the approximation property of SoV.

For any continuous sigmoidal function σ, the finite sums

GS(x , t) =

N
∑

j=1

u jσ
��

k x
j

�⊤
x + bx

j

�

σ
�

kt t + bt
j

�

(2.13)

are dense in C(Ω× [0, T ]).

Corollary 2.2. For the hyperbolic tangent activation function in (2.13), the finite sums of the

form

GS(x , t) =

N
∑

j=1

u j tanh
��

k x
j

�⊤
x + bx

j

�

tanh
�

kt
j t + bt

j

�

are dense in C(Ω× [0, T ]).

Proof. The proof is similar to that of Corollary 2.1.

2.4. Error estimates of space-time random feature method

For convenience, we set Nb = Nt to analyze the error of block time-marching strategy

and the ST-RFM. Let uS and uB be exact solutions in Eq. (2.11) and the block time-marching

strategy in Algorithm 2.1, and ûS and ûB be numerical solutions by a numerical solver, such

as direct or iterative methods, respectively. Then we have the following results.

Theorem 2.2. Assume that for any linear least-squares problem minu ‖Au − b‖2 in ST-RFM

and block time-marching strategy, there exists u∗ such that Au∗ = b. Then uB = uS.

Proof. Under the assumption, for each subproblem in Algorithm 2.1, the optimal solu-

tion uB
i

satisfies

Ãiu
B
i = b̃i for i = 1,2, . . . , Nt .

Recalling the definition of Ai in ST-RFM, we have

Aiu
B
i =

�

0⊤
((i−1)(Q t+1)Q x )

, b̃
⊤
i ,−

�

uB
i

�⊤
Φ
⊤
i,1,0⊤

(((Nt−i)(Q t+1)−1)Q x )

�⊤
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=
�

0⊤
((i−1)(Q t+1)Q x )

,
�

uB
i−1

�⊤
Φ
⊤
i−1,1, f ⊤i ,−

�

uB
i

�⊤
Φ
⊤
i,1,0⊤

(((Nt−i)(Q t+1)−1)Q x )

�⊤

=
�

0⊤
((i−1)(Q t+1)Q x )

,
�

uB
i−1

�⊤
Φ
⊤
i−1,1,0⊤

(((Nt−i+1)(Q t+1)−1)Q x )

�⊤

+
�

0⊤
(((i−1)(Q t+1)+1)Q x )

, f ⊤i ,0⊤
((Nt−i)(Q t+1)Q x )

�⊤

−
�

0⊤
(i(Q t+1)Q x )

,
�

uB
i

�⊤
Φ
⊤
i,1,0⊤

(((Nt−i)(Q t+1)−1)Q x )

�⊤
.

After some algebraic calculations, we have

AuB =

Nt∑

i=1

Aiu
B
i
= b.

Since the optimal solution of linear least-squares problem is unique under the assumption,

we have uB = uS .

From Theorem 2.2, solving the time-dependent PDEs by the block time-marching strat-

egy is equivalent to solving the same problem by the ST-RFM. In practice, however, the

numerical solution û is different from the optimal solution u, and we denote the difference

by δu. For long time intervals, when Nb and Nt increases by one, the solution error at Nb+1

block or Nt subdomain is expected to be greater than previous blocks or subdomains due

to error accumulation. To quantitatively analyze the error propagation in terms of Nt and

Nb, we first introduce a matrix Bi as

Bi =
�

Ã⊤
i

Ãi

�−1
Φ
⊤
i,0
Φi−1,1 ∈ RJn×Jn for i = 1, . . . , Nt .

For simplicity, random feature functions are set to be the same over different time subdo-

mains — i.e.

φi1, j = φi2, j for all 1≤ i1 6= i2 ≤ Nt , j = 1,2, . . . , Jn.

Then all Bi are the same and can be denoted by B. To proceed, we need the following

assumption for B.

Assumption 2.1. B is diagonalizable.

Remark 2.2. Although this assumption cannot be proved, we find that numerically B is

diagonalizable for all the numerical examples we have tested. This is not a bad assumption

since it provides a lower bound error estimate of the block time-marching strategy and is

verified numerically as well.

Under Assumption 2.1, there exists {(λ1, b1), . . . , (λJn
, bJn
)} such that bk is the eigen-

vector of B with eigenvalue λk and {bk} is a unitary orthogonal basis in RJn . Denote the

eigenvalue with the largest modulus by λm, i.e. λm =max(|λk|). Since {bk} forms a basis,

there exists {δuk}
Jn

k=1
such that δu =

∑Jn

k=1
δukbk, where δuk, k = 1, . . . , Jn are indepen-

dent and identically distributed random variables with E[δuk] = 0, E[|δuk|] = µ > 0 and

E[(δuk)
2] = δ2 > 0.

We need the following lemma to bound a geometric series from above and from below.
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Lemma 2.2. For any λ ∈ C with |λ| 6= 1 and ε ∈ (0,1), there exists N ∈ N+ such that

(1+ ε)
Cn
λ

|1−λ| ≥
�

�

�

�

�

n−1
∑

i=0

λi

�

�

�

�

�

≥ (1− ε)
Cn
λ

|1−λ|

holds for n> N, where Cλ =max(1, |λ|).

Proof. When |λ|< 1, we have

lim
n→∞

�

�

�

�

�

n−1
∑

i=0

λi

�

�

�

�

�

|1−λ| = lim
n→∞

�

�

�

�

1−λn

1−λ

�

�

�

�
|1−λ|= lim

n→∞
|1−λn| = 1.

Therefore, there exists N1 ∈ N+ such that

1+ ε≥
�

�

�

�

�

n−1
∑

i=0

λi

�

�

�

�

�

|1−λ| ≥ 1− ε

holds for n> N1. Similarly, when |λ|> 1, we have

lim
n→∞

�

�

�

�

�

n−1
∑

i=0

λi

�

�

�

�

�

|1−λ|
|λ|n = lim

n→∞

�

�

�

�

1−λn

1−λ

�

�

�

�

|1−λ|
|λ|n = lim

n→∞
|λ−n− 1|= 1.

Therefore, there exists N2 ∈ N+ such that

1+ ε≥
�

�

�

�

�

n−1
∑

i=0

λi

�

�

�

�

�

|1−λ|
|λn| ≥ 1− ε.

Thus, the conclusion holds when N =max(N1, N2).

Now we are ready to characterize the difference between ûB and uB under the pertur-

bation δu.

Lemma 2.3. Under a perturbation δu to the solution, there exist N ∈ N+ and α > 0 such

that when Nt > N, the solution difference ‖ûB−uB‖ by block time-marching strategy satisfies

Eδu

�

‖ûB − uB‖
�

≥ αµ
p

Ntβ(Nt),

where

β(x) =









1, if max(|λk|)≤ 1 and 1 /∈ {λk},
x , if max(|λk|) = 1 and 1 ∈ {λk},
|λm|x/2, if max(|λk|)> 1.

Proof. The difference between ûB
i and uB

i
satisfies

ûB
i
− uB

i
= δu+

�

Ã⊤
i

Ãi

�−1
Ã⊤

i
b̂i − uB

i
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= δu+
�

Ã⊤i Ãi

�−1
Ã⊤i

�

b̃i +
�

Φ
⊤
i−1,1,0⊤

(Jn×Q tQ x )

�⊤ �
ûB

i−1 − uB
i−1

�
�

− uB
i

= δu+ B
�

ûB
i−1 − uB

i−1

�

= δu+ B
�

δu+ B
�

ûB
i−2
− uB

i−2

��

= · · ·=
 

i−1
∑

j=0

B j

!

δu,

where b̂i 6= b̃i due to ûB
i−1
− uB

i−1
6= 0. Notice that {bk} is an orthonormal basis of RJn .

Using the relations B j bk = λkB j−1bk = · · · = λ
j

k
bk and the unitary orthogonality of {bk},

we obtain

‖ûB − uB‖2 =
Nt∑

i=1

‖ûB
i − uB

i ‖2 =
Nt∑

i=1











Jn∑

k=1

i−1
∑

j=0

δukλ
j

k
bk











2

=

Nt∑

i=1

Jn∑

k=1

�

�

�

�

�

i−1
∑

j=0

λ
j

k

�

�

�

�

�

2

δu2
k
≥

Nt∑

i=1

�

�

�

�

�

i−1
∑

j=0

λ j
m

�

�

�

�

�

2

δu2
m

.

The lower bound can be estimated for four different cases.

1. If |λm| < 1, then Lemma 2.2 and the inequality Nt − N ≥ Nt/(N + 1) yield

Eδu

�

‖ûB − uB‖
�

≥ Eδu





 �
N
∑

i=1

+

Nt∑

i=N+1

�
�

�

�

�

�

i−1
∑

j=0

λ j
m

�

�

�

�

�

2

δu2
m

!
1
2





≥ Eδu





 

Nt∑

i=N+1

(1−δ)
C2i
λm

|1−λm|2
δu2

m

! 1
2





≥ αµ
p

Nt ,

where

α =

�

1− ε
|1−λm|2(N + 1)

� 1
2

.

2. If |λm| = 1 and λm 6= 1, we let λ = e jθ , where j2 = −1 and θ ∈ (0,2π). Taking into

account the inequality
p

Nt − z ≥
p

1− z
p

Nt , z ∈ [0,1), we obtain

Eδu

�

‖ûB − uB‖
�

≥ Eδu





�
Nt∑

i=1

�

�

�

�

1− e jiθ

1− e jθ

�

�

�

�

2

δu2
m

�
1
2



 = Eδu





�
Nt∑

i=1

1− cos iθ

1− cosθ

�
1
2

|δum|





= Eδu

�

1

(1− cosθ)
1
2

�

Nt −
sin((Nt + 1)θ/2)− sin(θ/2)

2 sin(θ/2)

� 1
2

|δum|
�

≥ Eδu

�
�

Nt − 1/sin(θ/2)

1− cosθ

� 1
2

|δum|
�

= αµ
p

Nt ,
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where

α= 2

�

sin(θ/2)− 1

sin(θ/2)− sin(3θ/2)

� 1
2

.

3. If |λm| = 1 and λm = 1, we use the equality

Nt∑

i=1

i2 =
1

6
Nt(Nt + 1)(2Nt + 1)

and obtain

Eδu

�

‖ûB − uB‖
�

≥ Eδu

�
�

1

6
Nt(Nt + 1)(2Nt + 1)δu2

m

� 1
2

�

≥ αµ
p

Nt Nt ,

where α = 1/
p

3.

4. If |λm| > 1, then Lemma 2.2, AM-GM inequality, and the estimate Nt−N ≥ Nt/(N + 1)

give

Eδu

�

‖ûB − uB‖
�

≥ Eδu





 �
N
∑

i=1

+

Nt∑

i=N+1

�
�

�

�

�

�

i−1
∑

j=0

λ j
m

�

�

�

�

�

2

δu2
m

!
1
2





≥ Eδu





 

Nt∑

i=N+1

(1− ε)
C2i
λm

|1−λm|2
δu2

m

! 1
2





≥
p

1− ε
|1−λm|

Eδu

h
�

(Nt − N )|λm|Nt−N+1δu2
m

� 1
2

i

≥ αµ
p

Ntβ(Nt),

where

α =

�

(1− ε)|λm|1−N

|1−λm|2(N + 1)

� 1
2

.

The proof is complete.

If different random feature functions {φi, j} are chosen over different time subdomains,

we observe that ‖ûB − uB‖ also satisfies the estimation in Lemma 2.3.

Lemma 2.4. For the space-time random feature method, there exists N ∈ N+ and α > 0 such

that

Eδu

�

‖ûS − uS‖
�

≤ αδ
p

Nt .
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Proof. Using the Schwarz inequality, we write

�

Eδu

�

‖ûS − uS‖
��2 ≤ Eδu

�

‖ûS
i − uS

i ‖2
�

= Eδu















Nt∑

i=1

M
∑

k=1

δuk,ibk











2


= αδ2Nt ,

where α=
p

M .

Lemma 2.5. Let two functions uM (x , t) and ûM (x , t) be of the form (2.8) with Nx = 1 and

the coefficients being u, û, respectively, then there exists C1 ≥ C2 > 0 such that

C1‖û − u‖ ≥ ‖ûM (x , t)− uM (x , t)‖L2 ≥ C2‖û − u‖.

Proof. Notice that

‖ûM (x , t)− uM (x , t)‖L2 =

�
Nt∑

n=1

Jn∑

i=1

(ûn,i − un,i)
2

∫

Ω×[0,T]

φn,i(x , t)2 dx dt

�
1
2

≤ C1‖û − u‖,

where C1 =maxn,i ‖φn,i(x , t)‖2, and

‖ûM (x , t)− uM (x , t)‖L2 =

� Nt∑

n=1

Jn∑

i=1

(ûn,i − un,i)
2

∫

Ω×[0,T]

φn,i(x , t)2 dx dt

�
1
2

≥ C2‖û − u‖,

where C2 =minn,i ‖φn,i(x , t)‖2. Moreover, for all φn,i ∈ L 2(Ω× [0, T ]), we have C1, C2 <

+∞.

Theorem 2.3 (Lower bound). Denote ue the exact solution. Let δu be the error between

the numerical solution and the exact solution to the least-squares problem. Given ε > 0, we

assume that


uB
M
(x , t)− ue(x , t)





L2(Ω×[tn,tn+1])
≤ ε, ∀n= 0, . . . , N .

Then there exists N ∈ N+ and α > 0 such that when Nt > N,

Eδu

�

ûB
M (x , t)− ue(x , t)





L2

�

≥ αµ
p

Ntβ(Nt)− ε
p

Nt .

Proof. Lemmas 2.3 and 2.5 give

Eδu

�

ûB
M (x , t)− ue(x , t)





L2

�

≥ Eδu

�

ûB
M (x , t)− uB

M (x , t)




L2

�

−


uB
M (x , t)− ue(x , t)





L2

≥ αµ
p

Ntβ(Nt)−
�

Nt∑

n=1

ε2

�
1
2

= αµ
p

Ntβ(Nt)− ε
p

Nt .

The proof is complete.
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Theorem 2.4 (Upper bound). Denote ue the exact solution. Let δu be the error between

the numerical solution and the exact solution to the least-squares problem. Given ε > 0, we

assume that



uS
M (x , t)− ue(x , t)





L2(Ω×[tn,tn+1])
≤ ε for all n= 0, . . . , N .

Then there exists N ∈ N+ and α > 0 such that when Nt > N,

Eδu

�

ûS(x , t)− ue(x , t)




L2

�

≤ αδ
p

Nt + ε
p

Nt .

Proof. It follows from Lemmas 2.4 and 2.5 that

Eδu

�

ûS(x , t)− ue(x , t)




L2

�

≤ Eδu

�

ûS(x , t)− uS(x , t)




L2

�

+


uS(x , t) + ue(x , t)




L2

≤ ασ
p

Nt +

�
Nt∑

n=1

ε2

�
1
2

= ασ
p

Nt +
p

Ntε.

The proof is complete.

From Theorems 2.3 and 2.4, we see that the error of solving the least-squares problem

by the block time-marching strategy increases exponentially in time, while the error in the

ST-RFM does not have this problem. These are also confirmed by the numerical results

given below.

3. Numerical Results

In this section, we present numerical results for one-dimensional and two-dimensional

problems with simple geometry and a two-dimensional problem with complex geometry to

demonstrate the effectiveness of the ST-RFM and confirm theoretical results.

3.1. One-dimensional problems

3.1.1. Heat equation

Consider the following problem:

∂tu(x , t)−α2∂ 2
x u(x , t) = 0, x ∈ [x0, x1], t ∈ [0, T ],

u(x0, t) = g1(t), t ∈ [0, T ],

u(x1, t) = g2(t), t ∈ [0, T ],

u(x , 0) = h(x), x ∈ [x0, x1],

(3.1)

where α= π/2, x0 = 0, x1 = 12 and T = 10. The exact solution is chosen to be

ue(x , t) = 2 sin(αx)e−t . (3.2)
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(a) STC (b) SoV

Figure 1: Results for the heat equation. (a) STC: Left, numerical solution; right, absolute error. (b) SoV:
Left, numerical solution; right, absolute error.

We choose the initial condition h(x) by restricting Eq. (3.2) to t = 0, and the boundary

conditions g1(t) and g2(t) by restricting Eq. (3.2) to x = x0 and x = x1, respectively.

Set the default hyper-parameters Nx = 2, Nt = 5, Q x = 20, Q t = 20, Jn = 400 and

Nb = 1. Numerical solutions and errors of STC (Eq. (2.6)) and SoV (Eq. (2.7)) are plotted

in Fig. 1. The L∞ error in the ST-RFM is small (< 4.5e − 6), which indicates that both

random feature functions have strong approximation properties.

Figs. 2(a)-2(d) show the convergence behavior with respect to different parameters.

In Fig. 2(a), we set Nb = 1, Nx = 2, Jn = 400, Q x = Q t = 20 and Nt = 1, . . . , 5 to

verify the convergence with respect to Nt . In Fig. 2(b), we set Nx = 2, Nt = 1, Jn = 400,

Q x = Q t = 20 and Nb = 1, . . . , 5 to verify the convergence with respect to Nb. In Fig. 2(c),

we set Nb = 5, Nx = 2, Nt = 1, Q x = Q t = 20 and Jn = 50,100,200,300,400 to verify the

convergence with respect to Jn. In Fig. 2(d), we set Nb = 5, Nx = 2, Nt = 1, Jn = 400 and

Q x = Q t = 5,10,15,20,25 to verify the convergence with respect to Q x/Q t . A clear trend

of spectral accuracy is observed for the ST-RFM in both spatial and temporal directions.

Now, we compare STC and SoV in Fig. 2(e), where the default hyper-parameter setting

is used. For this example, STC performs better than SoV. The comparison between the block

time-marching strategy and the ST-RFM is plotted in Fig. 2(f), where we set Nb = 5 and

Nt = 1 for the block time-marching strategy and Nb = 1 and Nt = 5 for the ST-RFM. The

L2 error of solution by the block time-marching strategy increases exponentially fast with

respect to the number of blocks, while the error in the ST-RFM remains almost flat over all

time subdomains.

3.1.2. Heat equation with nonsmooth initial condition

Consider the heat equation (3.1) with x0 = 0, x1 = 8 and the nonsmooth initial condition

as follows:

h(x) = 2I0≤x<4 sin (πx/2) + 2I4≤x≤8 sin (πx) .

It is easy to check that h(x) only belongs to C([0,8]).
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(a) Convergence w.r.t. Nt (b) Convergence w.r.t. Nb (c) Convergence w.r.t. Jn

(d) Convergence w.r.t. Q (e) STC v.s. SoV (f) Block time-marching v.s. ST-RFM

Figure 2: Convergence behavior as different hyper-parameters are varied for the heat equation. (a) the
number of time subdomains in the ST-RFM; (b) the number of time blocks in the block time-marching
strategy; (c) the number of random features in each direction; (d) the number of collocation points in
each direction; (e) comparison of STC and SoV; (f) comparison of the ST-RFM and the block time-
marching strategy.

(a) Convergence w.r.t. time

subdomains

(b) Convergence w.r.t. Jn (c) Convergence w.r.t. Q

Figure 3: Convergence behavior as different hyper-parameters are varied for the heat equation with
nonsmooth initial condition. (a) the number of time subdomains in the ST-RFM; (b) the number of
random features in each direction; (c) the number of collocation points in the temporal direction.

Since an exact solution is not analytically available for the problem under consideration,

we employ a set of hyper-parameters, namely Nx = 2, Nt = 5, Q x = 30, Q t = 50, Jn = 250,

and Nb = 1, to obtain a reference solution. Numerical convergence of ST-RFM is evaluated

in terms of the relative L2 error, which is depicted in Fig. 3. We use STC to implement the

basis function of ST-RFM here. Apparently, spectral accuracy is observed. However, the

accuracy is only around 10−3, two orders of magnitude larger than that in the smooth case

(3.1), which is attributed to the regularity deficiency.
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3.1.3. Wave equation

Consider the following problem:

∂ 2
t

u(x , t)−α2∂ 2
x

u(x , t) = 0, x , t ∈ [x0, x1]× [0, T ],

u(x0, t) = u(x1, t) = 0, t ∈ [0, T ],

u(x , 0) = g1(x), x ∈ [x0, x1],

∂tu(x , 0) = g2(x), x ∈ [x0, x1],

where x0 = 0, x1 = 6π, α= 1 and T = 10. The exact solution is chosen to be

ue(x , t) = cos

�

aπ

l
t

�

sin

�

π

l
x

�

+

�

cos

�

2aπ

l
t

�

+
l

2aπ
sin

�

2aπ

l
t

��

sin

�

2π

l
x

�

,

where l = x1 − x0. Initial conditions g1(x) and g2(x) are chosen accordingly.

Set the default hyper-parameters Nx = 5, Nt = 5, Q x = 30, Q t = 30, Jn = 300 and

Nb = 1. Numerical solutions and errors of STC and SoV are plotted in Fig. 4. The L∞ error

is smaller than 2.5e− 8.

Figs. 5(a)-5(d) show the convergence behavior with respect to different parameters.

In Fig. 5(a), we set Nb = 1, Nx = 5, Jn = 300, Q x = Q t = 30 and Nt = 1, . . . , 5 to

verify the convergence with respect to Nt . In Fig. 5(b), we set Nx = 5, Nt = 1, Jn = 300,

Q x = Q t = 30 and Nb = 1, . . . , 5 to verify the convergence with respect to Nb. In Fig. 5(c),

we set Nb = 5, Nx = 5, Nt = 1, Q x = Q t = 30 and Jn = 100,150,200,250,300 to verify the

convergence with respect to Jn. In Fig. 5(d), we set Nb = 5, Nx = 5, Nt = 1, Jn = 300 and

Q x = Q t = 10,15,20,25,30 to verify the convergence with respect to Q x/Q t . A clear trend

of spectral accuracy is observed for the ST-RFM in both spatial and temporal directions.

Now, we compare STC and SoV in Fig. 5(e), where we set Nb = 1, Nx = 5, Nt =

1, . . . , 5, Q x = Q t = 30 and Jn = 300. For this example, SoV performs better than STC.

The comparison between the block time-marching strategy and the ST-RFM is plotted in

Fig. 5(f), where we set Nb = 5 and Nt = 1 for block time-marching strategy and Nb = 1

(a) STC (b) SoV

Figure 4: Results for the wave equation. (a) ST-RFM with STC: Left, numerical solution; right, absolute
error. (b) ST-RFM with SoV: Left, numerical solution; right, absolute error.
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(a) Convergence w.r.t. Nt (b) Convergence w.r.t. Nb (c) Convergence w.r.t. Jn

(d) Convergence w.r.t. Q (e) STC v.s. SoV (f) Block time-marching v.s. ST-RFM

Figure 5: Convergence behavior as different hyper-parameters are varied for the wave equation. (a) the
number of time subdomains in the ST-RFM; (b) the number of time blocks in the block time-marching
strategy; (c) the number of random features in each direction; (d) the number of collocation points in
each direction; (e) comparison of STC and SoV; (f) comparison of the ST-RFM and the block time-
marching strategy.

and Nt = 5 for ST-RFM. The L2 error of the solution by the block time-marching strategy

increases exponentially fast with respect to the number of blocks, while the error in the

ST-RFM remains almost flat over all time subdomains.

3.1.4. Schrödinger equation

Consider the following problem:

i∂tψ(x , t) + 0.5∆ψ(x , t) = 0, x , t ∈ [x0, x1]× [0, T ],

ψ(x , 0) = g(x), x ∈ [x0, x1],

ψ(x0, t) =ψ(x1, t), t ∈ [0, T ],

∂xψ(x0, t) = ∂xψ(x1, t), t ∈ [0, T ],

where x0 = 0, x1 = 5 and T = 10. The exact solution is chosen to be

ψ(x , t) = e−iω2 t/2
�

2 cos(ωx) + sin(ωx)
�

, ω =
2π

b1 − a1

,

and g(x) is chosen accordingly.

Set the default hyper-parameters Nx = 5, Nt = 3, Q x = 30, Q t = 30, Jn = 300 and

Nb = 1. Numerical solutions and errors of STC and SoV are plotted in Fig. 6. The L∞ error

in the ST-RFM is smaller than 2.0e− 9.

OPEN ACCESS

DOI https://doi.org/10.4208/eajam.2023-065.050423 | Generated on 2024-12-18 23:56:09



456 J.-R. Chen, W. E and Y.-X. Luo

(a) Real part: STC (b) Real part: SoV

(c) Imaginary part: STC (d) Imaginary part: SoV

Figure 6: Results for Schrödinger equation. (a), (c) STC: Left, numerical solution; right, absolute error;
(b), (d) SoV: Left, numerical solution; right, absolute error.

Figs. 7(a)-7(d) (real part) and Figs. 8(a)-8(d) (imaginary part) show the convergence

behavior with respect to different parameters. In Fig. 7(a) and Fig. 8(a), we set Nb = 1,

Nx = 5, Jn = 300, Q x = Q t = 30 and Nt = 1,2,3 to verify the convergence with respect

to Nt . In Fig. 7(b) and Fig. 8(b), we set Nx = 5, Nt = 1, Jn = 300, Q x = Q t = 30 and

Nb = 1,2,3 to verify the convergence with respect to Nb. In Fig. 7(c) and Fig. 8(c), we

set Nb = 3, Nx = 5, Nt = 1, Q x = Q t = 30 and Jn = 100,150,200,250,300 to verify the

convergence with respect to Jn. In Fig. 7(d) and Fig. 8(d), we set Nb = 3, Nx = 5, Nt = 1,

Jn = 300 and Q x = Q t = 10,15,20,25,30 to verify the convergence with respect to Q x/Q t .

A clear trend of spectral accuracy is observed for the ST-RFM in both spatial and temporal

directions.

Now, we compare STC and SoV in Fig. 7(e) and Fig. 8(e), where we set Nb = 1, Nx = 5,

Nt = 1,2,3, Q x = Q t = 30 and Jn = 300. For this example, SoV performs better than STC.

The comparison between the block time-marching strategy and the ST-RFM is plotted in

Fig. 7(f) and Fig. 8(f), where we set Nb = 3 and Nt = 1 for block time-marching strategy

and Nb = 1 and Nt = 3 for ST-RFM. The L2 error of the solution by the block time-marching

strategy increases exponentially fast with respect to the number of blocks, while the error

in the ST-RFM increases slower over all time subdomains.
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(a) Convergence w.r.t. Nt (b) Convergence w.r.t. Nb (c) Convergence w.r.t. Jn

(d) Convergence w.r.t. Q (e) STC v.s. SoV (f) Block time-marching v.s. ST-RFM

Figure 7: Convergence behavior as different hyper-parameters are varied for Schrödinger equation (real
part). (a) the number of time subdomains for ST-RFM; (b) the number of time blocks in the block time-
marching strategy; (c) the number of random features in each direction; (d) the number of collocation
points in each direction; (e) comparison of STC and SoV; (f) comparison of the ST-RFM and the block
time-marching strategy.

(a) Convergence w.r.t. Nt (b) Convergence w.r.t. Nb (c) Convergence w.r.t. Jn

(d) Convergence w.r.t. Q (e) STC v.s. SoV (f) Block time-marching v.s. ST-RFM

Figure 8: Convergence behavior as different hyper-parameters are varied for Schrödinger equation (imag-
inary part). (a) the number of time subdomains for ST-RFM; (b) the number of time blocks in the
block time-marching strategy; (c) the number of random features in each direction; (d) the number of
collocation points in each direction; (e) comparison of STC and SoV; (f) comparison of the ST-RFM
and the block time-marching strategy.
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3.1.5. Verification of theoretical results

First, we verify Assumption 2.1 for all one-dimensional problems using the sufficient con-

dition that the number of different eigenvalues of B, denoted by #unique λk, equals to the

number of random features Jn. Results are recorded in Table 1. The number of unique

eigenvalues of B equals to Jn for all one-dimensional problems and Assumption 2.1 is veri-

fied.

Table 1: Eigenvalue distribution of B in one-dimensional problems for the verification of Assumption 2.1.

Heat Wave Schrödinger

Jn #unique λk Jn #unique λk Jn #unique λk

100 100 100 100 200 200

150 150 150 150 300 300

200 200 200 200 400 400

250 250 250 250 500 500

300 300 300 300 600 600

350 350 350 350 700 700

400 400 400 400 800 800

Next, we use the wave equation to verify the error estimate in Theorem 2.3. For the

block time-marching strategy, we set Nb = 20, Nx = 2, Nt = 1, Jn = 100,Q x = 10,Q t = 10,

and for ST-RFM, we set Nb = 1, Nx = 2, Nt = 20, Jn = 100,Q x = 10,Q t = 10. Eigenvalues

of B are plotted in Fig. 9(a), and the L2 error is plotted in Fig. 9(b).

The largest modulus of eigenvalues of B from Fig. 9(a) is 187.75, indicating that β(x)≈
13.70x , while the L2 error in the block time-marching strategy increases exponentially with

(a) Modulus of λk

2 4 6 8 10 12 14 16 18 20
Index of ti e blocks/subdo ain

10−6

10−2

102

106

1010

1014

1018

L^
2 
er
ro
r

Block ti e-marching
ST-RFM
estimation from Thm. 2.3

(b) L2 error

Figure 9: (a) Eigenvalue distribution for the matrix B; (b) L2 error for the wave equation. We see a good
agreement between Theorems 2.4-2.5, and the actual numerical results.
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the rate 17.70 from Fig. 9(b). Therefore, the lower bound estimate in Theorem 2.4 is

verified. In addition, the L2 error in the ST-RFM remains almost flat, which is mainly

controlled by the approximation power of space-time random features.

3.2. Two-dimensional problems

3.2.1. Membrane vibration over a simple geometry

Consider the following problem:

∂t tu(x , y, t)−α2
∆u(x , y, t) = 0, (x , y), t ∈ Ω× [0, T ],

u(x , y, 0) = φ(x , y), (x , y) ∈ Ω,

∂tu(x , y, 0) =ψ(x , y), (x , y) ∈ Ω,

u(x , y, t) = 0, (x , y) ∈ ∂Ω× [0, T ],

(3.3)

where Ω= [0,5]× [0,4], α= 1 and T = 10. The exact solution is chosen to be

ue(x , y, t) = sin(µx) sin(νy)
�

2 cos(λt) + sin(λt)
�

,

where µ = 2π/(x1 − x0),ν = 2π/(y1 − y0),λ =
p

µ2 + ν2. The initial conditions φ(x , y)

and ψ(x , y) are chosen accordingly.

(a) Convergence w.r.t. Nt (b) Convergence w.r.t. Jn

(c) Convergence w.r.t. Q (d) STC v.s. SoV

Figure 10: Convergence behavior as different hyper-parameters are varied for the membrane vibration
equation (3.3).
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Set the default hyper-parameters Nx = Ny = 2, Nt = 5, Q x = Q y = Q t = 30, Jn = 400

and Nb = 1. We report the convergence behavior with respect to different parameters in

Figs. 10(a)-10(c). In Fig. 10(a), we set Nb = 1, Nx = Ny = 2, Jn = 400, Q x = Q y = Q t = 30

and Nt = 1, . . . , 6 to verify the convergence with respect to Nt . In Fig. 10(b), we set Nb = 1,

Nx = Ny = Nt = 2, Q x = Q y = Q t = 30 and Jn = 100,150,200,250,300,350,400 to

verify the convergence with respect to Jn. In Fig. 10(c), we set Nb = 5, Nx = Ny = Nt = 5,

Jn = 400 and Q x = Q y = Q t = 10,15,20,25,30 to verify the convergence with respect to

the number of collocation points. A clear trend of spectral accuracy is observed for the ST-

RFM in both spatial and temporal directions. Now, we compare STC and SoV in Fig. 10(d),

when Nb = 1, Nx = Ny = 2, Nt = 1, . . . , 6, Q x = Q y = Q t = 30 and Jn = 400. Performances

of STC and SoV are close.

3.2.2. Membrane vibration over a complex geometry

Consider a complex geometry Ω in Fig. 11 and the following the membrane vibration prob-

lem:

∂t tu(x , y, t)−α2
∆u(x , y, t) = 1, (x , y), t ∈ Ω× [0, T ],

u(x , y, 0) = φ(x , y), (x , y) ∈ Ω,

∂tu(x , y, 0) =ψ(x , y), (x , y) ∈ Ω,

u(x , y, t) = 0, (x , y) ∈ ∂Ω× [0, T ],

where T = 10.0, α = 1. The same φ(x , y) and ψ(x , y) are used as in Section 3.2.1. Set

the default hyper-parameters Nx = 5, Nt = 1, Q x = 30, Q t = 30, Jn = 400 and Nb = 5.

Numerical solutions of SoV at different times are plotted in Fig. 12.

No exact solution is available and numerical convergence is shown here. L2 errors of

solution ‖uM − ure f ‖ with respect to different parameters is recorded in Tables 2-4. The

Figure 11: The complex geometry for the membrane vibration problem.
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(a) Time = 0.0 (b) Time = 2.5

(c) Time = 5.0 (d) Time = 7.5

Figure 12: Numerical solution of the membrane vibration problem over a complex geometry at different
times.

solution with the largest degrees of freedom is chosen as the reference solution. As the

parameter varies, the numerical solution converges to the reference solution, indicating

the robustness of the ST-RFM in solving time-dependent partial differential equations over

a complex geometry.

Table 2: L2 error with respect to the number of time sub-domains.

# Time Blocks Nx/Ny Nt Jn Q x/Q y/Q t Solution error

1 2 1 400 30 5.98e-1

1 2 2 400 30 7.07e-2

1 2 3 400 30 4.57e-2

1 2 4 400 30 3.89e-2

1 2 5 400 30 3.31e-2

1 2 6 400 30 Reference
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Table 3: L2 error with respect to the number of collocation points.

# Time Blocks Nx/Ny Nt Jn Q x/Q y/Q t Solution error

5 2 2 400 10 7.71e-2

5 2 2 400 15 2.16e-2

5 2 2 400 20 1.44e-2

5 2 2 400 25 1.25e-2

5 2 2 400 30 Reference

Table 4: L2 error with respect to the number of random features.

# Time Blocks Nx/Ny Nt Jn Q x/Q y/Q t Solution error

5 2 2 100 30 1.05e-1

5 2 2 150 30 5.25e-2

5 2 2 200 30 3.96e-2

5 2 2 250 30 2.82e-2

5 2 2 300 30 1.80e-2

5 2 2 350 30 1.46e-2

5 2 2 400 30 Reference

4. Concluding Remarks

In this work, we study numerical algorithms for solving time-dependent partial differ-

ential equations in the framework of the random feature method. Two types of random fea-

ture functions are considered: space-time concatenation random feature functions (STC)

and space-time separation-of-variables random feature functions (SoV). A space-time par-

tition of unity is used to piece together local random feature functions to approximate the

solution. We tested these ideas for a number of time-dependent problems. Our numerical

results show that ST-RFM with both STC and SoV has spectral accuracy in space and time.

The error in ST-RFM remains almost flat as the number of time subdomains increases, while

the error grows exponentially fast when the block time-marching strategy is used. Consis-

tent theoretical error estimates are also proved. A two-dimensional problem over a complex

geometry is used to show that the method is insensitive to the complexity of the underlying

domain.
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